src/HOL/NumberTheory/Int2.thy
changeset 32805 9b535493ac8d
parent 32804 ca430e6aee1c
parent 32783 e43d761a742d
child 32806 06561afcadaa
child 32845 d2d0b9b1a69d
equal deleted inserted replaced
32804:ca430e6aee1c 32805:9b535493ac8d
     1 (*  Title:      HOL/Quadratic_Reciprocity/Gauss.thy
       
     2     ID:         $Id$
       
     3     Authors:    Jeremy Avigad, David Gray, and Adam Kramer
       
     4 *)
       
     5 
       
     6 header {*Integers: Divisibility and Congruences*}
       
     7 
       
     8 theory Int2
       
     9 imports Finite2 WilsonRuss
       
    10 begin
       
    11 
       
    12 definition
       
    13   MultInv :: "int => int => int" where
       
    14   "MultInv p x = x ^ nat (p - 2)"
       
    15 
       
    16 
       
    17 subsection {* Useful lemmas about dvd and powers *}
       
    18 
       
    19 lemma zpower_zdvd_prop1:
       
    20   "0 < n \<Longrightarrow> p dvd y \<Longrightarrow> p dvd ((y::int) ^ n)"
       
    21   by (induct n) (auto simp add: dvd_mult2 [of p y])
       
    22 
       
    23 lemma zdvd_bounds: "n dvd m ==> m \<le> (0::int) | n \<le> m"
       
    24 proof -
       
    25   assume "n dvd m"
       
    26   then have "~(0 < m & m < n)"
       
    27     using zdvd_not_zless [of m n] by auto
       
    28   then show ?thesis by auto
       
    29 qed
       
    30 
       
    31 lemma zprime_zdvd_zmult_better: "[| zprime p;  p dvd (m * n) |] ==>
       
    32     (p dvd m) | (p dvd n)"
       
    33   apply (cases "0 \<le> m")
       
    34   apply (simp add: zprime_zdvd_zmult)
       
    35   apply (insert zprime_zdvd_zmult [of "-m" p n])
       
    36   apply auto
       
    37   done
       
    38 
       
    39 lemma zpower_zdvd_prop2:
       
    40     "zprime p \<Longrightarrow> p dvd ((y::int) ^ n) \<Longrightarrow> 0 < n \<Longrightarrow> p dvd y"
       
    41   apply (induct n)
       
    42    apply simp
       
    43   apply (frule zprime_zdvd_zmult_better)
       
    44    apply simp
       
    45   apply (force simp del:dvd_mult)
       
    46   done
       
    47 
       
    48 lemma div_prop1: "[| 0 < z; (x::int) < y * z |] ==> x div z < y"
       
    49 proof -
       
    50   assume "0 < z" then have modth: "x mod z \<ge> 0" by simp
       
    51   have "(x div z) * z \<le> (x div z) * z" by simp
       
    52   then have "(x div z) * z \<le> (x div z) * z + x mod z" using modth by arith 
       
    53   also have "\<dots> = x"
       
    54     by (auto simp add: zmod_zdiv_equality [symmetric] zmult_ac)
       
    55   also assume  "x < y * z"
       
    56   finally show ?thesis
       
    57     by (auto simp add: prems mult_less_cancel_right, insert prems, arith)
       
    58 qed
       
    59 
       
    60 lemma div_prop2: "[| 0 < z; (x::int) < (y * z) + z |] ==> x div z \<le> y"
       
    61 proof -
       
    62   assume "0 < z" and "x < (y * z) + z"
       
    63   then have "x < (y + 1) * z" by (auto simp add: int_distrib)
       
    64   then have "x div z < y + 1"
       
    65     apply -
       
    66     apply (rule_tac y = "y + 1" in div_prop1)
       
    67     apply (auto simp add: prems)
       
    68     done
       
    69   then show ?thesis by auto
       
    70 qed
       
    71 
       
    72 lemma zdiv_leq_prop: "[| 0 < y |] ==> y * (x div y) \<le> (x::int)"
       
    73 proof-
       
    74   assume "0 < y"
       
    75   from zmod_zdiv_equality have "x = y * (x div y) + x mod y" by auto
       
    76   moreover have "0 \<le> x mod y"
       
    77     by (auto simp add: prems pos_mod_sign)
       
    78   ultimately show ?thesis
       
    79     by arith
       
    80 qed
       
    81 
       
    82 
       
    83 subsection {* Useful properties of congruences *}
       
    84 
       
    85 lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)"
       
    86   by (auto simp add: zcong_def)
       
