src/HOL/Lambda/Standardization.thy
changeset 39157 b98909faaea8
parent 39156 b4f18ac786fa
child 39158 e6b96b4cde7e
equal deleted inserted replaced
39156:b4f18ac786fa 39157:b98909faaea8
     1 (*  Title:      HOL/Lambda/Standardization.thy
       
     2     Author:     Stefan Berghofer
       
     3     Copyright   2005 TU Muenchen
       
     4 *)
       
     5 
       
     6 header {* Standardization *}
       
     7 
       
     8 theory Standardization
       
     9 imports NormalForm
       
    10 begin
       
    11 
       
    12 text {*
       
    13 Based on lecture notes by Ralph Matthes \cite{Matthes-ESSLLI2000},
       
    14 original proof idea due to Ralph Loader \cite{Loader1998}.
       
    15 *}
       
    16 
       
    17 
       
    18 subsection {* Standard reduction relation *}
       
    19 
       
    20 declare listrel_mono [mono_set]
       
    21 
       
    22 inductive
       
    23   sred :: "dB \<Rightarrow> dB \<Rightarrow> bool"  (infixl "\<rightarrow>\<^sub>s" 50)
       
    24   and sredlist :: "dB list \<Rightarrow> dB list \<Rightarrow> bool"  (infixl "[\<rightarrow>\<^sub>s]" 50)
       
    25 where
       
    26   "s [\<rightarrow>\<^sub>s] t \<equiv> listrelp op \<rightarrow>\<^sub>s s t"
       
    27 | Var: "rs [\<rightarrow>\<^sub>s] rs' \<Longrightarrow> Var x \<degree>\<degree> rs \<rightarrow>\<^sub>s Var x \<degree>\<degree> rs'"
       
    28 | Abs: "r \<rightarrow>\<^sub>s r' \<Longrightarrow> ss [\<rightarrow>\<^sub>s] ss' \<Longrightarrow> Abs r \<degree>\<degree> ss \<rightarrow>\<^sub>s Abs r' \<degree>\<degree> ss'"
       
    29 | Beta: "r[s/0] \<degree>\<degree> ss \<rightarrow>\<^sub>s t \<Longrightarrow> Abs r \<degree> s \<degree>\<degree> ss \<rightarrow>\<^sub>s t"
       
    30 
       
    31 lemma refl_listrelp: "\<forall>x\<in>set xs. R x x \<Longrightarrow> listrelp R xs xs"
       
    32   by (induct xs) (auto intro: listrelp.intros)
       
    33 
       
    34 lemma refl_sred: "t \<rightarrow>\<^sub>s t"
       
    35   by (induct t rule: Apps_dB_induct) (auto intro: refl_listrelp sred.intros)
       
    36 
       
    37 lemma refl_sreds: "ts [\<rightarrow>\<^sub>s] ts"
       
    38   by (simp add: refl_sred refl_listrelp)
       
    39 
       
    40 lemma listrelp_conj1: "listrelp (\<lambda>x y. R x y \<and> S x y) x y \<Longrightarrow> listrelp R x y"
       
    41   by (erule listrelp.induct) (auto intro: listrelp.intros)
       
    42 
       
    43 lemma listrelp_conj2: "listrelp (\<lambda>x y. R x y \<and> S x y) x y \<Longrightarrow> listrelp S x y"
       
    44   by (erule listrelp.induct) (auto intro: listrelp.intros)
       
    45 
       
    46 lemma listrelp_app:
       
    47   assumes xsys: "listrelp R xs ys"
       
    48   shows "listrelp R xs' ys' \<Longrightarrow> listrelp R (xs @ xs') (ys @ ys')" using xsys
       
    49   by (induct arbitrary: xs' ys') (auto intro: listrelp.intros)
       
    50 
       
    51 lemma lemma1:
       
    52   assumes r: "r \<rightarrow>\<^sub>s r'" and s: "s \<rightarrow>\<^sub>s s'"
       
    53   shows "r \<degree> s \<rightarrow>\<^sub>s r' \<degree> s'" using r
       
    54 proof induct
       
    55   case (Var rs rs' x)
       
    56   then have "rs [\<rightarrow>\<^sub>s] rs'" by (rule listrelp_conj1)
       
