src/HOL/Library/Nat_Infinity.thy
changeset 11351 c5c403d30c77
child 11355 778c369559d9
equal deleted inserted replaced
11350:4c55b020d6ee 11351:c5c403d30c77
       
     1 (*  Title: 	HOL/Library/Nat_Infinity.thy
       
     2     ID:         $ $
       
     3     Author: 	David von Oheimb, TU Muenchen
       
     4     License:    GPL (GNU GENERAL PUBLIC LICENSE)
       
     5 
       
     6 *)
       
     7 
       
     8 header {*
       
     9   \title{Natural numbers with infinity}
       
    10   \author{David von Oheimb}
       
    11 *}
       
    12 
       
    13 theory Nat_Infinity = Datatype:
       
    14 
       
    15 subsection "Definitions"
       
    16 
       
    17 text {*
       
    18  We extend the standard natural numbers by a special value indicating infinity.
       
    19  This includes extending the ordering relations @{term "op <"} and 
       
    20  @{term "op <="}.
       
    21 *}
       
    22 
       
    23 datatype inat = Fin nat | Infty
       
    24 
       
    25 instance inat :: ord ..
       
    26 instance inat :: zero ..
       
    27 
       
    28 consts
       
    29 
       
    30   iSuc	:: "inat => inat"
       
    31 
       
    32 syntax (xsymbols)
       
    33 
       
    34   Infty		:: inat					("\<infinity>")
       
    35 
       
    36 defs
       
    37 
       
    38   iZero_def:	"0      == Fin 0"
       
    39   iSuc_def:	"iSuc i == case i of Fin n  => Fin (Suc n) | \<infinity> => \<infinity>"
       
    40   iless_def:	"m < n  == case m of Fin m1 => (case n of Fin n1 => m1 < n1 
       
    41 						             | \<infinity> => True)
       
    42 				   | \<infinity>  => False "
       
    43   ile_def:	"(m::inat) <= n == \<not>(n<m)"
       
    44 
       
    45 lemmas inat_defs = iZero_def iSuc_def iless_def ile_def
       
    46 lemmas inat_splits = inat.split inat.split_asm
       
    47 
       
    48 
       
    49 text {* Below is a not quite complete set of theorems. Use
       
    50 @{text "apply(simp add:inat_defs split:inat_splits, arith?)"}
       
    51 to prove new theorems or solve arithmetic subgoals involving @{typ inat} 
       
    52 on the fly.
       
    53 *}
       
    54 
       
    55 subsection "Constructors"
       
    56 
       
    57 lemma Fin_0: "Fin 0 = 0"
       
    58 by(simp add:inat_defs split:inat_splits, arith?)
       
    59 
       
    60 lemma Infty_ne_i0 [simp]: "\<infinity> \<noteq> 0"
       
    61 by(simp add:inat_defs split:inat_splits, arith?)
       
    62 
       
    63 lemma i0_ne_Infty [simp]: "0 \<noteq> \<infinity>"
       
    64 by(simp add:inat_defs split:inat_splits, arith?)
       
    65 
       
    66 lemma iSuc_Fin [simp]: "iSuc (Fin n) = Fin (Suc n)"
       
    67 by(simp add:inat_defs split:inat_splits, arith?)
       
    68 
       
    69 lemma iSuc_Infty [simp]: "iSuc \<infinity> = \<infinity>"
       
    70 by(simp add:inat_defs split:inat_splits, arith?)
       
    71 
       
    72 lemma iSuc_ne_0 [simp]: "iSuc n \<noteq> 0"
       
    73 by(simp add:inat_defs split:inat_splits, arith?)
       
    74 
       
    75 lemma iSuc_inject [simp]: "(iSuc x = iSuc y) = (x = y)"
       
    76 by(simp add:inat_defs split:inat_splits, arith?)
       
