src/HOL/Dense_Linear_Order.thy
changeset 27368 9f90ac19e32b
parent 27367 a75d71c73362
child 27369 7f242009f7b4
equal deleted inserted replaced
27367:a75d71c73362 27368:9f90ac19e32b
     1 (*
       
     2     ID:         $Id$
       
     3     Author:     Amine Chaieb, TU Muenchen
       
     4 *)
       
     5 
       
     6 header {* Dense linear order without endpoints
       
     7   and a quantifier elimination procedure in Ferrante and Rackoff style *}
       
     8 
       
     9 theory Dense_Linear_Order
       
    10 imports Finite_Set
       
    11 uses
       
    12   "Tools/Qelim/qelim.ML"
       
    13   "Tools/Qelim/langford_data.ML"
       
    14   "Tools/Qelim/ferrante_rackoff_data.ML"
       
    15   ("Tools/Qelim/langford.ML")
       
    16   ("Tools/Qelim/ferrante_rackoff.ML")
       
    17 begin
       
    18 
       
    19 setup Langford_Data.setup
       
    20 setup Ferrante_Rackoff_Data.setup
       
    21 
       
    22 context linorder
       
    23 begin
       
    24 
       
    25 lemma less_not_permute: "\<not> (x < y \<and> y < x)" by (simp add: not_less linear)
       
    26 
       
    27 lemma gather_simps: 
       
    28   shows 
       
    29   "(\<exists>x. (\<forall>y \<in> L. y < x) \<and> (\<forall>y \<in> U. x < y) \<and> x < u \<and> P x) \<longleftrightarrow> (\<exists>x. (\<forall>y \<in> L. y < x) \<and> (\<forall>y \<in> (insert u U). x < y) \<and> P x)"
       
    30   and "(\<exists>x. (\<forall>y \<in> L. y < x) \<and> (\<forall>y \<in> U. x < y) \<and> l < x \<and> P x) \<longleftrightarrow> (\<exists>x. (\<forall>y \<in> (insert l L). y < x) \<and> (\<forall>y \<in> U. x < y) \<and> P x)"
       
    31   "(\<exists>x. (\<forall>y \<in> L. y < x) \<and> (\<forall>y \<in> U. x < y) \<and> x < u) \<longleftrightarrow> (\<exists>x. (\<forall>y \<in> L. y < x) \<and> (\<forall>y \<in> (insert u U). x < y))"
       
    32   and "(\<exists>x. (\<forall>y \<in> L. y < x) \<and> (\<forall>y \<in> U. x < y) \<and> l < x) \<longleftrightarrow> (\<exists>x. (\<forall>y \<in> (insert l L). y < x) \<and> (\<forall>y \<in> U. x < y))"  by auto
       
    33 
       
    34 lemma 
       
    35   gather_start: "(\<exists>x. P x) \<equiv> (\<exists>x. (\<forall>y \<in> {}. y < x) \<and> (\<forall>y\<in> {}. x < y) \<and> P x)" 
       
    36   by simp
       
    37 
       
    38 text{* Theorems for @{text "\<exists>z. \<forall>x. x < z \<longrightarrow> (P x \<longleftrightarrow> P\<^bsub>-\<infinity>\<^esub>)"}*}
       
    39 lemma minf_lt:  "\<exists>z . \<forall>x. x < z \<longrightarrow> (x < t \<longleftrightarrow> True)" by auto
       
    40 lemma minf_gt: "\<exists>z . \<forall>x. x < z \<longrightarrow>  (t < x \<longleftrightarrow>  False)"
       
    41   by (simp add: not_less) (rule exI[where x="t"], auto simp add: less_le)
       
    42 
       
    43 lemma minf_le: "\<exists>z. \<forall>x. x < z \<longrightarrow> (x \<le> t \<longleftrightarrow> True)" by (auto simp add: less_le)
       
    44 lemma minf_ge: "\<exists>z. \<forall>x. x < z \<longrightarrow> (t \<le> x \<longleftrightarrow> False)"
       
    45   by (auto simp add: less_le not_less not_le)
       
    46 lemma minf_eq: "\<exists>z. \<forall>x. x < z \<longrightarrow> (x = t \<longleftrightarrow> False)" by auto
       
    47 lemma minf_neq: "\<exists>z. \<forall>x. x < z \<longrightarrow> (x \<noteq> t \<longleftrightarrow> True)" by auto
       
    48 lemma minf_P: "\<exists>z. \<forall>x. x < z \<longrightarrow> (P \<longleftrightarrow> P)" by blast
       
    49 
       
    50 text{* Theorems for @{text "\<exists>z. \<forall>x. x < z \<longrightarrow> (P x \<longleftrightarrow> P\<^bsub>+\<infinity>\<^esub>)"}*}
       
    51 lemma pinf_gt:  "\<exists>z . \<forall>x. z < x \<longrightarrow> (t < x \<longleftrightarrow> True)" by auto
       
    52 lemma pinf_lt: "\<exists>z . \<forall>x. z < x \<longrightarrow>  (x < t \<longleftrightarrow>  False)"
       
    53   by (simp add: not_less) (rule exI[where x="t"], auto simp add: less_le)
       
    54 
       
    55 lemma pinf_ge: "\<exists>z. \<forall>x. z < x \<longrightarrow> (t \<le> x \<longleftrightarrow> True)" by (auto simp add: less_le)
       
    56 lemma pinf_le: "\<exists>z. \<forall>x. z < x \<longrightarrow> (x \<le> t \<longleftrightarrow> False)"
       
    57   by (auto simp add: less_le not_less not_le)
       