    87 
       
    88 lemma zcong_id: "[m = 0] (mod m)"
       
    89   by (auto simp add: zcong_def)
       
    90 
       
    91 lemma zcong_shift: "[a = b] (mod m) ==> [a + c = b + c] (mod m)"
       
    92   by (auto simp add: zcong_refl zcong_zadd)
       
    93 
       
    94 lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)"
       
    95   by (induct z) (auto simp add: zcong_zmult)
       
    96 
       
    97 lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==>
       
    98     [a = d](mod m)"
       
    99   apply (erule zcong_trans)
       
   100   apply simp
       
   101   done
       
   102 
       
   103 lemma aux1: "a - b = (c::int) ==> a = c + b"
       
   104   by auto
       
   105 
       
   106 lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) =
       
   107     [c = b * d] (mod m))"
       
   108   apply (auto simp add: zcong_def dvd_def)
       
   109   apply (rule_tac x = "ka + k * d" in exI)
       
   110   apply (drule aux1)+
       
   111   apply (auto simp add: int_distrib)
       
   112   apply (rule_tac x = "ka - k * d" in exI)
       
   113   apply (drule aux1)+
       
   114   apply (auto simp add: int_distrib)
       
   115   done
       
   116 
       
   117 lemma zcong_zmult_prop2: "[a = b](mod m) ==>
       
   118     ([c = d * a](mod m) = [c = d * b] (mod m))"
       
   119   by (auto simp add: zmult_ac zcong_zmult_prop1)
       
   120 
       
   121 lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p);
       
   122     ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)"
       
   123   apply (auto simp add: zcong_def)
       
   124   apply (drule zprime_zdvd_zmult_better, auto)
       
   125   done
       
   126 
       
   127 lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m);
       
   128     x < m; y < m |] ==> x = y"
       
   129   by (metis zcong_not zcong_sym zless_linear)
       
   130 
       
   131 lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==>
       
   132     ~([x = 1] (mod p))"
       
   133 proof
       
   134   assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)"
       
   135   then have "[1 = -1] (mod p)"
       
   136     apply (auto simp add: zcong_sym)
       
   137     apply (drule zcong_trans, auto)
       
   138     done
       
   139   then have "[1 + 1 = -1 + 1] (mod p)"
       
   140     by (simp only: zcong_shift)
       
   141   then have "[2 = 0] (mod p)"
       
   142     by auto
       
   143   then have "p dvd 2"
       
   144     by (auto simp add: dvd_def zcong_def)
       
   145   with prems show False
       
   146     by (auto simp add: zdvd_not_zless)
       
   147 qed
       
   148 
       
   149 lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)"
       
   150   by (auto simp add: zcong_def)
       
   151 
       
   152 lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==>
       
   153     [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)"
       
   154   by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
       
   155 
       
   156 lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==>
       
   157   ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)"
       
   158   apply auto
       
   159   apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
       
   160   apply auto
       
   161   done
       
   162 
       
   163 lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)"
       
   164   by (auto simp add: zcong_zero_equiv_div zdvd_not_zless)
       
   165 
       
   166 lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0"
       
   167   apply (drule order_le_imp_less_or_eq, auto)
       
   168   apply (frule_tac m = m in zcong_not_zero)
       
   169   apply auto
       
   170   done
       
   171 
       
   172 lemma all_relprime_prod_relprime: "[| finite A; \<forall>x \<in> A. zgcd x y = 1 |]
       
   173     ==> zgcd (setprod id A) y = 1"
       
   174   by (induct set: finite) (auto simp add: zgcd_zgcd_zmult)
       
   175 
       
   176 
       
   177 subsection {* Some properties of MultInv *}
       
   178 
       
   179 lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==>
       
   180     [(MultInv p x) = (MultInv p y)] (mod p)"
       
   181   by (auto simp add: MultInv_def zcong_zpower)
       
   182 
       
   183 lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
       
   184   [(x * (MultInv p x)) = 1] (mod p)"
       
   185 proof (simp add: MultInv_def zcong_eq_zdvd_prop)
       
   186   assume "2 < p" and "zprime p" and "~ p dvd x"
       
   187   have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)"
       
   188     by auto
       
   189   also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)"
       
   190     by (simp only: nat_add_distrib)
       
   191   also have "p - 2 + 1 = p - 1" by arith
       
   192   finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)"
       
   193     by (rule ssubst, auto)
       
   194   also from prems have "[x ^ nat (p - 1) = 1] (mod p)"
       
   195     by (auto simp add: Little_Fermat)
       
   196   finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)" .
       
