|
1 (* Title: library |
|
2 ID: $Id$ |
|
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 Copyright 1992 University of Cambridge |
|
5 |
|
6 Basic library: booleans, lists, pairs, input/output, etc. |
|
7 *) |
|
8 |
|
9 |
|
10 (**** Booleans: operators for combining predicates ****) |
|
11 |
|
12 infix orf; |
|
13 fun p orf q = fn x => p x orelse q x ; |
|
14 |
|
15 infix andf; |
|
16 fun p andf q = fn x => p x andalso q x ; |
|
17 |
|
18 fun notf p x = not (p x) ; |
|
19 |
|
20 fun orl [] = false |
|
21 | orl (x::l) = x orelse orl l; |
|
22 |
|
23 fun andl [] = true |
|
24 | andl (x::l) = x andalso andl l; |
|
25 |
|
26 (*exists pred [x1,...,xn] ======> pred(x1) orelse ... orelse pred(xn)*) |
|
27 fun exists (pred: 'a -> bool) : 'a list -> bool = |
|
28 let fun boolf [] = false |
|
29 | boolf (x::l) = (pred x) orelse boolf l |
|
30 in boolf end; |
|
31 |
|
32 (*forall pred [x1,...,xn] ======> pred(x1) andalso ... andalso pred(xn)*) |
|
33 fun forall (pred: 'a -> bool) : 'a list -> bool = |
|
34 let fun boolf [] = true |
|
35 | boolf (x::l) = (pred x) andalso (boolf l) |
|
36 in boolf end; |
|
37 |
|
38 |
|
39 (*** Lists ***) |
|
40 |
|
41 exception LIST of string; |
|
42 |
|
43 (*discriminator and selectors for lists. *) |
|
44 fun null [] = true |
|
45 | null (_::_) = false; |
|
46 |
|
47 fun hd [] = raise LIST "hd" |
|
48 | hd (a::_) = a; |
|
49 |
|
50 fun tl [] = raise LIST "tl" |
|
51 | tl (_::l) = l; |
|
52 |
|
53 |
|
54 (*curried functions for pairing and reversed pairing*) |
|
55 fun pair x y = (x,y); |
|
56 fun rpair x y = (y,x); |
|
57 |
|
58 fun fst(x,y) = x and snd(x,y) = y; |
|
59 |
|
60 (*Handy combinators*) |
|
61 fun curry f x y = f(x,y); |
|
62 fun uncurry f(x,y) = f x y; |
|
63 fun I x = x and K x y = x; |
|
64 |
|
65 (*Combine two functions forming the union of their domains*) |
|
66 infix orelf; |
|
67 fun f orelf g = fn x => f x handle Match=> g x; |
|
68 |
|
69 |
|
70 (*Application of (infix) operator to its left or right argument*) |
|
71 fun apl (x,f) y = f(x,y); |
|
72 fun apr (f,y) x = f(x,y); |
|
73 |
|
74 |
|
75 (*functional for pairs*) |
|
76 fun pairself f (x,y) = (f x, f y); |
|
77 |
|
78 (*Apply the function to a component of a pair*) |
|
79 fun apfst f (x, y) = (f x, y); |
|
80 fun apsnd f (x, y) = (x, f y); |
|
81 |
|
82 fun square (n: int) = n*n; |
|
83 |
|
84 fun fact 0 = 1 |
|
85 | fact n = n * fact(n-1); |
|
86 |
|
87 |
|
88 (*The following versions of fold are designed to fit nicely with infixes.*) |
|
89 |
|
90 (* (op @) (e, [x1,...,xn]) ======> ((e @ x1) @ x2) ... @ xn |
|
91 for operators that associate to the left. TAIL RECURSIVE*) |
|
92 fun foldl (f: 'a * 'b -> 'a) : 'a * 'b list -> 'a = |
|
93 let fun itl (e, []) = e |
|
94 | itl (e, a::l) = itl (f(e,a), l) |
|
95 in itl end; |
|
96 |
|
97 (* (op @) ([x1,...,xn], e) ======> x1 @ (x2 ... @ (xn @ e)) |
|
98 for operators that associate to the right. Not tail recursive.*) |
