src/HOL/FixedPoint.thy
changeset 23878 bd651ecd4b8a
parent 23737 9194aecbf20e
child 24390 9b5073c79a0b
equal deleted inserted replaced
23877:307f75aaefca 23878:bd651ecd4b8a
     6 *)
     6 *)
     7 
     7 
     8 header {* Fixed Points and the Knaster-Tarski Theorem*}
     8 header {* Fixed Points and the Knaster-Tarski Theorem*}
     9 
     9 
    10 theory FixedPoint
    10 theory FixedPoint
    11 imports Fun
    11 imports Lattices
    12 begin
    12 begin
    13 
       
    14 subsection {* Complete lattices *}
       
    15 
       
    16 class complete_lattice = lattice +
       
    17   fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
       
    18   assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
       
    19   assumes Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
       
    20 begin
       
    21 
       
    22 definition
       
    23   Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
       
    24 where
       
    25   "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<^loc>\<le> b}"
       
    26 
       
    27 lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<^loc>\<le> a}"
       
    28   unfolding Sup_def by (auto intro: Inf_greatest Inf_lower)
       
    29 
       
    30 lemma Sup_upper: "x \<in> A \<Longrightarrow> x \<^loc>\<le> \<Squnion>A"
       
    31   by (auto simp: Sup_def intro: Inf_greatest)
       
    32 
       
    33 lemma Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<^loc>\<le> z) \<Longrightarrow> \<Squnion>A \<^loc>\<le> z"
       
    34   by (auto simp: Sup_def intro: Inf_lower)
       
    35 
       
    36 lemma Inf_Univ: "\<Sqinter>UNIV = \<Squnion>{}"
       
    37   unfolding Sup_def by auto
       
    38 
       
    39 lemma Sup_Univ: "\<Squnion>UNIV = \<Sqinter>{}"
       
    40   unfolding Inf_Sup by auto
       
    41 
       
    42 lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
       
    43   apply (rule antisym)
       
    44   apply (rule le_infI)
       
    45   apply (rule Inf_lower)
       
    46   apply simp
       
    47   apply (rule Inf_greatest)
       
    48   apply (rule Inf_lower)
       
    49   apply simp
       
    50   apply (rule Inf_greatest)
       
    51   apply (erule insertE)
       
    52   apply (rule le_infI1)
       
    53   apply simp
       
    54   apply (rule le_infI2)
       
    55   apply (erule Inf_lower)
       
    56   done
       
    57 
       
    58 lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
       
    59   apply (rule antisym)
       
    60   apply (rule Sup_least)
       
    61   apply (erule insertE)
       
    62   apply (rule le_supI1)
       
    63   apply simp
       
    64   apply (rule le_supI2)
       
    65   apply (erule Sup_upper)
       
    66   apply (rule le_supI)
       
    67   apply (rule Sup_upper)
       
    68   apply simp
       
    69   apply (rule Sup_least)
       
    70   apply (rule Sup_upper)
       
    71   apply simp
       
    72   done
       
    73 
       
    74 lemma Inf_singleton [simp]:
       
    75   "\<Sqinter>{a} = a"
       
    76   by (auto intro: antisym Inf_lower Inf_greatest)
       
    77 
       
    78 lemma Sup_singleton [simp]:
       
    79   "\<Squnion>{a} = a"
       
    80   by (auto intro: antisym Sup_upper Sup_least)
       
    81 
       
    82 lemma Inf_insert_simp:
       
    83   "\<Sqinter>insert a A = (if A = {} then a else a \<sqinter> \<Sqinter>A)"
       
    84   by (cases "A = {}") (simp_all, simp add: Inf_insert)
       
    85 
       
    86 lemma Sup_insert_simp:
       
    87   "\<Squnion>insert a A = (if A = {} then a else a \<squnion> \<Squnion>A)"
       
    88   by (cases "A = {}") (simp_all, simp add: Sup_insert)
       
    89 
       
    90 lemma Inf_binary:
       
    91   "\<Sqinter>{a, b} = a \<sqinter> b"
       
    92   by (simp add: Inf_insert_simp)
       
    93 
       
    94 lemma Sup_binary:
       
    95   "\<Squnion>{a, b} = a \<squnion> b"
       
    96   by (simp add: Sup_insert_simp)
       
    97 
       
    98 end
       
    99 
       
   100 lemmas Sup_def = Sup_def [folded complete_lattice_class.Sup]
       
   101 lemmas Sup_upper = Sup_upper [folded complete_lattice_class.Sup]
       
   102 lemmas Sup_least = Sup_least [folded complete_lattice_class.Sup]
       
   103 
       
   104 lemmas Sup_insert [code func] = Sup_insert [folded complete_lattice_class.Sup]
       
   105 lemmas Sup_singleton [simp, code func] = Sup_singleton [folded complete_lattice_class.Sup]
       
   106 lemmas Sup_insert_simp = Sup_insert_simp [folded complete_lattice_class.Sup]
       
   107 lemmas Sup_binary = Sup_binary [folded complete_lattice_class.Sup]
       