    57   moreover have "[s] [\<rightarrow>\<^sub>s] [s']" by (iprover intro: s listrelp.intros)
       
    58   ultimately have "rs @ [s] [\<rightarrow>\<^sub>s] rs' @ [s']" by (rule listrelp_app)
       
    59   hence "Var x \<degree>\<degree> (rs @ [s]) \<rightarrow>\<^sub>s Var x \<degree>\<degree> (rs' @ [s'])" by (rule sred.Var)
       
    60   thus ?case by (simp only: app_last)
       
    61 next
       
    62   case (Abs r r' ss ss')
       
    63   from Abs(3) have "ss [\<rightarrow>\<^sub>s] ss'" by (rule listrelp_conj1)
       
    64   moreover have "[s] [\<rightarrow>\<^sub>s] [s']" by (iprover intro: s listrelp.intros)
       
    65   ultimately have "ss @ [s] [\<rightarrow>\<^sub>s] ss' @ [s']" by (rule listrelp_app)
       
    66   with `r \<rightarrow>\<^sub>s r'` have "Abs r \<degree>\<degree> (ss @ [s]) \<rightarrow>\<^sub>s Abs r' \<degree>\<degree> (ss' @ [s'])"
       
    67     by (rule sred.Abs)
       
    68   thus ?case by (simp only: app_last)
       
    69 next
       
    70   case (Beta r u ss t)
       
    71   hence "r[u/0] \<degree>\<degree> (ss @ [s]) \<rightarrow>\<^sub>s t \<degree> s'" by (simp only: app_last)
       
    72   hence "Abs r \<degree> u \<degree>\<degree> (ss @ [s]) \<rightarrow>\<^sub>s t \<degree> s'" by (rule sred.Beta)
       
    73   thus ?case by (simp only: app_last)
       
    74 qed
       
    75 
       
    76 lemma lemma1':
       
    77   assumes ts: "ts [\<rightarrow>\<^sub>s] ts'"
       
    78   shows "r \<rightarrow>\<^sub>s r' \<Longrightarrow> r \<degree>\<degree> ts \<rightarrow>\<^sub>s r' \<degree>\<degree> ts'" using ts
       
    79   by (induct arbitrary: r r') (auto intro: lemma1)
       
    80 
       
    81 lemma lemma2_1:
       
    82   assumes beta: "t \<rightarrow>\<^sub>\<beta> u"
       
    83   shows "t \<rightarrow>\<^sub>s u" using beta
       
    84 proof induct
       
    85   case (beta s t)
       
    86   have "Abs s \<degree> t \<degree>\<degree> [] \<rightarrow>\<^sub>s s[t/0] \<degree>\<degree> []" by (iprover intro: sred.Beta refl_sred)
       
    87   thus ?case by simp
       
    88 next
       
    89   case (appL s t u)
       
    90   thus ?case by (iprover intro: lemma1 refl_sred)
       
    91 next
       
    92   case (appR s t u)
       
    93   thus ?case by (iprover intro: lemma1 refl_sred)
       
    94 next
       
    95   case (abs s t)
       
    96   hence "Abs s \<degree>\<degree> [] \<rightarrow>\<^sub>s Abs t \<degree>\<degree> []" by (iprover intro: sred.Abs listrelp.Nil)
       
    97   thus ?case by simp
       
    98 qed
       
    99 
       
   100 lemma listrelp_betas:
       
   101   assumes ts: "listrelp op \<rightarrow>\<^sub>\<beta>\<^sup>* ts ts'"
       
   102   shows "\<And>t t'. t \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<Longrightarrow> t \<degree>\<degree> ts \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<degree>\<degree> ts'" using ts
       
   103   by induct auto
       
   104 
       
   105 lemma lemma2_2:
       
   106   assumes t: "t \<rightarrow>\<^sub>s u"
       
   107   shows "t \<rightarrow>\<^sub>\<beta>\<^sup>* u" using t
       
   108   by induct (auto dest: listrelp_conj2
       
   109     intro: listrelp_betas apps_preserves_beta converse_rtranclp_into_rtranclp)
       
   110 
       
   111 lemma sred_lift:
       
   112   assumes s: "s \<rightarrow>\<^sub>s t"
       