    58 lemma pinf_eq: "\<exists>z. \<forall>x. z < x \<longrightarrow> (x = t \<longleftrightarrow> False)" by auto
       
    59 lemma pinf_neq: "\<exists>z. \<forall>x. z < x \<longrightarrow> (x \<noteq> t \<longleftrightarrow> True)" by auto
       
    60 lemma pinf_P: "\<exists>z. \<forall>x. z < x \<longrightarrow> (P \<longleftrightarrow> P)" by blast
       
    61 
       
    62 lemma nmi_lt: "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> x < t \<longrightarrow>  (\<exists> u\<in> U. u \<le> x)" by auto
       
    63 lemma nmi_gt: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> t < x \<longrightarrow>  (\<exists> u\<in> U. u \<le> x)"
       
    64   by (auto simp add: le_less)
       
    65 lemma  nmi_le: "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> x\<le> t \<longrightarrow>  (\<exists> u\<in> U. u \<le> x)" by auto
       
    66 lemma  nmi_ge: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> t\<le> x \<longrightarrow>  (\<exists> u\<in> U. u \<le> x)" by auto
       
    67 lemma  nmi_eq: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and>  x = t \<longrightarrow>  (\<exists> u\<in> U. u \<le> x)" by auto
       
    68 lemma  nmi_neq: "t \<in> U \<Longrightarrow>\<forall>x. \<not>True \<and> x \<noteq> t \<longrightarrow>  (\<exists> u\<in> U. u \<le> x)" by auto
       
    69 lemma  nmi_P: "\<forall> x. ~P \<and> P \<longrightarrow>  (\<exists> u\<in> U. u \<le> x)" by auto
       
    70 lemma  nmi_conj: "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 x \<longrightarrow>  (\<exists> u\<in> U. u \<le> x) ;
       
    71   \<forall>x. \<not>P2' \<and> P2 x \<longrightarrow>  (\<exists> u\<in> U. u \<le> x)\<rbrakk> \<Longrightarrow>
       
    72   \<forall>x. \<not>(P1' \<and> P2') \<and> (P1 x \<and> P2 x) \<longrightarrow>  (\<exists> u\<in> U. u \<le> x)" by auto
       
    73 lemma  nmi_disj: "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 x \<longrightarrow>  (\<exists> u\<in> U. u \<le> x) ;
       
    74   \<forall>x. \<not>P2' \<and> P2 x \<longrightarrow>  (\<exists> u\<in> U. u \<le> x)\<rbrakk> \<Longrightarrow>
       
    75   \<forall>x. \<not>(P1' \<or> P2') \<and> (P1 x \<or> P2 x) \<longrightarrow>  (\<exists> u\<in> U. u \<le> x)" by auto
       
    76 
       
    77 lemma  npi_lt: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and>  x < t \<longrightarrow>  (\<exists> u\<in> U. x \<le> u)" by (auto simp add: le_less)
       
    78 lemma  npi_gt: "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> t < x \<longrightarrow>  (\<exists> u\<in> U. x \<le> u)" by auto
       
    79 lemma  npi_le: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and>  x \<le> t \<longrightarrow>  (\<exists> u\<in> U. x \<le> u)" by auto
       
    80 lemma  npi_ge: "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> t \<le> x \<longrightarrow>  (\<exists> u\<in> U. x \<le> u)" by auto
       
    81 lemma  npi_eq: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and>  x = t \<longrightarrow>  (\<exists> u\<in> U. x \<le> u)" by auto
       
    82 lemma  npi_neq: "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> x \<noteq> t \<longrightarrow>  (\<exists> u\<in> U. x \<le> u )" by auto
       
    83 lemma  npi_P: "\<forall> x. ~P \<and> P \<longrightarrow>  (\<exists> u\<in> U. x \<le> u)" by auto
       
    84 lemma  npi_conj: "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 x \<longrightarrow>  (\<exists> u\<in> U. x \<le> u) ;  \<forall>x. \<not>P2' \<and> P2 x \<longrightarrow>  (\<exists> u\<in> U. x \<le> u)\<rbrakk>
       
    85   \<Longrightarrow>  \<forall>x. \<not>(P1' \<and> P2') \<and> (P1 x \<and> P2 x) \<longrightarrow>  (\<exists> u\<in> U. x \<le> u)" by auto
       
    86 lemma  npi_disj: "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 x \<longrightarrow>  (\<exists> u\<in> U. x \<le> u) ; \<forall>x. \<not>P2' \<and> P2 x \<longrightarrow>  (\<exists> u\<in> U. x \<le> u)\<rbrakk>
       
    87   \<Longrightarrow> \<forall>x. \<not>(P1' \<or> P2') \<and> (P1 x \<or> P2 x) \<longrightarrow>  (\<exists> u\<in> U. x \<le> u)" by auto
       
    88 
       
    89 lemma lin_dense_lt: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t < u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> x < t \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> y < t)"
       
    90 proof(clarsimp)
       
    91   fix x l u y  assume tU: "t \<in> U" and noU: "\<forall>t. l < t \<and> t < u \<longrightarrow> t \<notin> U" and lx: "l < x"
       
    92     and xu: "x<u"  and px: "x < t" and ly: "l<y" and yu:"y < u"
       
    93   from tU noU ly yu have tny: "t\<noteq>y" by auto
       
    94   {assume H: "t < y"
       
    95     from less_trans[OF lx px] less_trans[OF H yu]
       
    96     have "l < t \<and> t < u"  by simp
       
    97     with tU noU have "False" by auto}
       
    98   hence "\<not> t < y"  by auto hence "y \<le> t" by (simp add: not_less)
       
    99   thus "y < t" using tny by (simp add: less_le)
       