    77 
       
    78 
       
    79 subsection "Ordering relations"
       
    80 
       
    81 lemma Infty_ilessE [elim!]: "\<infinity> < Fin m ==> R"
       
    82 by(simp add:inat_defs split:inat_splits, arith?)
       
    83 
       
    84 lemma iless_linear: "m < n | m = n | n < (m::inat)"
       
    85 by(simp add:inat_defs split:inat_splits, arith?)
       
    86 
       
    87 lemma iless_not_refl [simp]: "\<not> n < (n::inat)"
       
    88 by(simp add:inat_defs split:inat_splits, arith?)
       
    89 
       
    90 lemma iless_trans: "i < j ==> j < k ==> i < (k::inat)"
       
    91 by(simp add:inat_defs split:inat_splits, arith?)
       
    92 
       
    93 lemma iless_not_sym: "n < m ==> \<not> m < (n::inat)"
       
    94 by(simp add:inat_defs split:inat_splits, arith?)
       
    95 
       
    96 lemma Fin_iless_mono [simp]: "(Fin n < Fin m) = (n < m)"
       
    97 by(simp add:inat_defs split:inat_splits, arith?)
       
    98 
       
    99 lemma Fin_iless_Infty [simp]: "Fin n < \<infinity>"
       
   100 by(simp add:inat_defs split:inat_splits, arith?)
       
   101 
       
   102 lemma Infty_eq [simp]: "n < \<infinity> = (n \<noteq> \<infinity>)"
       
   103 by(simp add:inat_defs split:inat_splits, arith?)
       
   104 
       
   105 lemma i0_eq [simp]: "((0::inat) < n) = (n \<noteq> 0)"
       
   106 by(simp add:inat_defs split:inat_splits, arith?)
       
   107 
       
   108 lemma i0_iless_iSuc [simp]: "0 < iSuc n"
       
   109 by(simp add:inat_defs split:inat_splits, arith?)
       
   110 
       
   111 lemma not_ilessi0 [simp]: "\<not> n < (0::inat)"
       
   112 by(simp add:inat_defs split:inat_splits, arith?)
       
   113 
       
   114 lemma Fin_iless: "n < Fin m ==> \<exists>k. n = Fin k"
       
   115 by(simp add:inat_defs split:inat_splits, arith?)
       
   116 
       
   117 lemma iSuc_mono [simp]: "iSuc n < iSuc m = (n < m)"
       
   118 by(simp add:inat_defs split:inat_splits, arith?)
       
   119 
       
   120 
       
   121 (* ----------------------------------------------------------------------- *)
       
   122 
       
   123 lemma ile_def2: "m <= n = (m < n | m = (n::inat))"
       
   124 by(simp add:inat_defs split:inat_splits, arith?)
       
   125 
       
   126 lemma ile_refl [simp]: "n <= (n::inat)"
       
   127 by(simp add:inat_defs split:inat_splits, arith?)
       
   128 
       
   129 lemma ile_trans: "i <= j ==> j <= k ==> i <= (k::inat)"
       
   130 by(simp add:inat_defs split:inat_splits, arith?)
       
   131 
       
   132 lemma ile_iless_trans: "i <= j ==> j < k ==> i < (k::inat)"
       
   133 by(simp add:inat_defs split:inat_splits, arith?)
       
   134 
       
   135 lemma iless_ile_trans: "i < j ==> j <= k ==> i < (k::inat)"
       
   136 by(simp add:inat_defs split:inat_splits, arith?)
       
   137 
       
   138 lemma Infty_ub [simp]: "n <= \<infinity>"
       
   139 by(simp add:inat_defs split:inat_splits, arith?)
       
   140 
       
   141 lemma i0_lb [simp]: "(0::inat) <= n"
       
   142 by(simp add:inat_defs split:inat_splits, arith?)
       
   143 
       
   144 lemma Infty_ileE [elim!]: "\<infinity> <= Fin m ==> R"
       
   145 by(simp add:inat_defs split:inat_splits, arith?)
       