   113   shows "lift s i \<rightarrow>\<^sub>s lift t i" using s
       
   114 proof (induct arbitrary: i)
       
   115   case (Var rs rs' x)
       
   116   hence "map (\<lambda>t. lift t i) rs [\<rightarrow>\<^sub>s] map (\<lambda>t. lift t i) rs'"
       
   117     by induct (auto intro: listrelp.intros)
       
   118   thus ?case by (cases "x < i") (auto intro: sred.Var)
       
   119 next
       
   120   case (Abs r r' ss ss')
       
   121   from Abs(3) have "map (\<lambda>t. lift t i) ss [\<rightarrow>\<^sub>s] map (\<lambda>t. lift t i) ss'"
       
   122     by induct (auto intro: listrelp.intros)
       
   123   thus ?case by (auto intro: sred.Abs Abs)
       
   124 next
       
   125   case (Beta r s ss t)
       
   126   thus ?case by (auto intro: sred.Beta)
       
   127 qed
       
   128 
       
   129 lemma lemma3:
       
   130   assumes r: "r \<rightarrow>\<^sub>s r'"
       
   131   shows "s \<rightarrow>\<^sub>s s' \<Longrightarrow> r[s/x] \<rightarrow>\<^sub>s r'[s'/x]" using r
       
   132 proof (induct arbitrary: s s' x)
       
   133   case (Var rs rs' y)
       
   134   hence "map (\<lambda>t. t[s/x]) rs [\<rightarrow>\<^sub>s] map (\<lambda>t. t[s'/x]) rs'"
       
   135     by induct (auto intro: listrelp.intros Var)
       
   136   moreover have "Var y[s/x] \<rightarrow>\<^sub>s Var y[s'/x]"
       
   137   proof (cases "y < x")
       
   138     case True thus ?thesis by simp (rule refl_sred)
       
   139   next
       
   140     case False
       
   141     thus ?thesis
       
   142       by (cases "y = x") (auto simp add: Var intro: refl_sred)
       
   143   qed
       
   144   ultimately show ?case by simp (rule lemma1')
       
   145 next
       
   146   case (Abs r r' ss ss')
       
   147   from Abs(4) have "lift s 0 \<rightarrow>\<^sub>s lift s' 0" by (rule sred_lift)
       
   148   hence "r[lift s 0/Suc x] \<rightarrow>\<^sub>s r'[lift s' 0/Suc x]" by (fast intro: Abs.hyps)
       
   149   moreover from Abs(3) have "map (\<lambda>t. t[s/x]) ss [\<rightarrow>\<^sub>s] map (\<lambda>t. t[s'/x]) ss'"
       
   150     by induct (auto intro: listrelp.intros Abs)
       
   151   ultimately show ?case by simp (rule sred.Abs)
       
   152 next
       
   153   case (Beta r u ss t)
       
   154   thus ?case by (auto simp add: subst_subst intro: sred.Beta)
       
   155 qed
       
   156 
       
   157 lemma lemma4_aux:
       
   158   assumes rs: "listrelp (\<lambda>t u. t \<rightarrow>\<^sub>s u \<and> (\<forall>r. u \<rightarrow>\<^sub>\<beta> r \<longrightarrow> t \<rightarrow>\<^sub>s r)) rs rs'"
       
   159   shows "rs' => ss \<Longrightarrow> rs [\<rightarrow>\<^sub>s] ss" using rs
       
   160 proof (induct arbitrary: ss)
       
   161   case Nil
       
   162   thus ?case by cases (auto intro: listrelp.Nil)
       
   163 next
       
   164   case (Cons x y xs ys)
       
   165   note Cons' = Cons
       
   166   show ?case
       
   167   proof (cases ss)
       
   168     case Nil with Cons show ?thesis by simp
       
   169   next
       
   170     case (Cons y' ys')
       
   171     hence ss: "ss = y' # ys'" by simp
       
   172     from Cons Cons' have "y \<rightarrow>\<^sub>\<beta> y' \<and> ys' = ys \<or> y' = y \<and> ys => ys'" by simp
       
   173     hence "x # xs [\<rightarrow>\<^sub>s] y' # ys'"
       
   174     proof
       
   175       assume H: "y \<rightarrow>\<^sub>\<beta> y' \<and> ys' = ys"
       
