src/ZF/InfDatatype.thy
changeset 46820 c656222c4dc1
parent 32960 69916a850301
child 47071 2884ee1ffbf0
equal deleted inserted replaced
46819:9b38f8527510 46820:c656222c4dc1
     5 
     5 
     6 header{*Infinite-Branching Datatype Definitions*}
     6 header{*Infinite-Branching Datatype Definitions*}
     7 
     7 
     8 theory InfDatatype imports Datatype_ZF Univ Finite Cardinal_AC begin
     8 theory InfDatatype imports Datatype_ZF Univ Finite Cardinal_AC begin
     9 
     9 
    10 lemmas fun_Limit_VfromE = 
    10 lemmas fun_Limit_VfromE =
    11     Limit_VfromE [OF apply_funtype InfCard_csucc [THEN InfCard_is_Limit]]
    11     Limit_VfromE [OF apply_funtype InfCard_csucc [THEN InfCard_is_Limit]]
    12 
    12 
    13 lemma fun_Vcsucc_lemma:
    13 lemma fun_Vcsucc_lemma:
    14      "[| f: D -> Vfrom(A,csucc(K));  |D| le K;  InfCard(K) |]   
    14      "[| f: D -> Vfrom(A,csucc(K));  |D| \<le> K;  InfCard(K) |]
    15       ==> EX j. f: D -> Vfrom(A,j) & j < csucc(K)"
    15       ==> \<exists>j. f: D -> Vfrom(A,j) & j < csucc(K)"
    16 apply (rule_tac x = "\<Union>d\<in>D. LEAST i. f`d : Vfrom (A,i) " in exI)
    16 apply (rule_tac x = "\<Union>d\<in>D. LEAST i. f`d \<in> Vfrom (A,i) " in exI)
    17 apply (rule conjI)
    17 apply (rule conjI)
    18 apply (rule_tac [2] le_UN_Ord_lt_csucc) 
    18 apply (rule_tac [2] le_UN_Ord_lt_csucc)
    19 apply (rule_tac [4] ballI, erule_tac [4] fun_Limit_VfromE, simp_all) 
    19 apply (rule_tac [4] ballI, erule_tac [4] fun_Limit_VfromE, simp_all)
    20  prefer 2 apply (fast elim: Least_le [THEN lt_trans1] ltE)
    20  prefer 2 apply (fast elim: Least_le [THEN lt_trans1] ltE)
    21 apply (rule Pi_type)
    21 apply (rule Pi_type)
    22 apply (rename_tac [2] d)
    22 apply (rename_tac [2] d)
    23 apply (erule_tac [2] fun_Limit_VfromE, simp_all)
    23 apply (erule_tac [2] fun_Limit_VfromE, simp_all)
    24 apply (subgoal_tac "f`d : Vfrom (A, LEAST i. f`d : Vfrom (A,i))")
    24 apply (subgoal_tac "f`d \<in> Vfrom (A, LEAST i. f`d \<in> Vfrom (A,i))")
    25  apply (erule Vfrom_mono [OF subset_refl UN_upper, THEN subsetD])
    25  apply (erule Vfrom_mono [OF subset_refl UN_upper, THEN subsetD])
    26  apply assumption
    26  apply assumption
    27 apply (fast elim: LeastI ltE)
    27 apply (fast elim: LeastI ltE)
    28 done
    28 done
    29 
    29 
    30 lemma subset_Vcsucc:
    30 lemma subset_Vcsucc:
    31      "[| D <= Vfrom(A,csucc(K));  |D| le K;  InfCard(K) |]     
    31      "[| D \<subseteq> Vfrom(A,csucc(K));  |D| \<le> K;  InfCard(K) |]
    32       ==> EX j. D <= Vfrom(A,j) & j < csucc(K)"
    32       ==> \<exists>j. D \<subseteq> Vfrom(A,j) & j < csucc(K)"
    33 by (simp add: subset_iff_id fun_Vcsucc_lemma)
    33 by (simp add: subset_iff_id fun_Vcsucc_lemma)
    34 
    34 
    35 (*Version for arbitrary index sets*)
    35 (*Version for arbitrary index sets*)
    36 lemma fun_Vcsucc:
    36 lemma fun_Vcsucc:
    37      "[| |D| le K;  InfCard(K);  D <= Vfrom(A,csucc(K)) |] ==>  
