src/ZF/ZF.ML
changeset 0 a5a9c433f639
child 6 8ce8c4d13d4d
equal deleted inserted replaced
-1:000000000000 0:a5a9c433f639
       
     1 (*  Title: 	ZF/zf.ML
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
       
     4     Copyright   1992  University of Cambridge
       
     5 
       
     6 Basic introduction and elimination rules for Zermelo-Fraenkel Set Theory 
       
     7 *)
       
     8 
       
     9 open ZF;
       
    10 
       
    11 signature ZF_LEMMAS = 
       
    12   sig
       
    13   val ballE : thm
       
    14   val ballI : thm
       
    15   val ball_cong : thm
       
    16   val ball_rew : thm
       
    17   val ball_tac : int -> tactic
       
    18   val basic_ZF_congs : thm list
       
    19   val bexCI : thm
       
    20   val bexE : thm
       
    21   val bexI : thm
       
    22   val bex_cong : thm
       
    23   val bspec : thm
       
    24   val CollectD1 : thm
       
    25   val CollectD2 : thm
       
    26   val CollectE : thm
       
    27   val CollectI : thm
       
    28   val Collect_cong : thm
       
    29   val emptyE : thm
       
    30   val empty_subsetI : thm
       
    31   val equalityCE : thm
       
    32   val equalityD1 : thm
       
    33   val equalityD2 : thm
       
    34   val equalityE : thm
       
    35   val equalityI : thm
       
    36   val equality_iffI : thm
       
    37   val equals0D : thm
       
    38   val equals0I : thm
       
    39   val ex1_functional : thm
       
    40   val InterD : thm
       
    41   val InterE : thm
       
    42   val InterI : thm
       
    43   val INT_E : thm
       
    44   val INT_I : thm
       
    45   val lemmas_cs : claset
       
    46   val PowD : thm
       
    47   val PowI : thm
       
    48   val prove_cong_tac : thm list -> int -> tactic
       
    49   val RepFunE : thm
       
    50   val RepFunI : thm
       
    51   val RepFun_eqI : thm
       
    52   val RepFun_cong : thm
       
    53   val ReplaceE : thm
       
    54   val ReplaceI : thm
       
    55   val Replace_iff : thm
       
    56   val Replace_cong : thm
       
    57   val rev_ballE : thm
       
    58   val rev_bspec : thm
       
    59   val rev_subsetD : thm
       
    60   val separation : thm
       
    61   val setup_induction : thm
       
    62   val set_mp_tac : int -> tactic
       
    63   val subsetCE : thm
       
    64   val subsetD : thm
       
    65   val subsetI : thm
       
    66   val subset_refl : thm
       
    67   val subset_trans : thm
       
    68   val UnionE : thm
       
    69   val UnionI : thm
       
    70   val UN_E : thm
       
    71   val UN_I : thm
       
    72   end;
       
    73 
       
    74 
       
    75 structure ZF_Lemmas : ZF_LEMMAS = 
       
    76 struct
       
    77 
       
    78 val basic_ZF_congs = mk_congs ZF.thy 
       
    79     ["op `", "op ``", "op Int", "op Un", "op -", "op <=", "op :", 
       
    80      "Pow", "Union", "Inter", "fst", "snd", "succ", "Pair", "Upair", "cons",
       
    81      "domain", "range", "restrict"];
       
    82 
       
    83 fun prove_cong_tac prems i =
       
    84     REPEAT (ares_tac (prems@[refl]@FOL_congs@basic_ZF_congs) i);
       
    85 
       
    86 (*** Bounded universal quantifier ***)
       
    87 
       
    88 val ballI = prove_goalw ZF.thy [Ball_def]
       
    89     "[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)"
       
    90  (fn prems=> [ (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ]);
       
    91 
       
    92 val bspec = prove_goalw ZF.thy [Ball_def]
       
    93     "[| ALL x:A. P(x);  x: A |] ==> P(x)"
       
    94  (fn major::prems=>
       
    95   [ (rtac (major RS spec RS mp) 1),
       
    96     (resolve_tac prems 1) ]);
       
    97 
       
    98 val ballE = prove_goalw ZF.thy [Ball_def]
       
    99     "[| ALL x:A. P(x);  P(x) ==> Q;  ~ x:A ==> Q |] ==> Q"
       