   176       with Cons' have "x \<rightarrow>\<^sub>s y'" by blast
       
   177       moreover from Cons' have "xs [\<rightarrow>\<^sub>s] ys" by (iprover dest: listrelp_conj1)
       
   178       ultimately have "x # xs [\<rightarrow>\<^sub>s] y' # ys" by (rule listrelp.Cons)
       
   179       with H show ?thesis by simp
       
   180     next
       
   181       assume H: "y' = y \<and> ys => ys'"
       
   182       with Cons' have "x \<rightarrow>\<^sub>s y'" by blast
       
   183       moreover from H have "xs [\<rightarrow>\<^sub>s] ys'" by (blast intro: Cons')
       
   184       ultimately show ?thesis by (rule listrelp.Cons)
       
   185     qed
       
   186     with ss show ?thesis by simp
       
   187   qed
       
   188 qed
       
   189 
       
   190 lemma lemma4:
       
   191   assumes r: "r \<rightarrow>\<^sub>s r'"
       
   192   shows "r' \<rightarrow>\<^sub>\<beta> r'' \<Longrightarrow> r \<rightarrow>\<^sub>s r''" using r
       
   193 proof (induct arbitrary: r'')
       
   194   case (Var rs rs' x)
       
   195   then obtain ss where rs: "rs' => ss" and r'': "r'' = Var x \<degree>\<degree> ss"
       
   196     by (blast dest: head_Var_reduction)
       
   197   from Var(1) rs have "rs [\<rightarrow>\<^sub>s] ss" by (rule lemma4_aux)
       
   198   hence "Var x \<degree>\<degree> rs \<rightarrow>\<^sub>s Var x \<degree>\<degree> ss" by (rule sred.Var)
       
   199   with r'' show ?case by simp
       
   200 next
       
   201   case (Abs r r' ss ss')
       
   202   from `Abs r' \<degree>\<degree> ss' \<rightarrow>\<^sub>\<beta> r''` show ?case
       
   203   proof
       
   204     fix s
       
   205     assume r'': "r'' = s \<degree>\<degree> ss'"
       
   206     assume "Abs r' \<rightarrow>\<^sub>\<beta> s"
       
   207     then obtain r''' where s: "s = Abs r'''" and r''': "r' \<rightarrow>\<^sub>\<beta> r'''" by cases auto
       
   208     from r''' have "r \<rightarrow>\<^sub>s r'''" by (blast intro: Abs)
       
   209     moreover from Abs have "ss [\<rightarrow>\<^sub>s] ss'" by (iprover dest: listrelp_conj1)
       
   210     ultimately have "Abs r \<degree>\<degree> ss \<rightarrow>\<^sub>s Abs r''' \<degree>\<degree> ss'" by (rule sred.Abs)
       
   211     with r'' s show "Abs r \<degree>\<degree> ss \<rightarrow>\<^sub>s r''" by simp
       
   212   next
       
   213     fix rs'
       
   214     assume "ss' => rs'"
       
   215     with Abs(3) have "ss [\<rightarrow>\<^sub>s] rs'" by (rule lemma4_aux)
       
   216     with `r \<rightarrow>\<^sub>s r'` have "Abs r \<degree>\<degree> ss \<rightarrow>\<^sub>s Abs r' \<degree>\<degree> rs'" by (rule sred.Abs)
       
   217     moreover assume "r'' = Abs r' \<degree>\<degree> rs'"
       
   218     ultimately show "Abs r \<degree>\<degree> ss \<rightarrow>\<^sub>s r''" by simp
       
   219   next
       
   220     fix t u' us'
       
   221     assume "ss' = u' # us'"
       
   222     with Abs(3) obtain u us where
       
   223       ss: "ss = u # us" and u: "u \<rightarrow>\<^sub>s u'" and us: "us [\<rightarrow>\<^sub>s] us'"
       
   224       by cases (auto dest!: listrelp_conj1)
       
   225     have "r[u/0] \<rightarrow>\<^sub>s r'[u'/0]" using Abs(1) and u by (rule lemma3)
       
   226     with us have "r[u/0] \<degree>\<degree> us \<rightarrow>\<^sub>s r'[u'/0] \<degree>\<degree> us'" by (rule lemma1')
       
