equal
deleted
inserted
replaced
455 lemma [presburger, algebra]: "m mod 2 = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger |
455 lemma [presburger, algebra]: "m mod 2 = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger |
456 lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger |
456 lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger |
457 lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger |
457 lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger |
458 lemma [presburger, algebra]: "m mod 2 = (1::int) \<longleftrightarrow> \<not> 2 dvd m " by presburger |
458 lemma [presburger, algebra]: "m mod 2 = (1::int) \<longleftrightarrow> \<not> 2 dvd m " by presburger |
459 |
459 |
460 |
|
461 lemma zdvd_period: |
|
462 fixes a d :: int |
|
463 assumes advdd: "a dvd d" |
|
464 shows "a dvd (x + t) \<longleftrightarrow> a dvd ((x + c * d) + t)" |
|
465 using advdd |
|
466 apply - |
|
467 apply (rule iffI) |
|
468 by algebra+ |
|
469 |
|
470 end |
460 end |