src/HOL/Library/Tree.thy
changeset 31459 ae39b7b2a68a
child 35158 63d0ed5a027c
equal deleted inserted replaced
31458:b1cf26f2919b 31459:ae39b7b2a68a
       
     1 (* Author: Florian Haftmann, TU Muenchen *)
       
     2 
       
     3 header {* Trees implementing mappings. *}
       
     4 
       
     5 theory Tree
       
     6 imports Mapping
       
     7 begin
       
     8 
       
     9 subsection {* Type definition and operations *}
       
    10 
       
    11 datatype ('a, 'b) tree = Empty
       
    12   | Branch 'b 'a "('a, 'b) tree" "('a, 'b) tree"
       
    13 
       
    14 primrec lookup :: "('a\<Colon>linorder, 'b) tree \<Rightarrow> 'a \<rightharpoonup> 'b" where
       
    15   "lookup Empty = (\<lambda>_. None)"
       
    16   | "lookup (Branch v k l r) = (\<lambda>k'. if k' = k then Some v
       
    17        else if k' \<le> k then lookup l k' else lookup r k')"
       
    18 
       
    19 primrec update :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) tree \<Rightarrow> ('a, 'b) tree" where
       
    20   "update k v Empty = Branch v k Empty Empty"
       
    21   | "update k' v' (Branch v k l r) = (if k' = k then
       
    22       Branch v' k l r else if k' \<le> k
       
    23       then Branch v k (update k' v' l) r
       
    24       else Branch v k l (update k' v' r))"
       
    25 
       
    26 primrec keys :: "('a\<Colon>linorder, 'b) tree \<Rightarrow> 'a list" where
       
    27   "keys Empty = []"
       
    28   | "keys (Branch _ k l r) = k # keys l @ keys r"
       
    29 
       
    30 definition size :: "('a\<Colon>linorder, 'b) tree \<Rightarrow> nat" where
       
    31   "size t = length (filter (\<lambda>x. x \<noteq> None) (map (lookup t) (remdups (keys t))))"
       
    32 
       
    33 fun bulkload :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) tree" where
       
    34   [simp del]: "bulkload ks f = (case ks of [] \<Rightarrow> Empty | _ \<Rightarrow> let
       
    35      mid = length ks div 2;
       
    36      ys = take mid ks;
       
    37      x = ks ! mid;
       
    38      zs = drop (Suc mid) ks
       
    39    in Branch (f x) x (bulkload ys f) (bulkload zs f))"
       
    40 
       
    41 
       
    42 subsection {* Properties *}
       
    43 
       
    44 lemma dom_lookup:
       
    45   "dom (Tree.lookup t) = set (filter (\<lambda>k. lookup t k \<noteq> None) (remdups (keys t)))"
       
    46 proof -
       
    47   have "dom (Tree.lookup t) = set (filter (\<lambda>k. lookup t k \<noteq> None) (keys t))"
       
    48   by (induct t) (auto simp add: dom_if)
       
    49   also have "\<dots> = set (filter (\<lambda>k. lookup t k \<noteq> None) (remdups (keys t)))"
       
    50     by simp
       
    51   finally show ?thesis .
       
    52 qed
       
    53 
       
    54 lemma lookup_finite:
       
    55   "finite (dom (lookup t))"
       
    56   unfolding dom_lookup by simp
       
    57 
       
    58 lemma lookup_update:
       
    59   "lookup (update k v t) = (lookup t)(k \<mapsto> v)"
       
    60   by (induct t) (simp_all add: expand_fun_eq)
       
    61 
       
    62 lemma lookup_bulkload:
       
    63   "sorted ks \<Longrightarrow> lookup (bulkload ks f) = (Some o f) |` set ks"
       
    64 proof (induct ks f rule: bulkload.induct)
       
    65   case (1 ks f) show ?case proof (cases ks)
       
    66     case Nil then show ?thesis by (simp add: bulkload.simps)
       
    67   next
       
    68     case (Cons w ws)
       
    69     then have case_simp: "\<And>w v::('a, 'b) tree. (case ks of [] \<Rightarrow> v | _ \<Rightarrow> w) = w"
       
    70       by (cases ks) auto
       
    71     from Cons have "ks \<noteq> []" by simp
       
    72     then have "0 < length ks" by simp
       
    73     let ?mid = "length ks div 2"
       