   227     hence "Abs r \<degree> u \<degree>\<degree> us \<rightarrow>\<^sub>s r'[u'/0] \<degree>\<degree> us'" by (rule sred.Beta)
       
   228     moreover assume "Abs r' = Abs t" and "r'' = t[u'/0] \<degree>\<degree> us'"
       
   229     ultimately show "Abs r \<degree>\<degree> ss \<rightarrow>\<^sub>s r''" using ss by simp
       
   230   qed
       
   231 next
       
   232   case (Beta r s ss t)
       
   233   show ?case
       
   234     by (rule sred.Beta) (rule Beta)+
       
   235 qed
       
   236 
       
   237 lemma rtrancl_beta_sred:
       
   238   assumes r: "r \<rightarrow>\<^sub>\<beta>\<^sup>* r'"
       
   239   shows "r \<rightarrow>\<^sub>s r'" using r
       
   240   by induct (iprover intro: refl_sred lemma4)+
       
   241 
       
   242 
       
   243 subsection {* Leftmost reduction and weakly normalizing terms *}
       
   244 
       
   245 inductive
       
   246   lred :: "dB \<Rightarrow> dB \<Rightarrow> bool"  (infixl "\<rightarrow>\<^sub>l" 50)
       
   247   and lredlist :: "dB list \<Rightarrow> dB list \<Rightarrow> bool"  (infixl "[\<rightarrow>\<^sub>l]" 50)
       
   248 where
       
   249   "s [\<rightarrow>\<^sub>l] t \<equiv> listrelp op \<rightarrow>\<^sub>l s t"
       
   250 | Var: "rs [\<rightarrow>\<^sub>l] rs' \<Longrightarrow> Var x \<degree>\<degree> rs \<rightarrow>\<^sub>l Var x \<degree>\<degree> rs'"
       
   251 | Abs: "r \<rightarrow>\<^sub>l r' \<Longrightarrow> Abs r \<rightarrow>\<^sub>l Abs r'"
       
   252 | Beta: "r[s/0] \<degree>\<degree> ss \<rightarrow>\<^sub>l t \<Longrightarrow> Abs r \<degree> s \<degree>\<degree> ss \<rightarrow>\<^sub>l t"
       
   253 
       
   254 lemma lred_imp_sred:
       
   255   assumes lred: "s \<rightarrow>\<^sub>l t"
       
   256   shows "s \<rightarrow>\<^sub>s t" using lred
       
   257 proof induct
       
   258   case (Var rs rs' x)
       
   259   then have "rs [\<rightarrow>\<^sub>s] rs'"
       
   260     by induct (iprover intro: listrelp.intros)+
       
   261   then show ?case by (rule sred.Var)
       
   262 next
       
   263   case (Abs r r')
       
   264   from `r \<rightarrow>\<^sub>s r'`
       
   265   have "Abs r \<degree>\<degree> [] \<rightarrow>\<^sub>s Abs r' \<degree>\<degree> []" using listrelp.Nil
       
   266     by (rule sred.Abs)
       
   267   then show ?case by simp
       
   268 next
       
   269   case (Beta r s ss t)
       
   270   from `r[s/0] \<degree>\<degree> ss \<rightarrow>\<^sub>s t`
       
   271   show ?case by (rule sred.Beta)
       
   272 qed
       
   273 
       
   274 inductive WN :: "dB => bool"
       
   275   where
       
   276     Var: "listsp WN rs \<Longrightarrow> WN (Var n \<degree>\<degree> rs)"
       
   277   | Lambda: "WN r \<Longrightarrow> WN (Abs r)"
       
   278   | Beta: "WN ((r[s/0]) \<degree>\<degree> ss) \<Longrightarrow> WN ((Abs r \<degree> s) \<degree>\<degree> ss)"
       
   279 
       
   280 lemma listrelp_imp_listsp1:
       
   281   assumes H: "listrelp (\<lambda>x y. P x) xs ys"
       
   282   shows "listsp P xs" using H
       
   283   by induct auto
       
   284 
       
   285 lemma listrelp_imp_listsp2:
       
   286   assumes H: "listrelp (\<lambda>x y. P y) xs ys"
       