   197 qed
       
   198 
       
   199 lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
       
   200     [(MultInv p x) * x = 1] (mod p)"
       
   201   by (auto simp add: MultInv_prop2 zmult_ac)
       
   202 
       
   203 lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))"
       
   204   by (simp add: nat_diff_distrib)
       
   205 
       
   206 lemma aux_2: "2 < p ==> 0 < nat (p - 2)"
       
   207   by auto
       
   208 
       
   209 lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
       
   210     ~([MultInv p x = 0](mod p))"
       
   211   apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
       
   212   apply (drule aux_2)
       
   213   apply (drule zpower_zdvd_prop2, auto)
       
   214   done
       
   215 
       
   216 lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
       
   217     [(MultInv p (MultInv p x)) = (x * (MultInv p x) *
       
   218       (MultInv p (MultInv p x)))] (mod p)"
       
   219   apply (drule MultInv_prop2, auto)
       
   220   apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto)
       
   221   apply (auto simp add: zcong_sym)
       
   222   done
       
   223 
       
   224 lemma aux__2: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
       
   225     [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)"
       
   226   apply (frule MultInv_prop3, auto)
       
   227   apply (insert MultInv_prop2 [of p "MultInv p x"], auto)
       
   228   apply (drule MultInv_prop2, auto)
       
   229   apply (drule_tac k = x in zcong_scalar2, auto)
       
   230   apply (auto simp add: zmult_ac)
       
   231   done
       
   232 
       
   233 lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
       
   234     [(MultInv p (MultInv p x)) = x] (mod p)"
       
   235   apply (frule aux__1, auto)
       
   236   apply (drule aux__2, auto)
       
   237   apply (drule zcong_trans, auto)
       
   238   done
       
   239 
       
   240 lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p));
       
   241     ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==>
       
   242     [x = y] (mod p)"
       
   243   apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and
       
   244     m = p and k = x in zcong_scalar)
       
   245   apply (insert MultInv_prop2 [of p x], simp)
       
   246   apply (auto simp only: zcong_sym [of "MultInv p x * x"])
       
   247   apply (auto simp add:  zmult_ac)
       
   248   apply (drule zcong_trans, auto)
       
   249   apply (drule_tac a = "x * MultInv p y" and k = y in zcong_scalar, auto)
       
   250   apply (insert MultInv_prop2a [of p y], auto simp add: zmult_ac)
       
   251   apply (insert zcong_zmult_prop2 [of "y * MultInv p y" 1 p y x])
       
   252   apply (auto simp add: zcong_sym)
       
   253   done
       
   254 
       
   255 lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==>
       
   256     [a * MultInv p j = a * MultInv p k] (mod p)"
       
   257   by (drule MultInv_prop1, auto simp add: zcong_scalar2)
       
   258 
       
   259 lemma aux___1: "[j = a * MultInv p k] (mod p) ==>
       
   260     [j * k = a * MultInv p k * k] (mod p)"
       
   261   by (auto simp add: zcong_scalar)
       
   262 
       
   263 lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p));
       
   264     [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)"
       
   265   apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2
       
   266     [of "MultInv p k * k" 1 p "j * k" a])
       
   267   apply (auto simp add: zmult_ac)
       
   268   done
       
   269 
       
   270 lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k =
       
   271      (MultInv p j) * a] (mod p)"
       
   272   by (auto simp add: zmult_assoc zcong_scalar2)
       
   273 
       
   274 lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p));
       
   275     [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
       
   276        ==> [k = a * (MultInv p j)] (mod p)"
       
   277   apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1
       
   278     [of "MultInv p j * j" 1 p "MultInv p j * a" k])
       
   279   apply (auto simp add: zmult_ac zcong_sym)
       
   280   done
       
   281 
       
   282 lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p));
       
   283     ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==>
       
   284     [k = a * MultInv p j] (mod p)"
       
   285   apply (drule aux___1)
       
   286   apply (frule aux___2, auto)
       
   287   by (drule aux___3, drule aux___4, auto)
       
   288 
       
   289 lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p));
       
   290     ~([k = 0](mod p)); ~([j = 0](mod p));
       
   291     [a * MultInv p j = a * MultInv p k] (mod p) |] ==>
       
   292       [j = k] (mod p)"
       
   293   apply (auto simp add: zcong_eq_zdvd_prop [of a p])
       
   294   apply (frule zprime_imp_zrelprime, auto)
       
   295   apply (insert zcong_cancel2 [of p a "MultInv p j" "MultInv p k"], auto)
       
   296   apply (drule MultInv_prop5, auto)
       
   297   done
       
   298 
       
   299 end