|
99 fun foldr f (l,e) = |
|
100 let fun itr [] = e |
|
101 | itr (a::l) = f(a, itr l) |
|
102 in itr l end; |
|
103 |
|
104 (* (op @) [x1,...,xn] ======> x1 @ (x2 ..(x[n-1]. @ xn)) |
|
105 for n>0, operators that associate to the right. Not tail recursive.*) |
|
106 fun foldr1 f l = |
|
107 let fun itr [x] = x |
|
108 | itr (x::l) = f(x, itr l) |
|
109 in itr l end; |
|
110 |
|
111 |
|
112 (*Length of a list. Should unquestionably be a standard function*) |
|
113 local fun length1 (n, [ ]) = n (*TAIL RECURSIVE*) |
|
114 | length1 (n, x::l) = length1 (n+1, l) |
|
115 in fun length l = length1 (0,l) end; |
|
116 |
|
117 |
|
118 (*Take the first n elements from l.*) |
|
119 fun take (n, []) = [] |
|
120 | take (n, x::xs) = if n>0 then x::take(n-1,xs) |
|
121 else []; |
|
122 |
|
123 (*Drop the first n elements from l.*) |
|
124 fun drop (_, []) = [] |
|
125 | drop (n, x::xs) = if n>0 then drop (n-1, xs) |
|
126 else x::xs; |
|
127 |
|
128 (*Return nth element of l, where 0 designates the first element; |
|
129 raise EXCEPTION if list too short.*) |
|
130 fun nth_elem NL = case (drop NL) of |
|
131 [] => raise LIST "nth_elem" |
|
132 | x::l => x; |
|
133 |
|
134 |
|
135 (*make the list [from, from+1, ..., to]*) |
|
136 infix upto; |
|
137 fun from upto to = |
|
138 if from>to then [] else from :: ((from+1) upto to); |
|
139 |
|
140 (*make the list [from, from-1, ..., to]*) |
|
141 infix downto; |
|
142 fun from downto to = |
|
143 if from<to then [] else from :: ((from-1) downto to); |
|
144 |
|
145 (* predicate: downto0(is,n) <=> is = [n,n-1,...,0] *) |
|
146 fun downto0(i::is,n) = i=n andalso downto0(is,n-1) |
|
147 | downto0([],n) = n = ~1; |
|
148 |
|
149 (*Like Lisp's MAPC -- seq proc [x1,...,xn] evaluates |
|
150 proc(x1); ... ; proc(xn) for side effects.*) |
|
151 fun seq (proc: 'a -> unit) : 'a list -> unit = |
|
152 let fun seqf [] = () |
|
153 | seqf (x::l) = (proc x; seqf l) |
|
154 in seqf end; |
|
155 |
|
156 |
|
157 (*** Balanced folding; access to balanced trees ***) |
|
158 |
|
159 exception Balance; (*indicates non-positive argument to balancing fun*) |
|
160 |
|
161 (*Balanced folding; avoids deep nesting*) |
|
162 fun fold_bal f [x] = x |
|
163 | fold_bal f [] = raise Balance |
|
164 | fold_bal f xs = |
|
165 let val k = length xs div 2 |
|
166 in f (fold_bal f (take(k,xs)), |
|
167 fold_bal f (drop(k,xs))) |
|
168 end; |
|
169 |
|
170 (*Construct something of the form f(...g(...(x)...)) for balanced access*) |
|
171 fun access_bal (f,g,x) n i = |
|
172 let fun acc n i = (* 1<=i<=n*) |
|
173 if n=1 then x else |
|
174 let val n2 = n div 2 |
|
175 in if i<=n2 then f (acc n2 i) |
|
176 else g (acc (n-n2) (i-n2)) |
|
177 end |
|
178 in if 1<=i andalso i<=n then acc n i else raise Balance end; |
|
179 |
|
180 (*Construct ALL such accesses; could try harder to share recursive calls!*) |
|
181 fun accesses_bal (f,g,x) n = |