   100  (fn major::prems=>
       
   101   [ (rtac (major RS allE) 1),
       
   102     (REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ]);
       
   103 
       
   104 (*Used in the datatype package*)
       
   105 val rev_bspec = prove_goal ZF.thy
       
   106     "!!x A P. [| x: A;  ALL x:A. P(x) |] ==> P(x)"
       
   107  (fn _ =>
       
   108   [ REPEAT (ares_tac [bspec] 1) ]);
       
   109 
       
   110 (*Instantiates x first: better for automatic theorem proving?*)
       
   111 val rev_ballE = prove_goal ZF.thy
       
   112     "[| ALL x:A. P(x);  ~ x:A ==> Q;  P(x) ==> Q |] ==> Q"
       
   113  (fn major::prems=>
       
   114   [ (rtac (major RS ballE) 1),
       
   115     (REPEAT (eresolve_tac prems 1)) ]);
       
   116 
       
   117 (*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*)
       
   118 val ball_tac = dtac bspec THEN' assume_tac;
       
   119 
       
   120 (*Trival rewrite rule;   (ALL x:A.P)<->P holds only if A is nonempty!*)
       
   121 val ball_rew = prove_goal ZF.thy "(ALL x:A. True) <-> True"
       
   122  (fn prems=> [ (REPEAT (ares_tac [TrueI,ballI,iffI] 1)) ]);
       
   123 
       
   124 (*Congruence rule for rewriting*)
       
   125 val ball_cong = prove_goalw ZF.thy [Ball_def]
       
   126     "[| A=A';  !!x. x:A' ==> P(x) <-> P'(x) \
       
   127 \    |] ==> (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))"
       
   128  (fn prems=> [ (prove_cong_tac prems 1) ]);
       
   129 
       
   130 (*** Bounded existential quantifier ***)
       
   131 
       
   132 val bexI = prove_goalw ZF.thy [Bex_def]
       
   133     "[| P(x);  x: A |] ==> EX x:A. P(x)"
       
   134  (fn prems=> [ (REPEAT (ares_tac (prems @ [exI,conjI]) 1)) ]);
       
   135 
       
   136 (*Not of the general form for such rules; ~EX has become ALL~ *)
       
   137 val bexCI = prove_goal ZF.thy 
       
   138    "[| ALL x:A. ~P(x) ==> P(a);  a: A |] ==> EX x:A.P(x)"
       
   139  (fn prems=>
       
   140   [ (rtac classical 1),
       
   141     (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]);
       
   142 
       
   143 val bexE = prove_goalw ZF.thy [Bex_def]
       
   144     "[| EX x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q \
       
   145 \    |] ==> Q"
       
   146  (fn major::prems=>
       
   147   [ (rtac (major RS exE) 1),
       
   148     (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)) ]);
       
   149 
       
   150 (*We do not even have (EX x:A. True) <-> True unless A is nonempty!!*)
       
   151 
       
   152 val bex_cong = prove_goalw ZF.thy [Bex_def]
       
   153     "[| A=A';  !!x. x:A' ==> P(x) <-> P'(x) \
       
   154 \    |] ==> (EX x:A. P(x)) <-> (EX x:A'. P'(x))"
       
   155  (fn prems=> [ (prove_cong_tac prems 1) ]);
       
   156 
       
   157 (*** Rules for subsets ***)
       
   158 
       
   159 val subsetI = prove_goalw ZF.thy [subset_def]
       
   160     "(!!x.x:A ==> x:B) ==> A <= B"
       
   161  (fn prems=> [ (REPEAT (ares_tac (prems @ [ballI]) 1)) ]);
       
   162 
       
   163 (*Rule in Modus Ponens style [was called subsetE] *)
       
   164 val subsetD = prove_goalw ZF.thy [subset_def] "[| A <= B;  c:A |] ==> c:B"
       
   165  (fn major::prems=>
       
   166   [ (rtac (major RS bspec) 1),
       
   167     (resolve_tac prems 1) ]);
       
   168 
       
   169 (*Classical elimination rule*)
       
   170 val subsetCE = prove_goalw ZF.thy [subset_def]
       
   171     "[| A <= B;  ~(c:A) ==> P;  c:B ==> P |] ==> P"
       
   172  (fn major::prems=>
       
   173   [ (rtac (major RS ballE) 1),
       
   174     (REPEAT (eresolve_tac prems 1)) ]);
       