   100 qed
       
   101 
       
   102 lemma lin_dense_gt: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l < x \<and> x < u \<and> t < x \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> t < y)"
       
   103 proof(clarsimp)
       
   104   fix x l u y
       
   105   assume tU: "t \<in> U" and noU: "\<forall>t. l < t \<and> t < u \<longrightarrow> t \<notin> U" and lx: "l < x" and xu: "x<u"
       
   106   and px: "t < x" and ly: "l<y" and yu:"y < u"
       
   107   from tU noU ly yu have tny: "t\<noteq>y" by auto
       
   108   {assume H: "y< t"
       
   109     from less_trans[OF ly H] less_trans[OF px xu] have "l < t \<and> t < u" by simp
       
   110     with tU noU have "False" by auto}
       
   111   hence "\<not> y<t"  by auto hence "t \<le> y" by (auto simp add: not_less)
       
   112   thus "t < y" using tny by (simp add:less_le)
       
   113 qed
       
   114 
       
   115 lemma lin_dense_le: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> x \<le> t \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> y\<le> t)"
       
   116 proof(clarsimp)
       
   117   fix x l u y
       
   118   assume tU: "t \<in> U" and noU: "\<forall>t. l < t \<and> t < u \<longrightarrow> t \<notin> U" and lx: "l < x" and xu: "x<u"
       
   119   and px: "x \<le> t" and ly: "l<y" and yu:"y < u"
       
   120   from tU noU ly yu have tny: "t\<noteq>y" by auto
       
   121   {assume H: "t < y"
       
   122     from less_le_trans[OF lx px] less_trans[OF H yu]
       
   123     have "l < t \<and> t < u" by simp
       
   124     with tU noU have "False" by auto}
       
   125   hence "\<not> t < y"  by auto thus "y \<le> t" by (simp add: not_less)
       
   126 qed
       
   127 
       
   128 lemma lin_dense_ge: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> t \<le> x \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> t \<le> y)"
       
   129 proof(clarsimp)
       
   130   fix x l u y
       
   131   assume tU: "t \<in> U" and noU: "\<forall>t. l < t \<and> t < u \<longrightarrow> t \<notin> U" and lx: "l < x" and xu: "x<u"
       
   132   and px: "t \<le> x" and ly: "l<y" and yu:"y < u"
       
   133   from tU noU ly yu have tny: "t\<noteq>y" by auto
       
   134   {assume H: "y< t"
       
   135     from less_trans[OF ly H] le_less_trans[OF px xu]
       
   136     have "l < t \<and> t < u" by simp
       
   137     with tU noU have "False" by auto}
       
   138   hence "\<not> y<t"  by auto thus "t \<le> y" by (simp add: not_less)
       
   139 qed
       
   140 lemma lin_dense_eq: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> x = t   \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> y= t)"  by auto
       
   141 lemma lin_dense_neq: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> x \<noteq> t   \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> y\<noteq> t)"  by auto
       
   142 lemma lin_dense_P: "\<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P   \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P)"  by auto
       
   143 
       
   144 lemma lin_dense_conj:
       
   145   "\<lbrakk>\<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P1 x
       
   146   \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P1 y) ;
       
   147   \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P2 x
       
   148   \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P2 y)\<rbrakk> \<Longrightarrow>
       
   149   \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> (P1 x \<and> P2 x)
       
   150   \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> (P1 y \<and> P2 y))"
       
   151   by blast
       
   152 lemma lin_dense_disj:
       
   153   "\<lbrakk>\<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P1 x
       
   154   \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P1 y) ;
       
   155   \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P2 x
       
   156   \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P2 y)\<rbrakk> \<Longrightarrow>
       
   157   \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> (P1 x \<or> P2 x)
       
   158   \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> (P1 y \<or> P2 y))"
       
   159   by blast
       
   160 
       
   161 lemma npmibnd: "\<lbrakk>\<forall>x. \<not> MP \<and> P x \<longrightarrow> (\<exists> u\<in> U. u \<le> x); \<forall>x. \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. x \<le> u)\<rbrakk>
       
   162   \<Longrightarrow> \<forall>x. \<not> MP \<and> \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. \<exists> u' \<in> U. u \<le> x \<and> x \<le> u')"
       
   163 by auto
       
   164 
       
   165 lemma finite_set_intervals:
       
   166   assumes px: "P x" and lx: "l \<le> x" and xu: "x \<le> u" and linS: "l\<in> S"
       
   167   and uinS: "u \<in> S" and fS:"finite S" and lS: "\<forall> x\<in> S. l \<le> x" and Su: "\<forall> x\<in> S. x \<le> u"
       
   168   shows "\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a < y \<and> y < b \<longrightarrow> y \<notin> S) \<and> a \<le> x \<and> x \<le> b \<and> P x"
       
   169 proof-
       
   170   let ?Mx = "{y. y\<in> S \<and> y \<le> x}"
       
   171   let ?xM = "{y. y\<in> S \<and> x \<le> y}"
       
   172   let ?a = "Max ?Mx"
       
   173   let ?b = "Min ?xM"
       
   174   have MxS: "?Mx \<subseteq> S" by blast
       
   175   hence fMx: "finite ?Mx" using fS finite_subset by auto
       
   176   from lx linS have linMx: "l \<in> ?Mx" by blast
       
   177   hence Mxne: "?Mx \<noteq> {}" by blast
       
   178   have xMS: "?xM \<subseteq> S" by blast
       
   179   hence fxM: "finite ?xM" using fS finite_subset by auto
       
   180   from xu uinS have linxM: "u \<in> ?xM" by blast
       
   181   hence xMne: "?xM \<noteq> {}" by blast
       
   182   have ax:"?a \<le> x" using Mxne fMx by auto
       
   183   have xb:"x \<le> ?b" using xMne fxM by auto
       
   184   have "?a \<in> ?Mx" using Max_in[OF fMx Mxne] by simp hence ainS: "?a \<in> S" using MxS by blast
       
