doc-src/Ref/thm.tex
changeset 151 c5e636ca6576
parent 104 d8205bb279a7
child 286 e7efbf03562b
equal deleted inserted replaced
150:919a03a587eb 151:c5e636ca6576
    98   $i=n$, \ldots,~1.  This applies $thm@n$, \ldots, $thm@1$ to the first $n$
    98   $i=n$, \ldots,~1.  This applies $thm@n$, \ldots, $thm@1$ to the first $n$
    99   premises of $thm$.  Because the theorems are used from right to left, it
    99   premises of $thm$.  Because the theorems are used from right to left, it
   100   does not matter if the $thm@i$ create new premises.  {\tt MRS} is useful
   100   does not matter if the $thm@i$ create new premises.  {\tt MRS} is useful
   101   for expressing proof trees.
   101   for expressing proof trees.
   102 
   102 
   103 \item[\tt$thms1$ RLN $(i,thms2)$] \indexbold{*RLN} 
   103 \item[\tt$thms@1$ RLN $(i,thms@2)$] \indexbold{*RLN} 
   104 for every $thm@1$ in $thms1$ and $thm@2$ in $thms2$, it resolves the
   104 for every $thm@1$ in $thms@1$ and $thm@2$ in $thms@2$, it resolves the
   105 conclusion of $thm@1$ with the $i$th premise of~$thm@2$, accumulating the
   105 conclusion of $thm@1$ with the $i$th premise of~$thm@2$, accumulating the
   106 results.  It is useful for combining lists of theorems.
   106 results.  It is useful for combining lists of theorems.
   107 
   107 
   108 \item[\tt$thms1$ RL $thms2$] \indexbold{*RL} 
   108 \item[\tt$thms@1$ RL $thms@2$] \indexbold{*RL} 
   109 abbreviates \hbox{\tt$thms1$ RLN $(1,thms2)$}. 
   109 abbreviates \hbox{\tt$thms@1$ RLN $(1,thms@2)$}. 
   110 
   110 
   111 \item[\tt {$[thms@1,\ldots,thms@n]$} MRL $thms$] \indexbold{*MRL} 
   111 \item[\tt {$[thms@1,\ldots,thms@n]$} MRL $thms$] \indexbold{*MRL} 
   112 is analogous to {\tt MRS}, but combines theorem lists rather than theorems.
   112 is analogous to {\tt MRS}, but combines theorem lists rather than theorems.
   113 It too is useful for expressing proof trees.
   113 It too is useful for expressing proof trees.
   114 \end{description}
   114 \end{description}
   370 applies $({\Imp}E)$ to $thm@1$ and~$thm@2$.  It maps the premises $\phi\Imp
   370 applies $({\Imp}E)$ to $thm@1$ and~$thm@2$.  It maps the premises $\phi\Imp
   371 \psi$ and $\phi$ to the conclusion~$\psi$.
   371 \psi$ and $\phi$ to the conclusion~$\psi$.
   372 
   372 
   373 \item[\ttindexbold{implies_elim_list} $thm$ $thms$] 
   373 \item[\ttindexbold{implies_elim_list} $thm$ $thms$] 
   374 applies $({\Imp}E)$ repeatedly to $thm$, using each element of~$thms$ in
   374 applies $({\Imp}E)$ repeatedly to $thm$, using each element of~$thms$ in
   375 turn.  It maps the premises $[\phi@1,\ldots,\phi@n]\Imp\psi$ and
   375 turn.  It maps the premises $\List{\phi@1,\ldots,\phi@n}\Imp\psi$ and
   376 $\phi@1$,\ldots,$\phi@n$ to the conclusion~$\psi$.
   376 $\phi@1$,\ldots,$\phi@n$ to the conclusion~$\psi$.
   377 \end{description}
   377 \end{description}
   378 
   378 
   379 \subsubsection{Logical equivalence (equality)}
   379 \subsubsection{Logical equivalence (equality)}
   380 \index{meta-rules!logical equivalence|bold}
   380 \index{meta-rules!logical equivalence|bold}
   399 symmetric  : thm -> thm
   399 symmetric  : thm -> thm
   400 transitive : thm -> thm -> thm
   400 transitive : thm -> thm -> thm
   401 \end{ttbox}
   401 \end{ttbox}
   402 \begin{description}
   402 \begin{description}
   403 \item[\ttindexbold{reflexive} $ct$] 
   403 \item[\ttindexbold{reflexive} $ct$] 
   404 makes the theorem \(ct=ct\). 
   404 makes the theorem \(ct\equiv ct\). 
   405 
   405 
   406 \item[\ttindexbold{symmetric} $thm$] 
   406 \item[\ttindexbold{symmetric} $thm$] 
   407 maps the premise $a\equiv b$ to the conclusion $b\equiv a$.
   407 maps the premise $a\equiv b$ to the conclusion $b\equiv a$.
   408 
   408 
   409 \item[\ttindexbold{transitive} $thm@1$ $thm@2$] 
   409 \item[\ttindexbold{transitive} $thm@1$ $thm@2$] 
   585 calls \hbox{\tt compose ($thm@1$, 1, $thm@2$)} and returns the result, if
   585 calls \hbox{\tt compose ($thm@1$, 1, $thm@2$)} and returns the result, if
   586 unique; otherwise, it raises exception~\ttindex{THM}\@.  It is
   586 unique; otherwise, it raises exception~\ttindex{THM}\@.  It is
   587 analogous to {\tt RS}\@.  
   587 analogous to {\tt RS}\@.  
   588 
   588 
   589 For example, suppose that $thm@1$ is $a=b\Imp b=a$, a symmetry rule, and
   589 For example, suppose that $thm@1$ is $a=b\Imp b=a$, a symmetry rule, and
   590 that $thm@2$ is $\List{P\Imp Q; \neg Q} \Imp\neg A)$, which is the
   590 that $thm@2$ is $\List{P\Imp Q; \neg Q} \Imp\neg P)$, which is the
   591 principle of contrapositives.  Then the result would be the
   591 principle of contrapositives.  Then the result would be the
   592 derived rule $\neg(b=a)\Imp\neg(a=b)$.
   592 derived rule $\neg(b=a)\Imp\neg(a=b)$.
   593 
   593 
   594 \item[\ttindexbold{bicompose} $match$ ($flag$, $rule$, $m$) $i$ $state$]
   594 \item[\ttindexbold{bicompose} $match$ ($flag$, $rule$, $m$) $i$ $state$]
   595 refines subgoal~$i$ of $state$ using $rule$, without lifting.  The $rule$
   595 refines subgoal~$i$ of $state$ using $rule$, without lifting.  The $rule$