    74     let ?ys = "take ?mid ks"
       
    75     let ?x = "ks ! ?mid"
       
    76     let ?zs = "drop (Suc ?mid) ks"
       
    77     from `ks \<noteq> []` have ks_split: "ks = ?ys @ [?x] @ ?zs"
       
    78       by (simp add: id_take_nth_drop)
       
    79     then have in_ks: "\<And>x. x \<in> set ks \<longleftrightarrow> x \<in> set (?ys @ [?x] @ ?zs)"
       
    80       by simp
       
    81     with ks_split have ys_x: "\<And>y. y \<in> set ?ys \<Longrightarrow> y \<le> ?x"
       
    82       and x_zs: "\<And>z. z \<in> set ?zs \<Longrightarrow> ?x \<le> z"
       
    83     using `sorted ks` sorted_append [of "?ys" "[?x] @ ?zs"] sorted_append [of "[?x]" "?zs"]
       
    84       by simp_all
       
    85     have ys: "lookup (bulkload ?ys f) = (Some o f) |` set ?ys"
       
    86       by (rule "1.hyps"(1)) (auto intro: Cons sorted_take `sorted ks`)
       
    87     have zs: "lookup (bulkload ?zs f) = (Some o f) |` set ?zs"
       
    88       by (rule "1.hyps"(2)) (auto intro: Cons sorted_drop `sorted ks`)
       
    89     show ?thesis using `0 < length ks`
       
    90       by (simp add: bulkload.simps)
       
    91         (auto simp add: restrict_map_def in_ks case_simp Let_def ys zs expand_fun_eq
       
    92            dest: in_set_takeD in_set_dropD ys_x x_zs)
       
    93   qed
       
    94 qed
       
    95 
       
    96 
       
    97 subsection {* Trees as mappings *}
       
    98 
       
    99 definition Tree :: "('a\<Colon>linorder, 'b) tree \<Rightarrow> ('a, 'b) map" where
       
   100   "Tree t = Map (Tree.lookup t)"
       
   101 
       
   102 lemma [code, code del]:
       
   103   "(eq_class.eq :: (_, _) map \<Rightarrow> _) = eq_class.eq" ..
       
   104 
       
   105 lemma [code, code del]:
       
   106   "Mapping.delete k m = Mapping.delete k m" ..
       
   107 
       
   108 code_datatype Tree
       
   109 
       
   110 lemma empty_Tree [code]:
       
   111   "Mapping.empty = Tree Empty"
       
   112   by (simp add: Tree_def Mapping.empty_def)
       
   113 
       
   114 lemma lookup_Tree [code]:
       
   115   "Mapping.lookup (Tree t) = lookup t"
       
   116   by (simp add: Tree_def)
       
   117 
       
   118 lemma update_Tree [code]:
       
   119   "Mapping.update k v (Tree t) = Tree (update k v t)"
       
   120   by (simp add: Tree_def lookup_update)
       
   121 
       
   122 lemma keys_Tree [code]:
       
   123   "Mapping.keys (Tree t) = set (filter (\<lambda>k. lookup t k \<noteq> None) (remdups (keys t)))"
       
   124   by (simp add: Tree_def dom_lookup)
       
   125 
       
   126 lemma size_Tree [code]:
       
   127   "Mapping.size (Tree t) = size t"
       
   128 proof -
       
   129   have "card (dom (Tree.lookup t)) = length (filter (\<lambda>x. x \<noteq> None) (map (lookup t) (remdups (keys t))))"
       
   130     unfolding dom_lookup by (subst distinct_card) (auto simp add: comp_def)
       
   131   then show ?thesis by (auto simp add: Tree_def Mapping.size_def size_def)
       
   132 qed
       
   133 
       
   134 lemma tabulate_Tree [code]:
       
   135   "Mapping.tabulate ks f = Tree (bulkload (sort ks) f)"
       
   136 proof -
       
   137   have "Mapping.lookup (Mapping.tabulate ks f) = Mapping.lookup (Tree (bulkload (sort ks) f))"
       
   138     by (simp add: lookup_Tree lookup_bulkload lookup_tabulate)
       
   139   then show ?thesis by (simp add: lookup_inject)
       
   140 qed
       
   141 
       
   142 end