   185   have "?b \<in> ?xM" using Min_in[OF fxM xMne] by simp hence binS: "?b \<in> S" using xMS by blast
       
   186   have noy:"\<forall> y. ?a < y \<and> y < ?b \<longrightarrow> y \<notin> S"
       
   187   proof(clarsimp)
       
   188     fix y   assume ay: "?a < y" and yb: "y < ?b" and yS: "y \<in> S"
       
   189     from yS have "y\<in> ?Mx \<or> y\<in> ?xM" by (auto simp add: linear)
       
   190     moreover {assume "y \<in> ?Mx" hence "y \<le> ?a" using Mxne fMx by auto with ay have "False" by (simp add: not_le[symmetric])}
       
   191     moreover {assume "y \<in> ?xM" hence "?b \<le> y" using xMne fxM by auto with yb have "False" by (simp add: not_le[symmetric])}
       
   192     ultimately show "False" by blast
       
   193   qed
       
   194   from ainS binS noy ax xb px show ?thesis by blast
       
   195 qed
       
   196 
       
   197 lemma finite_set_intervals2:
       
   198   assumes px: "P x" and lx: "l \<le> x" and xu: "x \<le> u" and linS: "l\<in> S"
       
   199   and uinS: "u \<in> S" and fS:"finite S" and lS: "\<forall> x\<in> S. l \<le> x" and Su: "\<forall> x\<in> S. x \<le> u"
       
   200   shows "(\<exists> s\<in> S. P s) \<or> (\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a < y \<and> y < b \<longrightarrow> y \<notin> S) \<and> a < x \<and> x < b \<and> P x)"
       
   201 proof-
       
   202   from finite_set_intervals[where P="P", OF px lx xu linS uinS fS lS Su]
       
   203   obtain a and b where
       
   204     as: "a\<in> S" and bs: "b\<in> S" and noS:"\<forall>y. a < y \<and> y < b \<longrightarrow> y \<notin> S"
       
   205     and axb: "a \<le> x \<and> x \<le> b \<and> P x"  by auto
       
   206   from axb have "x= a \<or> x= b \<or> (a < x \<and> x < b)" by (auto simp add: le_less)
       
   207   thus ?thesis using px as bs noS by blast
       
   208 qed
       
   209 
       
   210 end
       
   211 
       
   212 section {* The classical QE after Langford for dense linear orders *}
       
   213 
       
   214 context dense_linear_order
       
   215 begin
       
   216 
       
   217 lemma dlo_qe_bnds: 
       
   218   assumes ne: "L \<noteq> {}" and neU: "U \<noteq> {}" and fL: "finite L" and fU: "finite U"
       
   219   shows "(\<exists>x. (\<forall>y \<in> L. y < x) \<and> (\<forall>y \<in> U. x < y)) \<equiv> (\<forall> l \<in> L. \<forall>u \<in> U. l < u)"
       
   220 proof (simp only: atomize_eq, rule iffI)
       
   221   assume H: "\<exists>x. (\<forall>y\<in>L. y < x) \<and> (\<forall>y\<in>U. x < y)"
       
   222   then obtain x where xL: "\<forall>y\<in>L. y < x" and xU: "\<forall>y\<in>U. x < y" by blast
       
   223   {fix l u assume l: "l \<in> L" and u: "u \<in> U"
       
   224     have "l < x" using xL l by blast
       
   225     also have "x < u" using xU u by blast
       
   226     finally (less_trans) have "l < u" .}
       
   227   thus "\<forall>l\<in>L. \<forall>u\<in>U. l < u" by blast
       
   228 next
       
   229   assume H: "\<forall>l\<in>L. \<forall>u\<in>U. l < u"
       
   230   let ?ML = "Max L"
       
   231   let ?MU = "Min U"  
       
   232   from fL ne have th1: "?ML \<in> L" and th1': "\<forall>l\<in>L. l \<le> ?ML" by auto
       
   233   from fU neU have th2: "?MU \<in> U" and th2': "\<forall>u\<in>U. ?MU \<le> u" by auto
       
   234   from th1 th2 H have "?ML < ?MU" by auto
       
   235   with dense obtain w where th3: "?ML < w" and th4: "w < ?MU" by blast
       
   236   from th3 th1' have "\<forall>l \<in> L. l < w" by auto
       
   237   moreover from th4 th2' have "\<forall>u \<in> U. w < u" by auto
       
   238   ultimately show "\<exists>x. (\<forall>y\<in>L. y < x) \<and> (\<forall>y\<in>U. x < y)" by auto
       
   239 qed
       
   240 
       
   241 lemma dlo_qe_noub: 
       
   242   assumes ne: "L \<noteq> {}" and fL: "finite L"
       
   243   shows "(\<exists>x. (\<forall>y \<in> L. y < x) \<and> (\<forall>y \<in> {}. x < y)) \<equiv> True"
       
   244 proof(simp add: atomize_eq)
       
   245   from gt_ex[of "Max L"] obtain M where M: "Max L < M" by blast
       
   246   from ne fL have "\<forall>x \<in> L. x \<le> Max L" by simp
       
   247   with M have "\<forall>x\<in>L. x < M" by (auto intro: le_less_trans)
       
   248   thus "\<exists>x. \<forall>y\<in>L. y < x" by blast
       
   249 qed
       
   250 
       
   251 lemma dlo_qe_nolb: 
       