|
182 let fun acc n = |
|
183 if n=1 then [x] else |
|
184 let val n2 = n div 2 |
|
185 val acc2 = acc n2 |
|
186 in if n-n2=n2 then map f acc2 @ map g acc2 |
|
187 else map f acc2 @ map g (acc (n-n2)) end |
|
188 in if 1<=n then acc n else raise Balance end; |
|
189 |
|
190 |
|
191 (*** Input/Output ***) |
|
192 |
|
193 fun prs s = output(std_out,s); |
|
194 fun writeln s = prs (s ^ "\n"); |
|
195 |
|
196 (*Print error message and abort to top level*) |
|
197 exception ERROR; |
|
198 fun error (msg) = (writeln msg; raise ERROR); |
|
199 |
|
200 fun assert p msg = if p then () else error msg; |
|
201 fun deny p msg = if p then error msg else (); |
|
202 |
|
203 (*For the "test" target in Makefiles -- signifies successful termination*) |
|
204 fun maketest msg = |
|
205 (writeln msg; |
|
206 output(open_out "test", "Test examples ran successfully\n")); |
|
207 |
|
208 (*print a list surrounded by the brackets lpar and rpar, with comma separator |
|
209 print nothing for empty list*) |
|
210 fun print_list (lpar, rpar, pre: 'a -> unit) (l : 'a list) = |
|
211 let fun prec(x) = (prs","; pre(x)) |
|
212 in case l of |
|
213 [] => () |
|
214 | x::l => (prs lpar; pre x; seq prec l; prs rpar) |
|
215 end; |
|
216 |
|
217 (*print a list of items separated by newlines*) |
|
218 fun print_list_ln (pre: 'a -> unit) : 'a list -> unit = |
|
219 seq (fn x => (pre x; writeln"")); |
|
220 |
|
221 fun is_letter ch = |
|
222 (ord"A" <= ord ch) andalso (ord ch <= ord"Z") orelse |
|
223 (ord"a" <= ord ch) andalso (ord ch <= ord"z"); |
|
224 |
|
225 fun is_digit ch = |
|
226 (ord"0" <= ord ch) andalso (ord ch <= ord"9"); |
|
227 |
|
228 (*letter or _ or prime (') *) |
|
229 fun is_quasi_letter "_" = true |
|
230 | is_quasi_letter "'" = true |
|
231 | is_quasi_letter ch = is_letter ch; |
|
232 |
|
233 (*white space: blanks, tabs, newlines*) |
|
234 val is_blank : string -> bool = fn |
|
235 " " => true | "\t" => true | "\n" => true | _ => false; |
|
236 |
|
237 val is_letdig = is_quasi_letter orf is_digit; |
|
238 |
|
239 val to_lower = |
|
240 let |
|
241 fun lower ch = |
|
242 if ch >= "A" andalso ch <= "Z" then |
|
243 chr (ord ch - ord "A" + ord "a") |
|
244 else ch; |
|
245 in |
|
246 implode o (map lower) o explode |
|
247 end; |
|
248 |
|
249 |
|
250 (*** Timing ***) |
|
251 |
|
252 (*Unconditional timing function*) |
|
253 val timeit = cond_timeit true; |
|
254 |
|
255 (*Timed application function*) |
|
256 fun timeap f x = timeit(fn()=> f x); |
|
257 |
|
258 (*Timed "use" function, printing filenames*) |
|
259 fun time_use fname = timeit(fn()=> |
|
260 (writeln("\n**** Starting " ^ fname ^ " ****"); use fname; |
|
261 writeln("\n**** Finished " ^ fname ^ " ****"))); |
|
262 |
|
263 |
|
264 (*** Misc functions ***) |
|
265 |
|
266 (*Function exponentiation: f(...(f x)...) with n applications of f *) |
|
267 fun funpow n f x = |
|
268 let fun rep (0,x) = x |
|