    37      "[| |D| \<le> K;  InfCard(K);  D \<subseteq> Vfrom(A,csucc(K)) |] ==>
    38           D -> Vfrom(A,csucc(K)) <= Vfrom(A,csucc(K))"
    38           D -> Vfrom(A,csucc(K)) \<subseteq> Vfrom(A,csucc(K))"
    39 apply (safe dest!: fun_Vcsucc_lemma subset_Vcsucc)
    39 apply (safe dest!: fun_Vcsucc_lemma subset_Vcsucc)
    40 apply (rule Vfrom [THEN ssubst])
    40 apply (rule Vfrom [THEN ssubst])
    41 apply (drule fun_is_rel)
    41 apply (drule fun_is_rel)
    42 (*This level includes the function, and is below csucc(K)*)
    42 (*This level includes the function, and is below csucc(K)*)
    43 apply (rule_tac a1 = "succ (succ (j Un ja))" in UN_I [THEN UnI2])
    43 apply (rule_tac a1 = "succ (succ (j \<union> ja))" in UN_I [THEN UnI2])
    44 apply (blast intro: ltD InfCard_csucc InfCard_is_Limit Limit_has_succ
    44 apply (blast intro: ltD InfCard_csucc InfCard_is_Limit Limit_has_succ
    45                     Un_least_lt) 
    45                     Un_least_lt)
    46 apply (erule subset_trans [THEN PowI])
    46 apply (erule subset_trans [THEN PowI])
    47 apply (fast intro: Pair_in_Vfrom Vfrom_UnI1 Vfrom_UnI2)
    47 apply (fast intro: Pair_in_Vfrom Vfrom_UnI1 Vfrom_UnI2)
    48 done
    48 done
    49 
    49 
    50 lemma fun_in_Vcsucc:
    50 lemma fun_in_Vcsucc:
    51      "[| f: D -> Vfrom(A, csucc(K));  |D| le K;  InfCard(K);         
    51      "[| f: D -> Vfrom(A, csucc(K));  |D| \<le> K;  InfCard(K);
    52          D <= Vfrom(A,csucc(K)) |]                                   
    52          D \<subseteq> Vfrom(A,csucc(K)) |]
    53        ==> f: Vfrom(A,csucc(K))"
    53        ==> f: Vfrom(A,csucc(K))"
    54 by (blast intro: fun_Vcsucc [THEN subsetD])
    54 by (blast intro: fun_Vcsucc [THEN subsetD])
    55 
    55 
    56 (*Remove <= from the rule above*)
    56 text{*Remove @{text "\<subseteq>"} from the rule above*}
    57 lemmas fun_in_Vcsucc' = fun_in_Vcsucc [OF _ _ _ subsetI]
    57 lemmas fun_in_Vcsucc' = fun_in_Vcsucc [OF _ _ _ subsetI]
    58 
    58 
    59 (** Version where K itself is the index set **)
    59 (** Version where K itself is the index set **)
    60 
    60 
    61 lemma Card_fun_Vcsucc:
    61 lemma Card_fun_Vcsucc:
    62      "InfCard(K) ==> K -> Vfrom(A,csucc(K)) <= Vfrom(A,csucc(K))"
    62      "InfCard(K) ==> K -> Vfrom(A,csucc(K)) \<subseteq> Vfrom(A,csucc(K))"
    63 apply (frule InfCard_is_Card [THEN Card_is_Ord])
    63 apply (frule InfCard_is_Card [THEN Card_is_Ord])
    64 apply (blast del: subsetI
    64 apply (blast del: subsetI
    65              intro: fun_Vcsucc Ord_cardinal_le i_subset_Vfrom 
    65              intro: fun_Vcsucc Ord_cardinal_le i_subset_Vfrom
    66                    lt_csucc [THEN leI, THEN le_imp_subset, THEN subset_trans]) 
    66                    lt_csucc [THEN leI, THEN le_imp_subset, THEN subset_trans])
    67 done
    67 done
    68 
    68 
    69 lemma Card_fun_in_Vcsucc:
    69 lemma Card_fun_in_Vcsucc:
    70      "[| f: K -> Vfrom(A, csucc(K));  InfCard(K) |] ==> f: Vfrom(A,csucc(K))"