   108 
       
   109 (* FIXME: definition inside class does not work *)
       
   110 definition
       
   111   top :: "'a::complete_lattice"
       
   112 where
       
   113   "top = Inf {}"
       
   114 
       
   115 definition
       
   116   bot :: "'a::complete_lattice"
       
   117 where
       
   118   "bot = Sup {}"
       
   119 
       
   120 lemma top_greatest [simp]: "x \<le> top"
       
   121   by (unfold top_def, rule Inf_greatest, simp)
       
   122 
       
   123 lemma bot_least [simp]: "bot \<le> x"
       
   124   by (unfold bot_def, rule Sup_least, simp)
       
   125 
       
   126 definition
       
   127   SUPR :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b::complete_lattice) \<Rightarrow> 'b" where
       
   128   "SUPR A f == Sup (f ` A)"
       
   129 
       
   130 definition
       
   131   INFI :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b::complete_lattice) \<Rightarrow> 'b" where
       
   132   "INFI A f == Inf (f ` A)"
       
   133 
       
   134 syntax
       
   135   "_SUP1"     :: "pttrns => 'b => 'b"           ("(3SUP _./ _)" [0, 10] 10)
       
   136   "_SUP"      :: "pttrn => 'a set => 'b => 'b"  ("(3SUP _:_./ _)" [0, 10] 10)
       
   137   "_INF1"     :: "pttrns => 'b => 'b"           ("(3INF _./ _)" [0, 10] 10)
       
   138   "_INF"      :: "pttrn => 'a set => 'b => 'b"  ("(3INF _:_./ _)" [0, 10] 10)
       
   139 
       
   140 translations
       
   141   "SUP x y. B"   == "SUP x. SUP y. B"
       
   142   "SUP x. B"     == "CONST SUPR UNIV (%x. B)"
       
   143   "SUP x. B"     == "SUP x:UNIV. B"
       
   144   "SUP x:A. B"   == "CONST SUPR A (%x. B)"
       
   145   "INF x y. B"   == "INF x. INF y. B"
       
   146   "INF x. B"     == "CONST INFI UNIV (%x. B)"
       
   147   "INF x. B"     == "INF x:UNIV. B"
       
   148   "INF x:A. B"   == "CONST INFI A (%x. B)"
       
   149 
       
   150 (* To avoid eta-contraction of body: *)
       
   151 print_translation {*
       
   152 let
       
   153   fun btr' syn (A :: Abs abs :: ts) =
       
   154     let val (x,t) = atomic_abs_tr' abs
       
   155     in list_comb (Syntax.const syn $ x $ A $ t, ts) end
       
   156   val const_syntax_name = Sign.const_syntax_name @{theory} o fst o dest_Const
       
   157 in
       
   158 [(const_syntax_name @{term SUPR}, btr' "_SUP"),(const_syntax_name @{term "INFI"}, btr' "_INF")]
       
   159 end
       
   160 *}
       
   161 
       
   162 lemma le_SUPI: "i : A \<Longrightarrow> M i \<le> (SUP i:A. M i)"
       
   163   by (auto simp add: SUPR_def intro: Sup_upper)
       
   164 
       
   165 lemma SUP_leI: "(\<And>i. i : A \<Longrightarrow> M i \<le> u) \<Longrightarrow> (SUP i:A. M i) \<le> u"
       
   166   by (auto simp add: SUPR_def intro: Sup_least)
       
   167 
       
   168 lemma INF_leI: "i : A \<Longrightarrow> (INF i:A. M i) \<le> M i"
       
   169   by (auto simp add: INFI_def intro: Inf_lower)
       
   170 
       
   171 lemma le_INFI: "(\<And>i. i : A \<Longrightarrow> u \<le> M i) \<Longrightarrow> u \<le> (INF i:A. M i)"
       
   172   by (auto simp add: INFI_def intro: Inf_greatest)
       
   173 
       
   174 lemma mono_inf: "mono f \<Longrightarrow> f (inf A B) <= inf (f A) (f B)"
       
   175   by (auto simp add: mono_def)
       
   176 
       
   177 lemma mono_sup: "mono f \<Longrightarrow> sup (f A) (f B) <= f (sup A B)"
       
   178   by (auto simp add: mono_def)
       
   179 
       
   180 lemma SUP_const[simp]: "A \<noteq> {} \<Longrightarrow> (SUP i:A. M) = M"
       
   181   by (auto intro: order_antisym SUP_leI le_SUPI)
       
   182 
       
   183 lemma INF_const[simp]: "A \<noteq> {} \<Longrightarrow> (INF i:A. M) = M"
       
   184   by (auto intro: order_antisym INF_leI le_INFI)
       
   185 
       
   186 
       
   187 subsection {* Some instances of the type class of complete lattices *}
       
   188 
       
   189 subsubsection {* Booleans *}
       
   190 
       
   191 instance bool :: complete_lattice
       
   192   Inf_bool_def: "Inf A \<equiv> \<forall>x\<in>A. x"
       
   193   apply intro_classes
       
   194   apply (unfold Inf_bool_def)
       
   195   apply (iprover intro!: le_boolI elim: ballE)
       