   175 
       
   176 (*Takes assumptions A<=B; c:A and creates the assumption c:B *)
       
   177 val set_mp_tac = dtac subsetD THEN' assume_tac;
       
   178 
       
   179 (*Sometimes useful with premises in this order*)
       
   180 val rev_subsetD = prove_goal ZF.thy "!!A B c. [| c:A; A<=B |] ==> c:B"
       
   181  (fn _=> [REPEAT (ares_tac [subsetD] 1)]);
       
   182 
       
   183 val subset_refl = prove_goal ZF.thy "A <= A"
       
   184  (fn _=> [ (rtac subsetI 1), atac 1 ]);
       
   185 
       
   186 val subset_trans = prove_goal ZF.thy "[| A<=B;  B<=C |] ==> A<=C"
       
   187  (fn prems=> [ (REPEAT (ares_tac ([subsetI]@(prems RL [subsetD])) 1)) ]);
       
   188 
       
   189 
       
   190 (*** Rules for equality ***)
       
   191 
       
   192 (*Anti-symmetry of the subset relation*)
       
   193 val equalityI = prove_goal ZF.thy "[| A <= B;  B <= A |] ==> A = B"
       
   194  (fn prems=> [ (REPEAT (resolve_tac (prems@[conjI, extension RS iffD2]) 1)) ]);
       
   195 
       
   196 val equality_iffI = prove_goal ZF.thy "(!!x. x:A <-> x:B) ==> A = B"
       
   197  (fn [prem] =>
       
   198   [ (rtac equalityI 1),
       
   199     (REPEAT (ares_tac [subsetI, prem RS iffD1, prem RS iffD2] 1)) ]);
       
   200 
       
   201 val equalityD1 = prove_goal ZF.thy "A = B ==> A<=B"
       
   202  (fn prems=>
       
   203   [ (rtac (extension RS iffD1 RS conjunct1) 1),
       
   204     (resolve_tac prems 1) ]);
       
   205 
       
   206 val equalityD2 = prove_goal ZF.thy "A = B ==> B<=A"
       
   207  (fn prems=>
       
   208   [ (rtac (extension RS iffD1 RS conjunct2) 1),
       
   209     (resolve_tac prems 1) ]);
       
   210 
       
   211 val equalityE = prove_goal ZF.thy
       
   212     "[| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P"
       
   213  (fn prems=>
       
   214   [ (DEPTH_SOLVE (resolve_tac (prems@[equalityD1,equalityD2]) 1)) ]);
       
   215 
       
   216 val equalityCE = prove_goal ZF.thy
       
   217     "[| A = B;  [| c:A; c:B |] ==> P;  [| ~ c:A; ~ c:B |] ==> P |]  ==>  P"
       
   218  (fn major::prems=>
       
   219   [ (rtac (major RS equalityE) 1),
       
   220     (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)) ]);
       
   221 
       
   222 (*Lemma for creating induction formulae -- for "pattern matching" on p
       
   223   To make the induction hypotheses usable, apply "spec" or "bspec" to
       
   224   put universal quantifiers over the free variables in p. 
       
   225   Would it be better to do subgoal_tac "ALL z. p = f(z) --> R(z)" ??*)
       
   226 val setup_induction = prove_goal ZF.thy
       
   227     "[| p: A;  !!z. z: A ==> p=z --> R |] ==> R"
       
   228  (fn prems=>
       
   229   [ (rtac mp 1),
       
   230     (REPEAT (resolve_tac (refl::prems) 1)) ]);
       
   231 
       
   232 
       
   233 (*** Rules for Replace -- the derived form of replacement ***)
       
   234 
       
   235 val ex1_functional = prove_goal ZF.thy
       
   236     "[| EX! z. P(a,z);  P(a,b);  P(a,c) |] ==> b = c"
       
   237  (fn prems=>
       
   238   [ (cut_facts_tac prems 1),
       
   239     (best_tac FOL_dup_cs 1) ]);
       
   240 
       
   241 val Replace_iff = prove_goalw ZF.thy [Replace_def]
       
   242     "b : {y. x:A, P(x,y)}  <->  (EX x:A. P(x,b) & (ALL y. P(x,y) --> y=b))"
       