   287   shows "listsp P ys" using H
       
   288   by induct auto
       
   289 
       
   290 lemma lemma5:
       
   291   assumes lred: "r \<rightarrow>\<^sub>l r'"
       
   292   shows "WN r" and "NF r'" using lred
       
   293   by induct
       
   294     (iprover dest: listrelp_conj1 listrelp_conj2
       
   295      listrelp_imp_listsp1 listrelp_imp_listsp2 intro: WN.intros
       
   296      NF.intros [simplified listall_listsp_eq])+
       
   297 
       
   298 lemma lemma6:
       
   299   assumes wn: "WN r"
       
   300   shows "\<exists>r'. r \<rightarrow>\<^sub>l r'" using wn
       
   301 proof induct
       
   302   case (Var rs n)
       
   303   then have "\<exists>rs'. rs [\<rightarrow>\<^sub>l] rs'"
       
   304     by induct (iprover intro: listrelp.intros)+
       
   305   then show ?case by (iprover intro: lred.Var)
       
   306 qed (iprover intro: lred.intros)+
       
   307 
       
   308 lemma lemma7:
       
   309   assumes r: "r \<rightarrow>\<^sub>s r'"
       
   310   shows "NF r' \<Longrightarrow> r \<rightarrow>\<^sub>l r'" using r
       
   311 proof induct
       
   312   case (Var rs rs' x)
       
   313   from `NF (Var x \<degree>\<degree> rs')` have "listall NF rs'"
       
   314     by cases simp_all
       
   315   with Var(1) have "rs [\<rightarrow>\<^sub>l] rs'"
       
   316   proof induct
       
   317     case Nil
       
   318     show ?case by (rule listrelp.Nil)
       
   319   next
       
   320     case (Cons x y xs ys)
       
   321     hence "x \<rightarrow>\<^sub>l y" and "xs [\<rightarrow>\<^sub>l] ys" by simp_all
       
   322     thus ?case by (rule listrelp.Cons)
       
   323   qed
       
   324   thus ?case by (rule lred.Var)
       
   325 next
       
   326   case (Abs r r' ss ss')
       
   327   from `NF (Abs r' \<degree>\<degree> ss')`
       
   328   have ss': "ss' = []" by (rule Abs_NF)
       
   329   from Abs(3) have ss: "ss = []" using ss'
       
   330     by cases simp_all
       
   331   from ss' Abs have "NF (Abs r')" by simp
       
   332   hence "NF r'" by cases simp_all
       
   333   with Abs have "r \<rightarrow>\<^sub>l r'" by simp
       
   334   hence "Abs r \<rightarrow>\<^sub>l Abs r'" by (rule lred.Abs)
       
   335   with ss ss' show ?case by simp
       
   336 next
       
   337   case (Beta r s ss t)
       
   338   hence "r[s/0] \<degree>\<degree> ss \<rightarrow>\<^sub>l t" by simp
       
   339   thus ?case by (rule lred.Beta)
       
   340 qed
       
   341 
       
   342 lemma WN_eq: "WN t = (\<exists>t'. t \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t')"
       
   343 proof
       
   344   assume "WN t"
       
   345   then have "\<exists>t'. t \<rightarrow>\<^sub>l t'" by (rule lemma6)
       
   346   then obtain t' where t': "t \<rightarrow>\<^sub>l t'" ..
       
   347   then have NF: "NF t'" by (rule lemma5)
       
   348   from t' have "t \<rightarrow>\<^sub>s t'" by (rule lred_imp_sred)
       
   349   then have "t \<rightarrow>\<^sub>\<beta>\<^sup>* t'" by (rule lemma2_2)
       
   350   with NF show "\<exists>t'. t \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t'" by iprover
       
   351 next
       
   352   assume "\<exists>t'. t \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t'"
       
   353   then obtain t' where t': "t \<rightarrow>\<^sub>\<beta>\<^sup>* t'" and NF: "NF t'"
       
   354     by iprover
       
   355   from t' have "t \<rightarrow>\<^sub>s t'" by (rule rtrancl_beta_sred)
       
   356   then have "t \<rightarrow>\<^sub>l t'" using NF by (rule lemma7)
       
   357   then show "WN t" by (rule lemma5)
       
   358 qed
       
   359 
       
   360 end