    70      "[| f: K -> Vfrom(A, csucc(K));  InfCard(K) |] ==> f: Vfrom(A,csucc(K))"
    71 by (blast intro: Card_fun_Vcsucc [THEN subsetD]) 
    71 by (blast intro: Card_fun_Vcsucc [THEN subsetD])
    72 
    72 
    73 lemma Limit_csucc: "InfCard(K) ==> Limit(csucc(K))"
    73 lemma Limit_csucc: "InfCard(K) ==> Limit(csucc(K))"
    74 by (erule InfCard_csucc [THEN InfCard_is_Limit])
    74 by (erule InfCard_csucc [THEN InfCard_is_Limit])
    75 
    75 
    76 lemmas Pair_in_Vcsucc = Pair_in_VLimit [OF _ _ Limit_csucc]
    76 lemmas Pair_in_Vcsucc = Pair_in_VLimit [OF _ _ Limit_csucc]
    77 lemmas Inl_in_Vcsucc = Inl_in_VLimit [OF _ Limit_csucc]
    77 lemmas Inl_in_Vcsucc = Inl_in_VLimit [OF _ Limit_csucc]
    78 lemmas Inr_in_Vcsucc = Inr_in_VLimit [OF _ Limit_csucc]
    78 lemmas Inr_in_Vcsucc = Inr_in_VLimit [OF _ Limit_csucc]
    79 lemmas zero_in_Vcsucc = Limit_csucc [THEN zero_in_VLimit]
    79 lemmas zero_in_Vcsucc = Limit_csucc [THEN zero_in_VLimit]
    80 lemmas nat_into_Vcsucc = nat_into_VLimit [OF _ Limit_csucc]
    80 lemmas nat_into_Vcsucc = nat_into_VLimit [OF _ Limit_csucc]
    81 
    81 
    82 (*For handling Cardinals of the form  (nat Un |X|) *)
    82 (*For handling Cardinals of the form  @{term"nat \<union> |X|"} *)
    83 
    83 
    84 lemmas InfCard_nat_Un_cardinal = InfCard_Un [OF InfCard_nat Card_cardinal]
    84 lemmas InfCard_nat_Un_cardinal = InfCard_Un [OF InfCard_nat Card_cardinal]
    85 
    85 
    86 lemmas le_nat_Un_cardinal =
    86 lemmas le_nat_Un_cardinal =
    87      Un_upper2_le [OF Ord_nat Card_cardinal [THEN Card_is_Ord]]
    87      Un_upper2_le [OF Ord_nat Card_cardinal [THEN Card_is_Ord]]
    89 lemmas UN_upper_cardinal = UN_upper [THEN subset_imp_lepoll, THEN lepoll_imp_Card_le]
    89 lemmas UN_upper_cardinal = UN_upper [THEN subset_imp_lepoll, THEN lepoll_imp_Card_le]
    90 
    90 
    91 (*The new version of Data_Arg.intrs, declared in Datatype.ML*)
    91 (*The new version of Data_Arg.intrs, declared in Datatype.ML*)
    92 lemmas Data_Arg_intros =
    92 lemmas Data_Arg_intros =
    93        SigmaI InlI InrI
    93        SigmaI InlI InrI
    94        Pair_in_univ Inl_in_univ Inr_in_univ 
    94        Pair_in_univ Inl_in_univ Inr_in_univ
    95        zero_in_univ A_into_univ nat_into_univ UnCI
    95        zero_in_univ A_into_univ nat_into_univ UnCI
    96 
    96 
    97 (*For most K-branching datatypes with domain Vfrom(A, csucc(K)) *)
    97 (*For most K-branching datatypes with domain Vfrom(A, csucc(K)) *)
    98 lemmas inf_datatype_intros =
    98 lemmas inf_datatype_intros =
    99      InfCard_nat InfCard_nat_Un_cardinal
    99      InfCard_nat InfCard_nat_Un_cardinal
   100      Pair_in_Vcsucc Inl_in_Vcsucc Inr_in_Vcsucc 
   100      Pair_in_Vcsucc Inl_in_Vcsucc Inr_in_Vcsucc
   101      zero_in_Vcsucc A_into_Vfrom nat_into_Vcsucc
   101      zero_in_Vcsucc A_into_Vfrom nat_into_Vcsucc
   102      Card_fun_in_Vcsucc fun_in_Vcsucc' UN_I 
   102      Card_fun_in_Vcsucc fun_in_Vcsucc' UN_I
   103 
   103 
   104 end
   104 end
   105 
   105