269 | rep (n,x) = rep (n-1, f x) |
|
270 in rep (n,x) end; |
|
271 |
|
272 (*Combine two lists forming a list of pairs: |
|
273 [x1,...,xn] ~~ [y1,...,yn] ======> [(x1,y1), ..., (xn,yn)] *) |
|
274 infix ~~; |
|
275 fun [] ~~ [] = [] |
|
276 | (x::xs) ~~ (y::ys) = (x,y) :: (xs ~~ ys) |
|
277 | _ ~~ _ = raise LIST "~~"; |
|
278 |
|
279 (*Inverse of ~~; the old 'split'. |
|
280 [(x1,y1), ..., (xn,yn)] ======> ( [x1,...,xn] , [y1,...,yn] ) *) |
|
281 fun split_list (l: ('a*'b)list) = (map #1 l, map #2 l); |
|
282 |
|
283 (*make the list [x; x; ...; x] of length n*) |
|
284 fun replicate n (x: 'a) : 'a list = |
|
285 let fun rep (0,xs) = xs |
|
286 | rep (n,xs) = rep(n-1, x::xs) |
|
287 in if n<0 then raise LIST "replicate" |
|
288 else rep (n,[]) |
|
289 end; |
|
290 |
|
291 (*Flatten a list of lists to a list.*) |
|
292 fun flat (ls: 'c list list) : 'c list = foldr (op @) (ls,[]); |
|
293 |
|
294 |
|
295 (*** polymorphic set operations ***) |
|
296 |
|
297 (*membership in a list*) |
|
298 infix mem; |
|
299 fun x mem [] = false |
|
300 | x mem (y::l) = (x=y) orelse (x mem l); |
|
301 |
|
302 (*insertion into list if not already there*) |
|
303 infix ins; |
|
304 fun x ins xs = if x mem xs then xs else x::xs; |
|
305 |
|
306 (*union of sets represented as lists: no repetitions*) |
|
307 infix union; |
|
308 fun xs union [] = xs |
|
309 | [] union ys = ys |
|
310 | (x::xs) union ys = xs union (x ins ys); |
|
311 |
|
312 infix inter; |
|
313 fun [] inter ys = [] |
|
314 | (x::xs) inter ys = if x mem ys then x::(xs inter ys) |
|
315 else xs inter ys; |
|
316 |
|
317 infix subset; |
|
318 fun [] subset ys = true |
|
319 | (x::xs) subset ys = x mem ys andalso xs subset ys; |
|
320 |
|
321 (*removing an element from a list WITHOUT duplicates*) |
|
322 infix \; |
|
323 fun (y::ys) \ x = if x=y then ys else y::(ys \ x) |
|
324 | [] \ x = []; |
|
325 |
|
326 infix \\; |
|
327 val op \\ = foldl (op \); |
|
328 |
|
329 (*** option stuff ***) |
|
330 |
|
331 datatype 'a option = None | Some of 'a; |
|
332 |
|
333 exception OPTION of string; |
|
334 |
|
335 fun the (Some x) = x |
|
336 | the None = raise OPTION "the"; |
|
337 |
|
338 fun is_some (Some _) = true |
|
339 | is_some None = false; |
|
340 |
|
341 fun is_none (Some _) = false |
|
342 | is_none None = true; |
|
343 |
|
344 |
|
345 (*** Association lists ***) |
|
346 |
|
347 (*Association list lookup*) |
|
348 fun assoc ([], key) = None |
|
349 | assoc ((keyi,xi)::pairs, key) = |
|
350 if key=keyi then Some xi else assoc (pairs,key); |
|
351 |
|
352 fun assocs ps x = case assoc(ps,x) of None => [] | Some(ys) => ys; |
|
353 |
|
354 (*Association list update*) |
|
355 fun overwrite(al,p as (key,_)) = |
|
356 let fun over((q as (keyi,_))::pairs) = |
|
357 if keyi=key then p::pairs else q::(over pairs) |
|
358 | over[] = [p] |
|
359 in over al end; |
|
360 |
|
361 (*Copy the list preserving elements that satisfy the predicate*) |