   243  (fn _=>
       
   244   [ (rtac (replacement RS iff_trans) 1),
       
   245     (REPEAT (ares_tac [refl,bex_cong,iffI,ballI,allI,conjI,impI,ex1I] 1
       
   246         ORELSE eresolve_tac [conjE, spec RS mp, ex1_functional] 1)) ]);
       
   247 
       
   248 (*Introduction; there must be a unique y such that P(x,y), namely y=b. *)
       
   249 val ReplaceI = prove_goal ZF.thy
       
   250     "[| x: A;  P(x,b);  !!y. P(x,y) ==> y=b |] ==> \
       
   251 \    b : {y. x:A, P(x,y)}"
       
   252  (fn prems=>
       
   253   [ (rtac (Replace_iff RS iffD2) 1),
       
   254     (REPEAT (ares_tac (prems@[bexI,conjI,allI,impI]) 1)) ]);
       
   255 
       
   256 (*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *)
       
   257 val ReplaceE = prove_goal ZF.thy 
       
   258     "[| b : {y. x:A, P(x,y)};  \
       
   259 \       !!x. [| x: A;  P(x,b);  ALL y. P(x,y)-->y=b |] ==> R \
       
   260 \    |] ==> R"
       
   261  (fn prems=>
       
   262   [ (rtac (Replace_iff RS iffD1 RS bexE) 1),
       
   263     (etac conjE 2),
       
   264     (REPEAT (ares_tac prems 1)) ]);
       
   265 
       
   266 val Replace_cong = prove_goal ZF.thy
       
   267     "[| A=B;  !!x y. x:B ==> P(x,y) <-> Q(x,y) |] ==> \
       
   268 \    {y. x:A, P(x,y)} = {y. x:B, Q(x,y)}"
       
   269  (fn prems=>
       
   270    let val substprems = prems RL [subst, ssubst]
       
   271        and iffprems = prems RL [iffD1,iffD2]
       
   272    in [ (rtac equalityI 1),
       
   273 	(REPEAT (eresolve_tac (substprems@[asm_rl, ReplaceE, spec RS mp]) 1
       
   274 	 ORELSE resolve_tac [subsetI, ReplaceI] 1
       
   275 	 ORELSE (resolve_tac iffprems 1 THEN assume_tac 2))) ]
       
   276    end);
       
   277 
       
   278 
       
   279 (*** Rules for RepFun ***)
       
   280 
       
   281 val RepFunI = prove_goalw ZF.thy [RepFun_def]
       
   282     "!!a A. a : A ==> f(a) : {f(x). x:A}"
       
   283  (fn _ => [ (REPEAT (ares_tac [ReplaceI,refl] 1)) ]);
       
   284 
       
   285 (*Useful for co-induction proofs*)
       
   286 val RepFun_eqI = prove_goal ZF.thy
       
   287     "!!b a f. [| b=f(a);  a : A |] ==> b : {f(x). x:A}"
       
   288  (fn _ => [ etac ssubst 1, etac RepFunI 1 ]);
       
   289 
       
   290 val RepFunE = prove_goalw ZF.thy [RepFun_def]
       
   291     "[| b : {f(x). x:A};  \
       
   292 \       !!x.[| x:A;  b=f(x) |] ==> P |] ==> \
       
   293 \    P"
       
   294  (fn major::prems=>
       
   295   [ (rtac (major RS ReplaceE) 1),
       
   296     (REPEAT (ares_tac prems 1)) ]);
       
   297 
       
   298 val RepFun_cong = prove_goalw ZF.thy [RepFun_def]
       
   299     "[| A=B;  !!x. x:B ==> f(x)=g(x) |] ==> \
       
   300 \    {f(x). x:A} = {g(x). x:B}"
       
   301  (fn prems=> [ (prove_cong_tac (prems@[Replace_cong]) 1) ]);
       
   302 
       
   303 
       
   304 (*** Rules for Collect -- forming a subset by separation ***)
       
   305 
       
   306 (*Separation is derivable from Replacement*)
       
   307 val separation = prove_goalw ZF.thy [Collect_def]
       
   308     "a : {x:A. P(x)} <-> a:A & P(a)"
       
   309  (fn _=> [ (fast_tac (FOL_cs addIs  [bexI,ReplaceI] 
       
   310 		             addSEs [bexE,ReplaceE]) 1) ]);
       