   252   assumes ne: "U \<noteq> {}" and fU: "finite U"
       
   253   shows "(\<exists>x. (\<forall>y \<in> {}. y < x) \<and> (\<forall>y \<in> U. x < y)) \<equiv> True"
       
   254 proof(simp add: atomize_eq)
       
   255   from lt_ex[of "Min U"] obtain M where M: "M < Min U" by blast
       
   256   from ne fU have "\<forall>x \<in> U. Min U \<le> x" by simp
       
   257   with M have "\<forall>x\<in>U. M < x" by (auto intro: less_le_trans)
       
   258   thus "\<exists>x. \<forall>y\<in>U. x < y" by blast
       
   259 qed
       
   260 
       
   261 lemma exists_neq: "\<exists>(x::'a). x \<noteq> t" "\<exists>(x::'a). t \<noteq> x" 
       
   262   using gt_ex[of t] by auto
       
   263 
       
   264 lemmas dlo_simps = order_refl less_irrefl not_less not_le exists_neq 
       
   265   le_less neq_iff linear less_not_permute
       
   266 
       
   267 lemma axiom: "dense_linear_order (op \<le>) (op <)" by (rule dense_linear_order_axioms)
       
   268 lemma atoms:
       
   269   includes meta_term_syntax
       
   270   shows "TERM (less :: 'a \<Rightarrow> _)"
       
   271     and "TERM (less_eq :: 'a \<Rightarrow> _)"
       
   272     and "TERM (op = :: 'a \<Rightarrow> _)" .
       
   273 
       
   274 declare axiom[langford qe: dlo_qe_bnds dlo_qe_nolb dlo_qe_noub gather: gather_start gather_simps atoms: atoms]
       
   275 declare dlo_simps[langfordsimp]
       
   276 
       
   277 end
       
   278 
       
   279 (* FIXME: Move to HOL -- together with the conj_aci_rule in langford.ML *)
       
   280 lemma dnf:
       
   281   "(P & (Q | R)) = ((P&Q) | (P&R))" 
       
   282   "((Q | R) & P) = ((Q&P) | (R&P))"
       
   283   by blast+
       
   284 
       
   285 lemmas weak_dnf_simps = simp_thms dnf
       
   286 
       
   287 lemma nnf_simps:
       
   288     "(\<not>(P \<and> Q)) = (\<not>P \<or> \<not>Q)" "(\<not>(P \<or> Q)) = (\<not>P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)"
       
   289     "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not> \<not>(P)) = P"
       
   290   by blast+
       
   291 
       
   292 lemma ex_distrib: "(\<exists>x. P x \<or> Q x) \<longleftrightarrow> ((\<exists>x. P x) \<or> (\<exists>x. Q x))" by blast
       
   293 
       
   294 lemmas dnf_simps = weak_dnf_simps nnf_simps ex_distrib
       
   295 
       
   296 use "Tools/Qelim/langford.ML"
       
   297 method_setup dlo = {*
       
   298   Method.ctxt_args (Method.SIMPLE_METHOD' o LangfordQE.dlo_tac)
       
   299 *} "Langford's algorithm for quantifier elimination in dense linear orders"
       
   300 
       
   301 
       
   302 section {* Contructive dense linear orders yield QE for linear arithmetic over ordered Fields -- see @{text "Arith_Tools.thy"} *}
       
   303 
       
   304 text {* Linear order without upper bounds *}
       
   305 
       
   306 locale linorder_stupid_syntax = linorder
       
   307 begin
       
   308 notation
       
   309   less_eq  ("op \<sqsubseteq>") and
       
   310   less_eq  ("(_/ \<sqsubseteq> _)" [51, 51] 50) and
       
   311   less  ("op \<sqsubset>") and
       
   312   less  ("(_/ \<sqsubset> _)"  [51, 51] 50)
       
   313 
       
   314 end
       
   315 
       
   316 locale linorder_no_ub = linorder_stupid_syntax +
       
   317   assumes gt_ex: "\<exists>y. less x y"
       
   318 begin
       
   319 lemma ge_ex: "\<exists>y. x \<sqsubseteq> y" using gt_ex by auto
       
   320 
       
   321 text {* Theorems for @{text "\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> (P x \<longleftrightarrow> P\<^bsub>+\<infinity>\<^esub>)"} *}
       
   322 lemma pinf_conj:
       
   323   assumes ex1: "\<exists>z1. \<forall>x. z1 \<sqsubset> x \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
       
   324   and ex2: "\<exists>z2. \<forall>x. z2 \<sqsubset> x \<longrightarrow> (P2 x \<longleftrightarrow> P2')"
       
   325   shows "\<exists>z. \<forall>x. z \<sqsubset>  x \<longrightarrow> ((P1 x \<and> P2 x) \<longleftrightarrow> (P1' \<and> P2'))"
       
   326 proof-
       
   327   from ex1 ex2 obtain z1 and z2 where z1: "\<forall>x. z1 \<sqsubset> x \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
       
   328      and z2: "\<forall>x. z2 \<sqsubset> x \<longrightarrow> (P2 x \<longleftrightarrow> P2')" by blast
       
   329   from gt_ex obtain z where z:"ord.max less_eq z1 z2 \<sqsubset> z" by blast
       
   330   from z have zz1: "z1 \<sqsubset> z" and zz2: "z2 \<sqsubset> z" by simp_all
       
   331   {fix x assume H: "z \<sqsubset> x"
       
   332     from less_trans[OF zz1 H] less_trans[OF zz2 H]
       
   333     have "(P1 x \<and> P2 x) \<longleftrightarrow> (P1' \<and> P2')"  using z1 zz1 z2 zz2 by auto
       