|
362 fun filter (pred: 'a->bool) : 'a list -> 'a list = |
|
363 let fun filt [] = [] |
|
364 | filt (x::xs) = if pred(x) then x :: filt xs else filt xs |
|
365 in filt end; |
|
366 |
|
367 fun filter_out f = filter (not o f); |
|
368 |
|
369 |
|
370 (*** List operations, generalized to an arbitrary equality function "eq" |
|
371 -- so what good are equality types?? ***) |
|
372 |
|
373 (*removing an element from a list -- possibly WITH duplicates*) |
|
374 fun gen_rem eq (xs,y) = filter_out (fn x => eq(x,y)) xs; |
|
375 |
|
376 (*generalized membership test*) |
|
377 fun gen_mem eq (x, []) = false |
|
378 | gen_mem eq (x, y::ys) = eq(x,y) orelse gen_mem eq (x,ys); |
|
379 |
|
380 (*generalized insertion*) |
|
381 fun gen_ins eq (x,xs) = if gen_mem eq (x,xs) then xs else x::xs; |
|
382 |
|
383 (*generalized union*) |
|
384 fun gen_union eq (xs,[]) = xs |
|
385 | gen_union eq ([],ys) = ys |
|
386 | gen_union eq (x::xs,ys) = gen_union eq (xs, gen_ins eq (x,ys)); |
|
387 |
|
388 (*Generalized association list lookup*) |
|
389 fun gen_assoc eq ([], key) = None |
|
390 | gen_assoc eq ((keyi,xi)::pairs, key) = |
|
391 if eq(key,keyi) then Some xi else gen_assoc eq (pairs,key); |
|
392 |
|
393 (** Finding list elements and duplicates **) |
|
394 |
|
395 (* find the position of an element in a list *) |
|
396 fun find(x,ys) = |
|
397 let fun f(y::ys,i) = if x=y then i else f(ys,i+1) |
|
398 | f(_,_) = raise LIST "find" |
|
399 in f(ys,0) end; |
|
400 |
|
401 (*Returns the tail beginning with the first repeated element, or []. *) |
|
402 fun findrep [] = [] |
|
403 | findrep (x::xs) = if x mem xs then x::xs else findrep xs; |
|
404 |
|
405 fun distinct1 (seen, []) = rev seen |
|
406 | distinct1 (seen, x::xs) = |
|
407 if x mem seen then distinct1 (seen, xs) |
|
408 else distinct1 (x::seen, xs); |
|
409 |
|
410 (*Makes a list of the distinct members of the input*) |
|
411 fun distinct xs = distinct1([],xs); |
|
412 |
|
413 |
|
414 (*Use the keyfun to make a list of (x,key) pairs.*) |
|
415 fun make_keylist (keyfun: 'a->'b) : 'a list -> ('a * 'b) list = |
|
416 let fun keypair x = (x, keyfun x) |
|
417 in map keypair end; |
|
418 |
|
419 (*Given a list of (x,key) pairs and a searchkey |
|
420 return the list of xs from each pair whose key equals searchkey*) |
|
421 fun keyfilter [] searchkey = [] |
|
422 | keyfilter ((x,key)::pairs) searchkey = |
|
423 if key=searchkey then x :: keyfilter pairs searchkey |
|
424 else keyfilter pairs searchkey; |
|
425 |
|
426 fun mapfilter (f: 'a -> 'b option) ([]: 'a list) = [] : 'b list |
|
427 | mapfilter f (x::xs) = |
|
428 case (f x) of |
|
429 None => mapfilter f xs |
|
430 | Some y => y :: mapfilter f xs; |
|
431 |
|
432 |
|
433 (*Partition list into elements that satisfy predicate and those that don't. |
|
434 Preserves order of elements in both lists. *) |
|
435 fun partition (pred: 'a->bool) (ys: 'a list) : ('a list * 'a list) = |