   311 
       
   312 val CollectI = prove_goal ZF.thy
       
   313     "[| a:A;  P(a) |] ==> a : {x:A. P(x)}"
       
   314  (fn prems=>
       
   315   [ (rtac (separation RS iffD2) 1),
       
   316     (REPEAT (resolve_tac (prems@[conjI]) 1)) ]);
       
   317 
       
   318 val CollectE = prove_goal ZF.thy
       
   319     "[| a : {x:A. P(x)};  [| a:A; P(a) |] ==> R |] ==> R"
       
   320  (fn prems=>
       
   321   [ (rtac (separation RS iffD1 RS conjE) 1),
       
   322     (REPEAT (ares_tac prems 1)) ]);
       
   323 
       
   324 val CollectD1 = prove_goal ZF.thy "a : {x:A. P(x)} ==> a:A"
       
   325  (fn [major]=>
       
   326   [ (rtac (major RS CollectE) 1),
       
   327     (assume_tac 1) ]);
       
   328 
       
   329 val CollectD2 = prove_goal ZF.thy "a : {x:A. P(x)} ==> P(a)"
       
   330  (fn [major]=>
       
   331   [ (rtac (major RS CollectE) 1),
       
   332     (assume_tac 1) ]);
       
   333 
       
   334 val Collect_cong = prove_goalw ZF.thy [Collect_def] 
       
   335     "[| A=B;  !!x. x:B ==> P(x) <-> Q(x) |] ==> \
       
   336 \    {x:A. P(x)} = {x:B. Q(x)}"
       
   337  (fn prems=> [ (prove_cong_tac (prems@[Replace_cong]) 1) ]);
       
   338 
       
   339 (*** Rules for Unions ***)
       
   340 
       
   341 (*The order of the premises presupposes that C is rigid; A may be flexible*)
       
   342 val UnionI = prove_goal ZF.thy "[| B: C;  A: B |] ==> A: Union(C)"
       
   343  (fn prems=>
       
   344   [ (resolve_tac [union_iff RS iffD2] 1),
       
   345     (REPEAT (resolve_tac (prems @ [bexI]) 1)) ]);
       
   346 
       
   347 val UnionE = prove_goal ZF.thy
       
   348     "[| A : Union(C);  !!B.[| A: B;  B: C |] ==> R |] ==> R"
       
   349  (fn prems=>
       
   350   [ (resolve_tac [union_iff RS iffD1 RS bexE] 1),
       
   351     (REPEAT (ares_tac prems 1)) ]);
       
   352 
       
   353 (*** Rules for Inter ***)
       
   354 
       
   355 (*Not obviously useful towards proving InterI, InterD, InterE*)
       
   356 val Inter_iff = prove_goalw ZF.thy [Inter_def,Ball_def]
       
   357     "A : Inter(C) <-> (ALL x:C. A: x) & (EX x. x:C)"
       
   358  (fn _=> [ (rtac (separation RS iff_trans) 1),
       
   359 	   (fast_tac (FOL_cs addIs [UnionI] addSEs [UnionE]) 1) ]);
       
   360 
       
   361 (* Intersection is well-behaved only if the family is non-empty! *)
       
   362 val InterI = prove_goalw ZF.thy [Inter_def]
       
   363     "[| !!x. x: C ==> A: x;  c:C |] ==> A : Inter(C)"
       
   364  (fn prems=>
       
   365   [ (DEPTH_SOLVE (ares_tac ([CollectI,UnionI,ballI] @ prems) 1)) ]);
       
   366 
       
   367 (*A "destruct" rule -- every B in C contains A as an element, but
       
   368   A:B can hold when B:C does not!  This rule is analogous to "spec". *)
       
   369 val InterD = prove_goalw ZF.thy [Inter_def]
       
   370     "[| A : Inter(C);  B : C |] ==> A : B"
       
   371  (fn [major,minor]=>
       
   372   [ (rtac (major RS CollectD2 RS bspec) 1),
       
   373     (rtac minor 1) ]);
       
   374 
       
   375 (*"Classical" elimination rule -- does not require exhibiting B:C *)
       
   376 val InterE = prove_goalw ZF.thy [Inter_def]
       
   377     "[| A : Inter(C);  A:B ==> R;  ~ B:C ==> R |] ==> R"
       
