src/FOLP/classical.ML
changeset 0 a5a9c433f639
child 469 b571d997178d
equal deleted inserted replaced
-1:000000000000 0:a5a9c433f639
       
     1 (*  Title: 	FOLP/classical
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1992  University of Cambridge
       
     5 
       
     6 Like Provers/classical but modified because match_tac is unsuitable for
       
     7 proof objects.
       
     8 
       
     9 Theorem prover for classical reasoning, including predicate calculus, set
       
    10 theory, etc.
       
    11 
       
    12 Rules must be classified as intr, elim, safe, hazardous.
       
    13 
       
    14 A rule is unsafe unless it can be applied blindly without harmful results.
       
    15 For a rule to be safe, its premises and conclusion should be logically
       
    16 equivalent.  There should be no variables in the premises that are not in
       
    17 the conclusion.
       
    18 *)
       
    19 
       
    20 signature CLASSICAL_DATA =
       
    21   sig
       
    22   val mp: thm    		(* [| P-->Q;  P |] ==> Q *)
       
    23   val not_elim: thm		(* [| ~P;  P |] ==> R *)
       
    24   val swap: thm			(* ~P ==> (~Q ==> P) ==> Q *)
       
    25   val sizef : thm -> int	(* size function for BEST_FIRST *)
       
    26   val hyp_subst_tacs: (int -> tactic) list
       
    27   end;
       
    28 
       
    29 (*Higher precedence than := facilitates use of references*)
       
    30 infix 4 addSIs addSEs addSDs addIs addEs addDs;
       
    31 
       
    32 
       
    33 signature CLASSICAL =
       
    34   sig
       
    35   type claset
       
    36   val empty_cs: claset
       
    37   val addDs : claset * thm list -> claset
       
    38   val addEs : claset * thm list -> claset
       
    39   val addIs : claset * thm list -> claset
       
    40   val addSDs: claset * thm list -> claset
       
    41   val addSEs: claset * thm list -> claset
       
    42   val addSIs: claset * thm list -> claset
       
    43   val print_cs: claset -> unit
       
    44   val rep_claset: claset -> 
       
    45       {safeIs: thm list, safeEs: thm list, hazIs: thm list, hazEs: thm list, 
       
    46        safe0_brls:(bool*thm)list, safep_brls: (bool*thm)list,
       
    47        haz_brls: (bool*thm)list}
       
    48   val best_tac : claset -> int -> tactic
       
    49   val chain_tac : int -> tactic
       
    50   val contr_tac : int -> tactic
       
    51   val fast_tac : claset -> int -> tactic
       
    52   val inst_step_tac : int -> tactic
       
    53   val joinrules : thm list * thm list -> (bool * thm) list
       
    54   val mp_tac: int -> tactic
       
    55   val safe_tac : claset -> tactic
       
    56   val safe_step_tac : claset -> int -> tactic
       
    57   val slow_step_tac : claset -> int -> tactic
       
    58   val step_tac : claset -> int -> tactic
       
    59   val swapify : thm list -> thm list
       
    60   val swap_res_tac : thm list -> int -> tactic
       
    61   val uniq_mp_tac: int -> tactic
       
    62   end;
       
    63 
       
    64 
       
    65 functor ClassicalFun(Data: CLASSICAL_DATA): CLASSICAL = 
       
    66 struct
       
    67 
       
    68 local open Data in
       
    69 
       
    70 (** Useful tactics for classical reasoning **)
       
    71 
       
    72 val imp_elim = make_elim mp;
       
    73 
       
    74 (*Solve goal that assumes both P and ~P. *)
       
    75 val contr_tac = eresolve_tac [not_elim]  THEN'  assume_tac;
       
    76 
       
    77 (*Finds P-->Q and P in the assumptions, replaces implication by Q *)
       
    78 fun mp_tac i = eresolve_tac ([not_elim,imp_elim]) i  THEN  assume_tac i;
       
    79 
       
    80 (*Like mp_tac but instantiates no variables*)
       
    81 fun uniq_mp_tac i = ematch_tac ([not_elim,imp_elim]) i  THEN  uniq_assume_tac i;
       
    82 
       
    83 (*Creates rules to eliminate ~A, from rules to introduce A*)
       
    84 fun swapify intrs = intrs RLN (2, [swap]);
       
    85 
       
    86 (*Uses introduction rules in the normal way, or on negated assumptions,
       
    87   trying rules in order. *)
       
    88 fun swap_res_tac rls = 
       
    89     let fun tacf rl = rtac rl ORELSE' etac (rl RSN (2,swap))
       
    90     in  assume_tac ORELSE' contr_tac ORELSE' FIRST' (map tacf rls)
       
    91     end;
       
    92 
       
    93 (*Given assumption P-->Q, reduces subgoal Q to P [deletes the implication!] *)
       
    94 fun chain_tac i =
       
    95     eresolve_tac [imp_elim] i  THEN
       
    96     (assume_tac (i+1)  ORELSE  contr_tac (i+1));
       
