|
1 (* Title: ZF/bool |
|
2 ID: $Id$ |
|
3 Author: Martin D Coen, Cambridge University Computer Laboratory |
|
4 Copyright 1992 University of Cambridge |
|
5 |
|
6 For ZF/bool.thy. Booleans in Zermelo-Fraenkel Set Theory |
|
7 *) |
|
8 |
|
9 open Bool; |
|
10 |
|
11 val bool_defs = [bool_def,one_def,cond_def]; |
|
12 |
|
13 (* Introduction rules *) |
|
14 |
|
15 goalw Bool.thy bool_defs "1 : bool"; |
|
16 by (rtac (consI1 RS consI2) 1); |
|
17 val bool_1I = result(); |
|
18 |
|
19 goalw Bool.thy bool_defs "0 : bool"; |
|
20 by (rtac consI1 1); |
|
21 val bool_0I = result(); |
|
22 |
|
23 goalw Bool.thy bool_defs "~ 1=0"; |
|
24 by (rtac succ_not_0 1); |
|
25 val one_not_0 = result(); |
|
26 |
|
27 (** 1=0 ==> R **) |
|
28 val one_neq_0 = one_not_0 RS notE; |
|
29 |
|
30 val prems = goalw Bool.thy bool_defs "[| c: bool; P(1); P(0) |] ==> P(c)"; |
|
31 by (cut_facts_tac prems 1); |
|
32 by (fast_tac ZF_cs 1); |
|
33 val boolE = result(); |
|
34 |
|
35 (** cond **) |
|
36 |
|
37 (*1 means true*) |
|
38 goalw Bool.thy bool_defs "cond(1,c,d) = c"; |
|
39 by (rtac (refl RS if_P) 1); |
|
40 val cond_1 = result(); |
|
41 |
|
42 (*0 means false*) |
|
43 goalw Bool.thy bool_defs "cond(0,c,d) = d"; |
|
44 by (rtac (succ_not_0 RS not_sym RS if_not_P) 1); |
|
45 val cond_0 = result(); |
|
46 |
|
47 val major::prems = goal Bool.thy |
|
48 "[| b: bool; c: A(1); d: A(0) |] ==> cond(b,c,d): A(b)"; |
|
49 by (rtac (major RS boolE) 1); |
|
50 by (rtac (cond_0 RS ssubst) 2); |
|
51 by (resolve_tac prems 2); |
|
52 by (rtac (cond_1 RS ssubst) 1); |
|
53 by (resolve_tac prems 1); |
|
54 val cond_type = result(); |
|
55 |
|
56 val [cond_cong] = mk_congs Bool.thy ["cond"]; |
|
57 val bool_congs = mk_congs Bool.thy ["cond","not","op and","op or","op xor"]; |
|
58 |
|
59 val [rew] = goal Bool.thy "[| !!b. j(b)==cond(b,c,d) |] ==> j(1) = c"; |
|
60 by (rewtac rew); |
|
61 by (rtac cond_1 1); |
|
62 val def_cond_1 = result(); |
|
63 |
|
64 val [rew] = goal Bool.thy "[| !!b. j(b)==cond(b,c,d) |] ==> j(0) = d"; |
|
65 by (rewtac rew); |
|
66 by (rtac cond_0 1); |
|
67 val def_cond_0 = result(); |
|
68 |
|
69 fun conds def = [standard (def RS def_cond_1), standard (def RS def_cond_0)]; |
|
70 |
|
71 val [not_1,not_0] = conds not_def; |
|
72 |
|
73 val [and_1,and_0] = conds and_def; |
|
74 |
|
75 val [or_1,or_0] = conds or_def; |
|
76 |
|
77 val [xor_1,xor_0] = conds xor_def; |
|
78 |
|
79 val not_type = prove_goalw Bool.thy [not_def] |
|
80 "a:bool ==> not(a) : bool" |
|
81 (fn prems=> [ (typechk_tac (prems@[bool_1I, bool_0I, cond_type])) ]); |
|
82 |
|
83 val and_type = prove_goalw Bool.thy [and_def] |
|
84 "[| a:bool; b:bool |] ==> a and b : bool" |
|
85 (fn prems=> [ (typechk_tac (prems@[bool_1I, bool_0I, cond_type])) ]); |
|
86 |
|
87 val or_type = prove_goalw Bool.thy [or_def] |
|
88 "[| a:bool; b:bool |] ==> a or b : bool" |
|
89 (fn prems=> [ (typechk_tac (prems@[bool_1I, bool_0I, cond_type])) ]); |
|
90 |
|
91 val xor_type = prove_goalw Bool.thy [xor_def] |
|
92 "[| a:bool; b:bool |] ==> a xor b : bool" |
|
93 (fn prems=> [ (typechk_tac(prems@[bool_1I, bool_0I, cond_type, not_type])) ]); |
|
94 |
|
95 val bool_typechecks = [bool_1I, bool_0I, cond_type, not_type, and_type, |
|
96 or_type, xor_type] |
|
97 |
|
98 val bool_rews = [cond_1,cond_0,not_1,not_0,and_1,and_0,or_1,or_0,xor_1,xor_0]; |
|
99 |