|
436 let fun part ([], answer) = answer |
|
437 | part (x::xs, (ys, ns)) = if pred(x) |
|
438 then part (xs, (x::ys, ns)) |
|
439 else part (xs, (ys, x::ns)) |
|
440 in part (rev ys, ([],[])) end; |
|
441 |
|
442 |
|
443 fun partition_eq (eq:'a * 'a -> bool) = |
|
444 let fun part [] = [] |
|
445 | part (x::ys) = let val (xs,xs') = partition (apl(x,eq)) ys |
|
446 in (x::xs)::(part xs') end |
|
447 in part end; |
|
448 |
|
449 |
|
450 (*Partition a list into buckets [ bi, b(i+1),...,bj ] |
|
451 putting x in bk if p(k)(x) holds. Preserve order of elements if possible.*) |
|
452 fun partition_list p i j = |
|
453 let fun part k xs = |
|
454 if k>j then |
|
455 (case xs of [] => [] |
|
456 | _ => raise LIST "partition_list") |
|
457 else |
|
458 let val (ns,rest) = partition (p k) xs; |
|
459 in ns :: part(k+1)rest end |
|
460 in part i end; |
|
461 |
|
462 |
|
463 (*Insertion sort. Stable (does not reorder equal elements) |
|
464 'less' is less-than test on type 'a. *) |
|
465 fun sort (less: 'a*'a -> bool) = |
|
466 let fun insert (x, []) = [x] |
|
467 | insert (x, y::ys) = |
|
468 if less(y,x) then y :: insert (x,ys) else x::y::ys; |
|
469 fun sort1 [] = [] |
|
470 | sort1 (x::xs) = insert (x, sort1 xs) |
|
471 in sort1 end; |
|
472 |
|
473 (*Transitive Closure. Not Warshall's algorithm*) |
|
474 fun transitive_closure [] = [] |
|
475 | transitive_closure ((x,ys)::ps) = |
|
476 let val qs = transitive_closure ps |
|
477 val zs = foldl (fn (zs,y) => assocs qs y union zs) (ys,ys) |
|
478 fun step(u,us) = (u, if x mem us then zs union us else us) |
|
479 in (x,zs) :: map step qs end; |
|
480 |
|
481 (*** Converting integers to strings, generating identifiers, etc. ***) |
|
482 |
|
483 (*Expand the number in the given base |
|
484 example: radixpand(2, 8) gives [1, 0, 0, 0] *) |
|
485 fun radixpand (base,num) : int list = |
|
486 let fun radix (n,tail) = |
|
487 if n<base then n :: tail |
|
488 else radix (n div base, (n mod base) :: tail) |
|
489 in radix (num,[]) end; |
|
490 |
|
491 (*Expands a number into a string of characters starting from "zerochar" |
|
492 example: radixstring(2,"0", 8) gives "1000" *) |
|
493 fun radixstring (base,zerochar,num) = |
|
494 let val offset = ord(zerochar); |
|
495 fun chrof n = chr(offset+n) |
|
496 in implode (map chrof (radixpand (base,num))) end; |
|
497 |
|
498 fun string_of_int n = |
|
499 if n < 0 then "~" ^ radixstring(10,"0",~n) else radixstring(10,"0",n); |
|
500 |
|
501 val print_int = prs o string_of_int; |
|
502 |
|
503 local |
|
504 val a = ord("a") and z = ord("z") and A = ord("A") and Z = ord("Z") |
|
505 and k0 = ord("0") and k9 = ord("9") |
|
506 in |
|
507 |
|
508 (*Increment a list of letters like a reversed base 26 number. |
|
509 If head is "z", bumps chars in tail. |
|
510 Digits are incremented as if they were integers. |
|
511 "_" and "'" are not changed. |
|