    97 
       
    98 (*** Classical rule sets ***)
       
    99 
       
   100 datatype claset =
       
   101  CS of {safeIs: thm list,
       
   102 	safeEs: thm list,
       
   103 	hazIs: thm list,
       
   104 	hazEs: thm list,
       
   105 	(*the following are computed from the above*)
       
   106 	safe0_brls: (bool*thm)list,
       
   107 	safep_brls: (bool*thm)list,
       
   108 	haz_brls: (bool*thm)list};
       
   109   
       
   110 fun rep_claset (CS x) = x;
       
   111 
       
   112 (*For use with biresolve_tac.  Combines intrs with swap to catch negated
       
   113   assumptions.  Also pairs elims with true. *)
       
   114 fun joinrules (intrs,elims) =  
       
   115   map (pair true) (elims @ swapify intrs)  @  map (pair false) intrs;
       
   116 
       
   117 (*Note that allE precedes exI in haz_brls*)
       
   118 fun make_cs {safeIs,safeEs,hazIs,hazEs} =
       
   119   let val (safe0_brls, safep_brls) = (*0 subgoals vs 1 or more*)
       
   120           partition (apl(0,op=) o subgoals_of_brl) 
       
   121              (sort lessb (joinrules(safeIs, safeEs)))
       
   122   in CS{safeIs=safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=hazEs,
       
   123 	safe0_brls=safe0_brls, safep_brls=safep_brls,
       
   124 	haz_brls = sort lessb (joinrules(hazIs, hazEs))}
       
   125   end;
       
   126 
       
   127 (*** Manipulation of clasets ***)
       
   128 
       
   129 val empty_cs = make_cs{safeIs=[], safeEs=[], hazIs=[], hazEs=[]};
       
   130 
       
   131 fun print_cs (CS{safeIs,safeEs,hazIs,hazEs,...}) =
       
   132  (writeln"Introduction rules";  prths hazIs;
       
   133   writeln"Safe introduction rules";  prths safeIs;
       
   134   writeln"Elimination rules";  prths hazEs;
       
   135   writeln"Safe elimination rules";  prths safeEs;
       
   136   ());
       
   137 
       
   138 fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addSIs ths =
       
   139   make_cs {safeIs=ths@safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=hazEs};
       
   140 
       
   141 fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addSEs ths =
       
   142   make_cs {safeIs=safeIs, safeEs=ths@safeEs, hazIs=hazIs, hazEs=hazEs};
       
   143 
       
   144 fun cs addSDs ths = cs addSEs (map make_elim ths);
       
   145 
       
   146 fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addIs ths =
       
   147   make_cs {safeIs=safeIs, safeEs=safeEs, hazIs=ths@hazIs, hazEs=hazEs};
       
   148 
       
   149 fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addEs ths =
       
   150   make_cs {safeIs=safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=ths@hazEs};
       
   151 
       
   152 fun cs addDs ths = cs addEs (map make_elim ths);
       
   153 
       
   154 (*** Simple tactics for theorem proving ***)
       
   155 
       
   156 (*Attack subgoals using safe inferences*)
       
   157 fun safe_step_tac (CS{safe0_brls,safep_brls,...}) = 
       
   158   FIRST' [uniq_assume_tac,
       
   159 	  uniq_mp_tac,
       
   160 	  biresolve_tac safe0_brls,
       
   161 	  FIRST' hyp_subst_tacs,
       
   162 	  biresolve_tac safep_brls] ;
       
   163 
       
   164 (*Repeatedly attack subgoals using safe inferences*)
       
   165 fun safe_tac cs = DETERM (REPEAT_FIRST (safe_step_tac cs));
       
   166 
       
   167 (*These steps could instantiate variables and are therefore unsafe.*)
       
   168 val inst_step_tac = assume_tac APPEND' contr_tac;
       
   169 
       
   170 (*Single step for the prover.  FAILS unless it makes progress. *)
       
   171 fun step_tac (cs as (CS{haz_brls,...})) i = 
       
   172   FIRST [safe_tac cs,
       
   173          inst_step_tac i,
       
   174          biresolve_tac haz_brls i];
       
   175 
       
   176 (*** The following tactics all fail unless they solve one goal ***)
       
   177 
       
   178 (*Dumb but fast*)
       
   179 fun fast_tac cs = SELECT_GOAL (DEPTH_SOLVE (step_tac cs 1));
       
   180 
       
   181 (*Slower but smarter than fast_tac*)
       
   182 fun best_tac cs = 
       
   183   SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (step_tac cs 1));
       
   184 
       
   185 (*Using a "safe" rule to instantiate variables is unsafe.  This tactic
       
   186   allows backtracking from "safe" rules to "unsafe" rules here.*)
       
   187 fun slow_step_tac (cs as (CS{haz_brls,...})) i = 
       
   188     safe_tac cs ORELSE (assume_tac i APPEND biresolve_tac haz_brls i);
       
   189 
       
   190 end; 
       
   191 end;