src/HOL/Induct/Acc.thy
changeset 9802 adda1dc18bb8
parent 9596 6d6bf351b2cc
child 9906 5c027cca6262
equal deleted inserted replaced
9801:5e7c4a45d8bb 9802:adda1dc18bb8
    12 header {* The accessible part of a relation *}
    12 header {* The accessible part of a relation *}
    13 
    13 
    14 theory Acc = Main:
    14 theory Acc = Main:
    15 
    15 
    16 consts
    16 consts
    17   acc  :: "('a * 'a)set => 'a set"  -- {* accessible part *}
    17   acc  :: "('a \<times> 'a) set => 'a set"  -- {* accessible part *}
    18 
    18 
    19 inductive "acc r"
    19 inductive "acc r"
    20   intros
    20   intros
    21     accI [rulify_prems]:
    21     accI [rulify_prems]:
    22       "ALL y. (y, x) : r --> y : acc r ==> x : acc r"
    22       "\<forall>y. (y, x) \<in> r --> y \<in> acc r ==> x \<in> acc r"
    23 
    23 
    24 syntax
    24 syntax
    25   termi :: "('a * 'a)set => 'a set"
    25   termi :: "('a \<times> 'a) set => 'a set"
    26 translations
    26 translations
    27   "termi r" == "acc(r^-1)"
    27   "termi r" == "acc (r^-1)"
       
    28 
       
    29 
       
    30 theorem acc_induct:
       
    31   "[| a \<in> acc r;
       
    32       !!x. [| x \<in> acc r;  \<forall>y. (y, x) \<in> r --> P y |] ==> P x
       
    33   |] ==> P a"
       
    34 proof -
       
    35   assume major: "a \<in> acc r"
       
    36   assume hyp: "!!x. [| x \<in> acc r;  \<forall>y. (y, x) \<in> r --> P y |] ==> P x"
       
    37   show ?thesis
       
    38     apply (rule major [THEN acc.induct])
       
    39     apply (rule hyp)
       
    40      apply (rule accI)
       
    41      apply fast
       
    42     apply fast
       
    43     done
       
    44 qed
       
    45 
       
    46 theorem acc_downward: "[| b \<in> acc r; (a, b) \<in> r |] ==> a \<in> acc r"
       
    47   apply (erule acc.elims)
       
    48   apply fast
       
    49   done
       
    50 
       
    51 lemma acc_downwards_aux: "(b, a) \<in> r^* ==> a \<in> acc r --> b \<in> acc r"
       
    52   apply (erule rtrancl_induct)
       
    53    apply blast
       
    54   apply (blast dest: acc_downward)
       
    55   done
       
    56 
       
    57 theorem acc_downwards: "[| a \<in> acc r; (b, a) \<in> r^* |] ==> b \<in> acc r"
       
    58   apply (blast dest: acc_downwards_aux)
       
    59   done
       
    60 
       
    61 theorem acc_wfI: "\<forall>x. x \<in> acc r ==> wf r"
       
    62   apply (rule wfUNIVI)
       
    63   apply (induct_tac P x rule: acc_induct)
       
    64    apply blast
       
    65   apply blast
       
    66   done
       
    67 
       
    68 theorem acc_wfD: "wf r ==> x \<in> acc r"
       
    69   apply (erule wf_induct)
       
    70   apply (rule accI)
       
    71   apply blast
       
    72   done
       
    73 
       
    74 theorem wf_acc_iff: "wf r = (\<forall>x. x \<in> acc r)"
       
    75   apply (blast intro: acc_wfI dest: acc_wfD)
       
    76   done
    28 
    77 
    29 end
    78 end