   334   }
       
   335   thus ?thesis by blast
       
   336 qed
       
   337 
       
   338 lemma pinf_disj:
       
   339   assumes ex1: "\<exists>z1. \<forall>x. z1 \<sqsubset> x \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
       
   340   and ex2: "\<exists>z2. \<forall>x. z2 \<sqsubset> x \<longrightarrow> (P2 x \<longleftrightarrow> P2')"
       
   341   shows "\<exists>z. \<forall>x. z \<sqsubset>  x \<longrightarrow> ((P1 x \<or> P2 x) \<longleftrightarrow> (P1' \<or> P2'))"
       
   342 proof-
       
   343   from ex1 ex2 obtain z1 and z2 where z1: "\<forall>x. z1 \<sqsubset> x \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
       
   344      and z2: "\<forall>x. z2 \<sqsubset> x \<longrightarrow> (P2 x \<longleftrightarrow> P2')" by blast
       
   345   from gt_ex obtain z where z:"ord.max less_eq z1 z2 \<sqsubset> z" by blast
       
   346   from z have zz1: "z1 \<sqsubset> z" and zz2: "z2 \<sqsubset> z" by simp_all
       
   347   {fix x assume H: "z \<sqsubset> x"
       
   348     from less_trans[OF zz1 H] less_trans[OF zz2 H]
       
   349     have "(P1 x \<or> P2 x) \<longleftrightarrow> (P1' \<or> P2')"  using z1 zz1 z2 zz2 by auto
       
   350   }
       
   351   thus ?thesis by blast
       
   352 qed
       
   353 
       
   354 lemma pinf_ex: assumes ex:"\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> (P x \<longleftrightarrow> P1)" and p1: P1 shows "\<exists> x. P x"
       
   355 proof-
       
   356   from ex obtain z where z: "\<forall>x. z \<sqsubset> x \<longrightarrow> (P x \<longleftrightarrow> P1)" by blast
       
   357   from gt_ex obtain x where x: "z \<sqsubset> x" by blast
       
   358   from z x p1 show ?thesis by blast
       
   359 qed
       
   360 
       
   361 end
       
   362 
       
   363 text {* Linear order without upper bounds *}
       
   364 
       
   365 locale linorder_no_lb = linorder_stupid_syntax +
       
   366   assumes lt_ex: "\<exists>y. less y x"
       
   367 begin
       
   368 lemma le_ex: "\<exists>y. y \<sqsubseteq> x" using lt_ex by auto
       
   369 
       
   370 
       
   371 text {* Theorems for @{text "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (P x \<longleftrightarrow> P\<^bsub>-\<infinity>\<^esub>)"} *}
       
   372 lemma minf_conj:
       
   373   assumes ex1: "\<exists>z1. \<forall>x. x \<sqsubset> z1 \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
       
   374   and ex2: "\<exists>z2. \<forall>x. x \<sqsubset> z2 \<longrightarrow> (P2 x \<longleftrightarrow> P2')"
       
   375   shows "\<exists>z. \<forall>x. x \<sqsubset>  z \<longrightarrow> ((P1 x \<and> P2 x) \<longleftrightarrow> (P1' \<and> P2'))"
       
   376 proof-
       
   377   from ex1 ex2 obtain z1 and z2 where z1: "\<forall>x. x \<sqsubset> z1 \<longrightarrow> (P1 x \<longleftrightarrow> P1')"and z2: "\<forall>x. x \<sqsubset> z2 \<longrightarrow> (P2 x \<longleftrightarrow> P2')" by blast
       
   378   from lt_ex obtain z where z:"z \<sqsubset> ord.min less_eq z1 z2" by blast
       
   379   from z have zz1: "z \<sqsubset> z1" and zz2: "z \<sqsubset> z2" by simp_all
       
   380   {fix x assume H: "x \<sqsubset> z"
       
   381     from less_trans[OF H zz1] less_trans[OF H zz2]
       
   382     have "(P1 x \<and> P2 x) \<longleftrightarrow> (P1' \<and> P2')"  using z1 zz1 z2 zz2 by auto
       
   383   }
       
   384   thus ?thesis by blast
       
   385 qed
       
   386 
       
   387 lemma minf_disj:
       
   388   assumes ex1: "\<exists>z1. \<forall>x. x \<sqsubset> z1 \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
       
   389   and ex2: "\<exists>z2. \<forall>x. x \<sqsubset> z2 \<longrightarrow> (P2 x \<longleftrightarrow> P2')"
       
   390   shows "\<exists>z. \<forall>x. x \<sqsubset>  z \<longrightarrow> ((P1 x \<or> P2 x) \<longleftrightarrow> (P1' \<or> P2'))"
       
   391 proof-
       
   392   from ex1 ex2 obtain z1 and z2 where z1: "\<forall>x. x \<sqsubset> z1 \<longrightarrow> (P1 x \<longleftrightarrow> P1')"and z2: "\<forall>x. x \<sqsubset> z2 \<longrightarrow> (P2 x \<longleftrightarrow> P2')" by blast
       
   393   from lt_ex obtain z where z:"z \<sqsubset> ord.min less_eq z1 z2" by blast
       
   394   from z have zz1: "z \<sqsubset> z1" and zz2: "z \<sqsubset> z2" by simp_all
       
   395   {fix x assume H: "x \<sqsubset> z"
       
   396     from less_trans[OF H zz1] less_trans[OF H zz2]
       
   397     have "(P1 x \<or> P2 x) \<longleftrightarrow> (P1' \<or> P2')"  using z1 zz1 z2 zz2 by auto
       
