equal
deleted
inserted
replaced
2342 shows "(w = (x OR y)) \<Longrightarrow> (y = (w AND y))" by auto |
2342 shows "(w = (x OR y)) \<Longrightarrow> (y = (w AND y))" by auto |
2343 lemma leao: |
2343 lemma leao: |
2344 fixes x' :: "'a::len0 word" |
2344 fixes x' :: "'a::len0 word" |
2345 shows "(w' = (x' AND y')) \<Longrightarrow> (x' = (x' OR w'))" by auto |
2345 shows "(w' = (x' AND y')) \<Longrightarrow> (x' = (x' OR w'))" by auto |
2346 |
2346 |
2347 lemmas word_ao_equiv = leao [COMP leoa [COMP iffI]] |
2347 lemma word_ao_equiv: |
|
2348 fixes w w' :: "'a::len0 word" |
|
2349 shows "(w = w OR w') = (w' = w AND w')" |
|
2350 by (auto intro: leoa leao) |
2348 |
2351 |
2349 lemma le_word_or2: "x <= x OR (y::'a::len0 word)" |
2352 lemma le_word_or2: "x <= x OR (y::'a::len0 word)" |
2350 unfolding word_le_def uint_or |
2353 unfolding word_le_def uint_or |
2351 by (auto intro: le_int_or) |
2354 by (auto intro: le_int_or) |
2352 |
2355 |