   378  (fn major::prems=>
       
   379   [ (rtac (major RS CollectD2 RS ballE) 1),
       
   380     (REPEAT (eresolve_tac prems 1)) ]);
       
   381 
       
   382 (*** Rules for Unions of families ***)
       
   383 (* UN x:A. B(x) abbreviates Union({B(x). x:A}) *)
       
   384 
       
   385 (*The order of the premises presupposes that A is rigid; b may be flexible*)
       
   386 val UN_I = prove_goal ZF.thy "[| a: A;  b: B(a) |] ==> b: (UN x:A. B(x))"
       
   387  (fn prems=>
       
   388   [ (REPEAT (resolve_tac (prems@[UnionI,RepFunI]) 1)) ]);
       
   389 
       
   390 val UN_E = prove_goal ZF.thy
       
   391     "[| b : (UN x:A. B(x));  !!x.[| x: A;  b: B(x) |] ==> R |] ==> R"
       
   392  (fn major::prems=>
       
   393   [ (rtac (major RS UnionE) 1),
       
   394     (REPEAT (eresolve_tac (prems@[asm_rl, RepFunE, subst]) 1)) ]);
       
   395 
       
   396 
       
   397 (*** Rules for Intersections of families ***)
       
   398 (* INT x:A. B(x) abbreviates Inter({B(x). x:A}) *)
       
   399 
       
   400 val INT_I = prove_goal ZF.thy
       
   401     "[| !!x. x: A ==> b: B(x);  a: A |] ==> b: (INT x:A. B(x))"
       
   402  (fn prems=>
       
   403   [ (REPEAT (ares_tac (prems@[InterI,RepFunI]) 1
       
   404      ORELSE eresolve_tac [RepFunE,ssubst] 1)) ]);
       
   405 
       
   406 val INT_E = prove_goal ZF.thy
       
   407     "[| b : (INT x:A. B(x));  a: A |] ==> b : B(a)"
       
   408  (fn [major,minor]=>
       
   409   [ (rtac (major RS InterD) 1),
       
   410     (rtac (minor RS RepFunI) 1) ]);
       
   411 
       
   412 
       
   413 (*** Rules for Powersets ***)
       
   414 
       
   415 val PowI = prove_goal ZF.thy "A <= B ==> A : Pow(B)"
       
   416  (fn [prem]=> [ (rtac (prem RS (power_set RS iffD2)) 1) ]);
       
   417 
       
   418 val PowD = prove_goal ZF.thy "A : Pow(B)  ==>  A<=B"
       
   419  (fn [major]=> [ (rtac (major RS (power_set RS iffD1)) 1) ]);
       
   420 
       
   421 
       
   422 (*** Rules for the empty set ***)
       
   423 
       
   424 (*The set {x:0.False} is empty; by foundation it equals 0 
       
   425   See Suppes, page 21.*)
       
   426 val emptyE = prove_goal ZF.thy "a:0 ==> P"
       
   427  (fn [major]=>
       
   428   [ (rtac (foundation RS disjE) 1),
       
   429     (etac (equalityD2 RS subsetD RS CollectD2 RS FalseE) 1),
       
   430     (rtac major 1),
       
   431     (etac bexE 1),
       
   432     (etac (CollectD2 RS FalseE) 1) ]);
       
   433 
       
   434 val empty_subsetI = prove_goal ZF.thy "0 <= A"
       
   435  (fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]);
       
   436 
       
   437 val equals0I = prove_goal ZF.thy "[| !!y. y:A ==> False |] ==> A=0"
       
   438  (fn prems=>
       
   439   [ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1 
       
   440       ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]);
       
   441 
       
   442 val equals0D = prove_goal ZF.thy "[| A=0;  a:A |] ==> P"
       
   443  (fn [major,minor]=>
       
   444   [ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]);
       
   445 
       
   446 val lemmas_cs = FOL_cs
       
   447   addSIs [ballI, InterI, CollectI, PowI, subsetI]
       
   448   addIs [bexI, UnionI, ReplaceI, RepFunI]
       
   449   addSEs [bexE, make_elim PowD, UnionE, ReplaceE, RepFunE,
       
   450 	  CollectE, emptyE]
       
   451   addEs [rev_ballE, InterD, make_elim InterD, subsetD, subsetCE];
       
   452 
       
   453 end;
       
   454 
       
   455 open ZF_Lemmas;