src/HOL/Topological_Spaces.thy
changeset 75243 a2b8394ce1f1
parent 74668 2d9d02beaf96
child 75462 7448423e5dba
equal deleted inserted replaced
75242:810d16927cdc 75243:a2b8394ce1f1
  1800 
  1800 
  1801 lemma (in first_countable_topology) sequentially_imp_eventually_at:
  1801 lemma (in first_countable_topology) sequentially_imp_eventually_at:
  1802   "(\<forall>f. (\<forall>n. f n \<noteq> a) \<and> f \<longlonglongrightarrow> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow> eventually P (at a)"
  1802   "(\<forall>f. (\<forall>n. f n \<noteq> a) \<and> f \<longlonglongrightarrow> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow> eventually P (at a)"
  1803   using sequentially_imp_eventually_within [where s=UNIV] by simp
  1803   using sequentially_imp_eventually_within [where s=UNIV] by simp
  1804 
  1804 
  1805 lemma LIMSEQ_SEQ_conv1:
  1805 lemma LIMSEQ_SEQ_conv:
  1806   fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
  1806   "(\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S \<longlonglongrightarrow> a \<longrightarrow> (\<lambda>n. X (S n)) \<longlonglongrightarrow> L)  \<longleftrightarrow>  X \<midarrow>a\<rightarrow> L"  (is "?lhs=?rhs")
  1807   assumes f: "f \<midarrow>a\<rightarrow> l"
       
  1808   shows "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S \<longlonglongrightarrow> a \<longrightarrow> (\<lambda>n. f (S n)) \<longlonglongrightarrow> l"
       
  1809   using tendsto_compose_eventually [OF f, where F=sequentially] by simp
       
  1810 
       
  1811 lemma LIMSEQ_SEQ_conv2:
       
  1812   fixes f :: "'a::first_countable_topology \<Rightarrow> 'b::topological_space"
       
  1813   assumes "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S \<longlonglongrightarrow> a \<longrightarrow> (\<lambda>n. f (S n)) \<longlonglongrightarrow> l"
       
  1814   shows "f \<midarrow>a\<rightarrow> l"
       
  1815   using assms unfolding tendsto_def [where l=l] by (simp add: sequentially_imp_eventually_at)
       
  1816 
       
  1817 lemma LIMSEQ_SEQ_conv: "(\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S \<longlonglongrightarrow> a \<longrightarrow> (\<lambda>n. X (S n)) \<longlonglongrightarrow> L) \<longleftrightarrow> X \<midarrow>a\<rightarrow> L"
       
  1818   for a :: "'a::first_countable_topology" and L :: "'b::topological_space"
  1807   for a :: "'a::first_countable_topology" and L :: "'b::topological_space"
  1819   using LIMSEQ_SEQ_conv2 LIMSEQ_SEQ_conv1 ..
  1808 proof
       
  1809   assume ?lhs then show ?rhs
       
  1810     by (simp add: sequentially_imp_eventually_within tendsto_def) 
       
  1811 next
       
  1812   assume ?rhs then show ?lhs
       
  1813     using tendsto_compose_eventually eventuallyI by blast
       
  1814 qed    
  1820 
  1815 
  1821 lemma sequentially_imp_eventually_at_left:
  1816 lemma sequentially_imp_eventually_at_left:
  1822   fixes a :: "'a::{linorder_topology,first_countable_topology}"
  1817   fixes a :: "'a::{linorder_topology,first_countable_topology}"
  1823   assumes b[simp]: "b < a"
  1818   assumes b[simp]: "b < a"
  1824     and *: "\<And>f. (\<And>n. b < f n) \<Longrightarrow> (\<And>n. f n < a) \<Longrightarrow> incseq f \<Longrightarrow> f \<longlonglongrightarrow> a \<Longrightarrow>
  1819     and *: "\<And>f. (\<And>n. b < f n) \<Longrightarrow> (\<And>n. f n < a) \<Longrightarrow> incseq f \<Longrightarrow> f \<longlonglongrightarrow> a \<Longrightarrow>