   196   apply (iprover intro!: ballI le_boolI elim: ballE le_boolE)
       
   197   done
       
   198 
       
   199 theorem Sup_bool_eq: "Sup A \<longleftrightarrow> (\<exists>x\<in>A. x)"
       
   200   apply (rule order_antisym)
       
   201   apply (rule Sup_least)
       
   202   apply (rule le_boolI)
       
   203   apply (erule bexI, assumption)
       
   204   apply (rule le_boolI)
       
   205   apply (erule bexE)
       
   206   apply (rule le_boolE)
       
   207   apply (rule Sup_upper)
       
   208   apply assumption+
       
   209   done
       
   210 
       
   211 lemma Inf_empty_bool [simp]:
       
   212   "Inf {}"
       
   213   unfolding Inf_bool_def by auto
       
   214 
       
   215 lemma not_Sup_empty_bool [simp]:
       
   216   "\<not> Sup {}"
       
   217   unfolding Sup_def Inf_bool_def by auto
       
   218 
       
   219 lemma top_bool_eq: "top = True"
       
   220   by (iprover intro!: order_antisym le_boolI top_greatest)
       
   221 
       
   222 lemma bot_bool_eq: "bot = False"
       
   223   by (iprover intro!: order_antisym le_boolI bot_least)
       
   224 
       
   225 
       
   226 subsubsection {* Functions *}
       
   227 
       
   228 instance "fun" :: (type, complete_lattice) complete_lattice
       
   229   Inf_fun_def: "Inf A \<equiv> (\<lambda>x. Inf {y. \<exists>f\<in>A. y = f x})"
       
   230   apply intro_classes
       
   231   apply (unfold Inf_fun_def)
       
   232   apply (rule le_funI)
       
   233   apply (rule Inf_lower)
       
   234   apply (rule CollectI)
       
   235   apply (rule bexI)
       
   236   apply (rule refl)
       
   237   apply assumption
       
   238   apply (rule le_funI)
       
   239   apply (rule Inf_greatest)
       
   240   apply (erule CollectE)
       
   241   apply (erule bexE)
       
   242   apply (iprover elim: le_funE)
       
   243   done
       
   244 
       
   245 lemmas [code func del] = Inf_fun_def
       
   246 
       
   247 theorem Sup_fun_eq: "Sup A = (\<lambda>x. Sup {y. \<exists>f\<in>A. y = f x})"
       
   248   apply (rule order_antisym)
       
   249   apply (rule Sup_least)
       
   250   apply (rule le_funI)
       
   251   apply (rule Sup_upper)
       
   252   apply fast
       
   253   apply (rule le_funI)
       
   254   apply (rule Sup_least)
       
   255   apply (erule CollectE)
       
   256   apply (erule bexE)
       
   257   apply (drule le_funD [OF Sup_upper])
       
   258   apply simp
       
   259   done
       
   260 
       
   261 lemma Inf_empty_fun:
       
   262   "Inf {} = (\<lambda>_. Inf {})"
       
   263   by rule (auto simp add: Inf_fun_def)
       
   264 
       
   265 lemma Sup_empty_fun:
       
   266   "Sup {} = (\<lambda>_. Sup {})"
       
   267 proof -
       
   268   have aux: "\<And>x. {y. \<exists>f. y = f x} = UNIV" by auto
       
   269   show ?thesis
       
   270   by (auto simp add: Sup_def Inf_fun_def Inf_binary inf_bool_eq aux)
       
   271 qed
       
   272 
       
   273 lemma top_fun_eq: "top = (\<lambda>x. top)"
       
   274   by (iprover intro!: order_antisym le_funI top_greatest)
       
   275 
       
   276 lemma bot_fun_eq: "bot = (\<lambda>x. bot)"
       
   277   by (iprover intro!: order_antisym le_funI bot_least)
       
   278 
       
   279 
       
   280 subsubsection {* Sets *}
       
   281 
       
   282 instance set :: (type) complete_lattice
       
   283   Inf_set_def: "Inf S \<equiv> \<Inter>S"
       
   284   by intro_classes (auto simp add: Inf_set_def)
       
   285 
       
   286 lemmas [code func del] = Inf_set_def
       
   287 
       
   288 theorem Sup_set_eq: "Sup S = \<Union>S"
       
   289   apply (rule subset_antisym)
       
   290   apply (rule Sup_least)
       
   291   apply (erule Union_upper)
       
   292   apply (rule Union_least)
       
   293   apply (erule Sup_upper)
       
   294   done
       
   295 
       
   296 lemma top_set_eq: "top = UNIV"
       
   297   by (iprover intro!: subset_antisym subset_UNIV top_greatest)
       
   298 
       
   299 lemma bot_set_eq: "bot = {}"
       
   300   by (iprover intro!: subset_antisym empty_subsetI bot_least)
       
   301 
       
   302 
    13 
   303 subsection {* Least and greatest fixed points *}
    14 subsection {* Least and greatest fixed points *}
   304 
    15 
   305 definition
    16 definition
   306   lfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where
    17   lfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where