   398   }
       
   399   thus ?thesis by blast
       
   400 qed
       
   401 
       
   402 lemma minf_ex: assumes ex:"\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (P x \<longleftrightarrow> P1)" and p1: P1 shows "\<exists> x. P x"
       
   403 proof-
       
   404   from ex obtain z where z: "\<forall>x. x \<sqsubset> z \<longrightarrow> (P x \<longleftrightarrow> P1)" by blast
       
   405   from lt_ex obtain x where x: "x \<sqsubset> z" by blast
       
   406   from z x p1 show ?thesis by blast
       
   407 qed
       
   408 
       
   409 end
       
   410 
       
   411 
       
   412 locale constr_dense_linear_order = linorder_no_lb + linorder_no_ub +
       
   413   fixes between
       
   414   assumes between_less: "less x y \<Longrightarrow> less x (between x y) \<and> less (between x y) y"
       
   415      and  between_same: "between x x = x"
       
   416 
       
   417 interpretation  constr_dense_linear_order < dense_linear_order 
       
   418   apply unfold_locales
       
   419   using gt_ex lt_ex between_less
       
   420     by (auto, rule_tac x="between x y" in exI, simp)
       
   421 
       
   422 context  constr_dense_linear_order
       
   423 begin
       
   424 
       
   425 lemma rinf_U:
       
   426   assumes fU: "finite U"
       
   427   and lin_dense: "\<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> P x
       
   428   \<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> P y )"
       
   429   and nmpiU: "\<forall>x. \<not> MP \<and> \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. \<exists> u' \<in> U. u \<sqsubseteq> x \<and> x \<sqsubseteq> u')"
       
   430   and nmi: "\<not> MP"  and npi: "\<not> PP"  and ex: "\<exists> x.  P x"
       
   431   shows "\<exists> u\<in> U. \<exists> u' \<in> U. P (between u u')"
       
   432 proof-
       
   433   from ex obtain x where px: "P x" by blast
       
   434   from px nmi npi nmpiU have "\<exists> u\<in> U. \<exists> u' \<in> U. u \<sqsubseteq> x \<and> x \<sqsubseteq> u'" by auto
       
   435   then obtain u and u' where uU:"u\<in> U" and uU': "u' \<in> U" and ux:"u \<sqsubseteq> x" and xu':"x \<sqsubseteq> u'" by auto
       
   436   from uU have Une: "U \<noteq> {}" by auto
       
   437   term "linorder.Min less_eq"
       
   438   let ?l = "linorder.Min less_eq U"
       
   439   let ?u = "linorder.Max less_eq U"
       
   440   have linM: "?l \<in> U" using fU Une by simp
       
   441   have uinM: "?u \<in> U" using fU Une by simp
       
   442   have lM: "\<forall> t\<in> U. ?l \<sqsubseteq> t" using Une fU by auto
       
   443   have Mu: "\<forall> t\<in> U. t \<sqsubseteq> ?u" using Une fU by auto
       
   444   have th:"?l \<sqsubseteq> u" using uU Une lM by auto
       
   445   from order_trans[OF th ux] have lx: "?l \<sqsubseteq> x" .
       
   446   have th: "u' \<sqsubseteq> ?u" using uU' Une Mu by simp
       
   447   from order_trans[OF xu' th] have xu: "x \<sqsubseteq> ?u" .
       
   448   from finite_set_intervals2[where P="P",OF px lx xu linM uinM fU lM Mu]
       
   449   have "(\<exists> s\<in> U. P s) \<or>
       
   450       (\<exists> t1\<in> U. \<exists> t2 \<in> U. (\<forall> y. t1 \<sqsubset> y \<and> y \<sqsubset> t2 \<longrightarrow> y \<notin> U) \<and> t1 \<sqsubset> x \<and> x \<sqsubset> t2 \<and> P x)" .
       
   451   moreover { fix u assume um: "u\<in>U" and pu: "P u"
       
   452     have "between u u = u" by (simp add: between_same)
       
   453     with um pu have "P (between u u)" by simp
       
   454     with um have ?thesis by blast}
       
   455   moreover{
       
   456     assume "\<exists> t1\<in> U. \<exists> t2 \<in> U. (\<forall> y. t1 \<sqsubset> y \<and> y \<sqsubset> t2 \<longrightarrow> y \<notin> U) \<and> t1 \<sqsubset> x \<and> x \<sqsubset> t2 \<and> P x"
       
   457       then obtain t1 and t2 where t1M: "t1 \<in> U" and t2M: "t2\<in> U"
       
   458         and noM: "\<forall> y. t1 \<sqsubset> y \<and> y \<sqsubset> t2 \<longrightarrow> y \<notin> U" and t1x: "t1 \<sqsubset> x" and xt2: "x \<sqsubset> t2" and px: "P x"
       
   459         by blast
       
   460       from less_trans[OF t1x xt2] have t1t2: "t1 \<sqsubset> t2" .
       