512 For making variants of identifiers. *) |
|
513 |
|
514 fun bump_int_list(c::cs) = if c="9" then "0" :: bump_int_list cs else |
|
515 if k0 <= ord(c) andalso ord(c) < k9 then chr(ord(c)+1) :: cs |
|
516 else "1" :: c :: cs |
|
517 | bump_int_list([]) = error("bump_int_list: not an identifier"); |
|
518 |
|
519 fun bump_list([],d) = [d] |
|
520 | bump_list(["'"],d) = [d,"'"] |
|
521 | bump_list("z"::cs,_) = "a" :: bump_list(cs,"a") |
|
522 | bump_list("Z"::cs,_) = "A" :: bump_list(cs,"A") |
|
523 | bump_list("9"::cs,_) = "0" :: bump_int_list cs |
|
524 | bump_list(c::cs,_) = let val k = ord(c) |
|
525 in if (a <= k andalso k < z) orelse (A <= k andalso k < Z) orelse |
|
526 (k0 <= k andalso k < k9) then chr(k+1) :: cs else |
|
527 if c="'" orelse c="_" then c :: bump_list(cs,"") else |
|
528 error("bump_list: not legal in identifier: " ^ |
|
529 implode(rev(c::cs))) |
|
530 end; |
|
531 |
|
532 end; |
|
533 |
|
534 fun bump_string s : string = implode (rev (bump_list(rev(explode s),""))); |
|
535 |
|
536 |
|
537 (*** Operations on integer lists ***) |
|
538 |
|
539 fun sum [] = 0 |
|
540 | sum (n::ns) = n + sum ns; |
|
541 |
|
542 fun max[m : int] = m |
|
543 | max(m::n::ns) = if m>n then max(m::ns) else max(n::ns) |
|
544 | max [] = raise LIST "max"; |
|
545 |
|
546 fun min[m : int] = m |
|
547 | min(m::n::ns) = if m<n then min(m::ns) else min(n::ns) |
|
548 | min [] = raise LIST "min"; |
|
549 |
|
550 |
|
551 (*** Lexical scanning ***) |
|
552 |
|
553 (* [x1,...,xi,...,xn] ---> ([x1,...,x(i-1)], [xi,..., xn]) |
|
554 where xi is the first element that does not satisfy the predicate*) |
|
555 fun take_prefix (pred : 'a -> bool) (xs: 'a list) : 'a list * 'a list = |
|
556 let fun take (rxs, []) = (rev rxs, []) |
|
557 | take (rxs, x::xs) = |
|
558 if pred x then take(x::rxs, xs) else (rev rxs, x::xs) |
|
559 in take([],xs) end; |
|
560 |
|
561 infix prefix; |
|
562 fun [] prefix _ = true |
|
563 | (x::xs) prefix (y::ys) = (x=y) andalso (xs prefix ys) |
|
564 | _ prefix _ = false; |
|
565 |
|
566 (* [x1, x2, ..., xn] ---> [x1, s, x2, s, ..., s, xn] *) |
|
567 fun separate s (x :: (xs as _ :: _)) = x :: s :: separate s xs |
|
568 | separate _ xs = xs; |
|
569 |
|
570 (*space_implode "..." (explode "hello"); gives "h...e...l...l...o" *) |
|
571 fun space_implode a bs = implode (separate a bs); |
|
572 |
|
573 fun quote s = "\"" ^ s ^ "\""; |
|
574 |
|
575 (*Concatenate messages, one per line, into a string*) |
|
576 val cat_lines = implode o (map (apr(op^,"\n"))); |
|
577 |
|
578 (*Scan a list of characters into "words" composed of "letters" (recognized |
|
579 by is_let) and separated by any number of non-"letters".*) |
|
580 fun scanwords is_let cs = |
|
581 let fun scan1 [] = [] |
|
582 | scan1 cs = |
|
583 let val (lets, rest) = take_prefix is_let cs |
|
584 in implode lets :: scanwords is_let rest end; |
|
585 in scan1 (#2 (take_prefix (not o is_let) cs)) end; |