   146 
       
   147 lemma Fin_ile_mono [simp]: "(Fin n <= Fin m) = (n <= m)"
       
   148 by(simp add:inat_defs split:inat_splits, arith?)
       
   149 
       
   150 lemma ilessI1: "n <= m ==> n \<noteq> m ==> n < (m::inat)"
       
   151 by(simp add:inat_defs split:inat_splits, arith?)
       
   152 
       
   153 lemma ileI1: "m < n ==> iSuc m <= n"
       
   154 by(simp add:inat_defs split:inat_splits, arith?)
       
   155 
       
   156 lemma Suc_ile_eq: "Fin (Suc m) <= n = (Fin m < n)"
       
   157 by(simp add:inat_defs split:inat_splits, arith?)
       
   158 
       
   159 lemma iSuc_ile_mono [simp]: "iSuc n <= iSuc m = (n <= m)"
       
   160 by(simp add:inat_defs split:inat_splits, arith?)
       
   161 
       
   162 lemma iless_Suc_eq [simp]: "Fin m < iSuc n = (Fin m <= n)"
       
   163 by(simp add:inat_defs split:inat_splits, arith?)
       
   164 
       
   165 lemma not_iSuc_ilei0 [simp]: "\<not> iSuc n <= 0"
       
   166 by(simp add:inat_defs split:inat_splits, arith?)
       
   167 
       
   168 lemma ile_iSuc [simp]: "n <= iSuc n"
       
   169 by(simp add:inat_defs split:inat_splits, arith?)
       
   170 
       
   171 lemma Fin_ile: "n <= Fin m ==> \<exists>k. n = Fin k"
       
   172 by(simp add:inat_defs split:inat_splits, arith?)
       
   173 
       
   174 lemma chain_incr: "\<forall>i. \<exists>j. Y i < Y j ==> \<exists>j. Fin k < Y j"
       
   175 apply (induct_tac "k")
       
   176 apply  (simp (no_asm) only: Fin_0)
       
   177 apply  (fast intro: ile_iless_trans i0_lb)
       
   178 apply (erule exE)
       
   179 apply (drule spec)
       
   180 apply (erule exE)
       
   181 apply (drule ileI1)
       
   182 apply (rule iSuc_Fin [THEN subst])
       
   183 apply (rule exI)
       
   184 apply (erule (1) ile_iless_trans)
       
   185 done
       
   186 
       
   187 ML {*
       
   188 val Fin_0 = thm "Fin_0";
       
   189 val Suc_ile_eq = thm "Suc_ile_eq";
       
   190 val iSuc_Fin = thm "iSuc_Fin";
       
   191 val iSuc_Infty = thm "iSuc_Infty";
       
   192 val iSuc_mono = thm "iSuc_mono";
       
   193 val iSuc_ile_mono = thm "iSuc_ile_mono";
       
   194 val not_iSuc_ilei0=thm "not_iSuc_ilei0";
       
   195 val iSuc_inject = thm "iSuc_inject";
       
   196 val i0_iless_iSuc = thm "i0_iless_iSuc";
       
   197 val i0_eq = thm "i0_eq";
       
   198 val i0_lb = thm "i0_lb";
       
   199 val ile_def = thm "ile_def";
       
   200 val ile_refl = thm "ile_refl";
       
   201 val Infty_ub = thm "Infty_ub";
       
   202 val ilessI1 = thm "ilessI1";
       
   203 val ile_iless_trans = thm "ile_iless_trans";
       
   204 val ile_trans = thm "ile_trans";
       
   205 val ileI1 = thm "ileI1";
       
   206 val ile_iSuc = thm "ile_iSuc";
       
   207 val Fin_iless_Infty = thm "Fin_iless_Infty";
       
   208 val Fin_ile_mono = thm "Fin_ile_mono";
       
   209 val chain_incr = thm "chain_incr";
       
   210 val Infty_eq = thm "Infty_eq";
       
   211 *}
       
   212 
       
   213 end
       
   214 
       
   215 
       
   216