   461       let ?u = "between t1 t2"
       
   462       from between_less t1t2 have t1lu: "t1 \<sqsubset> ?u" and ut2: "?u \<sqsubset> t2" by auto
       
   463       from lin_dense noM t1x xt2 px t1lu ut2 have "P ?u" by blast
       
   464       with t1M t2M have ?thesis by blast}
       
   465     ultimately show ?thesis by blast
       
   466   qed
       
   467 
       
   468 theorem fr_eq:
       
   469   assumes fU: "finite U"
       
   470   and lin_dense: "\<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> P x
       
   471    \<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> P y )"
       
   472   and nmibnd: "\<forall>x. \<not> MP \<and> P x \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)"
       
   473   and npibnd: "\<forall>x. \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)"
       
   474   and mi: "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (P x = MP)"  and pi: "\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> (P x = PP)"
       
   475   shows "(\<exists> x. P x) \<equiv> (MP \<or> PP \<or> (\<exists> u \<in> U. \<exists> u'\<in> U. P (between u u')))"
       
   476   (is "_ \<equiv> (_ \<or> _ \<or> ?F)" is "?E \<equiv> ?D")
       
   477 proof-
       
   478  {
       
   479    assume px: "\<exists> x. P x"
       
   480    have "MP \<or> PP \<or> (\<not> MP \<and> \<not> PP)" by blast
       
   481    moreover {assume "MP \<or> PP" hence "?D" by blast}
       
   482    moreover {assume nmi: "\<not> MP" and npi: "\<not> PP"
       
   483      from npmibnd[OF nmibnd npibnd]
       
   484      have nmpiU: "\<forall>x. \<not> MP \<and> \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. \<exists> u' \<in> U. u \<sqsubseteq> x \<and> x \<sqsubseteq> u')" .
       
   485      from rinf_U[OF fU lin_dense nmpiU nmi npi px] have "?D" by blast}
       
   486    ultimately have "?D" by blast}
       
   487  moreover
       
   488  { assume "?D"
       
   489    moreover {assume m:"MP" from minf_ex[OF mi m] have "?E" .}
       
   490    moreover {assume p: "PP" from pinf_ex[OF pi p] have "?E" . }
       
   491    moreover {assume f:"?F" hence "?E" by blast}
       
   492    ultimately have "?E" by blast}
       
   493  ultimately have "?E = ?D" by blast thus "?E \<equiv> ?D" by simp
       
   494 qed
       
   495 
       
   496 lemmas minf_thms = minf_conj minf_disj minf_eq minf_neq minf_lt minf_le minf_gt minf_ge minf_P
       
   497 lemmas pinf_thms = pinf_conj pinf_disj pinf_eq pinf_neq pinf_lt pinf_le pinf_gt pinf_ge pinf_P
       
   498 
       
   499 lemmas nmi_thms = nmi_conj nmi_disj nmi_eq nmi_neq nmi_lt nmi_le nmi_gt nmi_ge nmi_P
       
   500 lemmas npi_thms = npi_conj npi_disj npi_eq npi_neq npi_lt npi_le npi_gt npi_ge npi_P
       
   501 lemmas lin_dense_thms = lin_dense_conj lin_dense_disj lin_dense_eq lin_dense_neq lin_dense_lt lin_dense_le lin_dense_gt lin_dense_ge lin_dense_P
       
   502 
       
   503 lemma ferrack_axiom: "constr_dense_linear_order less_eq less between"
       
   504   by (rule constr_dense_linear_order_axioms)
       
   505 lemma atoms:
       
   506   includes meta_term_syntax
       
   507   shows "TERM (less :: 'a \<Rightarrow> _)"
       
   508     and "TERM (less_eq :: 'a \<Rightarrow> _)"
       
   509     and "TERM (op = :: 'a \<Rightarrow> _)" .
       
   510 
       
   511 declare ferrack_axiom [ferrack minf: minf_thms pinf: pinf_thms
       
   512     nmi: nmi_thms npi: npi_thms lindense:
       
   513     lin_dense_thms qe: fr_eq atoms: atoms]
       
   514 
       
   515 declaration {*
       
   516 let
       
   517 fun simps phi = map (Morphism.thm phi) [@{thm "not_less"}, @{thm "not_le"}]
       
   518 fun generic_whatis phi =
       
   519  let
       
   520   val [lt, le] = map (Morphism.term phi) [@{term "op \<sqsubset>"}, @{term "op \<sqsubseteq>"}]
       
   521   fun h x t =
       
   522    case term_of t of
       
   523      Const("op =", _)$y$z => if term_of x aconv y then Ferrante_Rackoff_Data.Eq
       
   524                             else Ferrante_Rackoff_Data.Nox
       
   525    | @{term "Not"}$(Const("op =", _)$y$z) => if term_of x aconv y then Ferrante_Rackoff_Data.NEq
       
   526                             else Ferrante_Rackoff_Data.Nox
       
   527    | b$y$z => if Term.could_unify (b, lt) then
       
   528                  if term_of x aconv y then Ferrante_Rackoff_Data.Lt
       
   529                  else if term_of x aconv z then Ferrante_Rackoff_Data.Gt
       
   530                  else Ferrante_Rackoff_Data.Nox
       
   531              else if Term.could_unify (b, le) then
       
   532                  if term_of x aconv y then Ferrante_Rackoff_Data.Le
       
   533                  else if term_of x aconv z then Ferrante_Rackoff_Data.Ge
       
   534                  else Ferrante_Rackoff_Data.Nox
       
   535              else Ferrante_Rackoff_Data.Nox
       
   536    | _ => Ferrante_Rackoff_Data.Nox
       
   537  in h end
       
   538  fun ss phi = HOL_ss addsimps (simps phi)
       
   539 in
       
   540  Ferrante_Rackoff_Data.funs  @{thm "ferrack_axiom"}
       
   541   {isolate_conv = K (K (K Thm.reflexive)), whatis = generic_whatis, simpset = ss}
       
   542 end
       
   543 *}
       
   544 
       
   545 end
       
   546 
       
   547 use "Tools/Qelim/ferrante_rackoff.ML"
       
   548 
       
   549 method_setup ferrack = {*
       
   550   Method.ctxt_args (Method.SIMPLE_METHOD' o FerranteRackoff.dlo_tac)
       
   551 *} "Ferrante and Rackoff's algorithm for quantifier elimination in dense linear orders"
       
   552 
       
   553 end