src/HOL/Word/Misc_Typedef.thy
changeset 72515 c7038c397ae3
parent 72514 d8661799afb2
child 72516 17dc99589a91
child 72528 c435a4750636
equal deleted inserted replaced
72514:d8661799afb2 72515:c7038c397ae3
     1 (*
       
     2   Author:     Jeremy Dawson and Gerwin Klein, NICTA
       
     3 
       
     4   Consequences of type definition theorems, and of extended type definition.
       
     5 *)
       
     6 
       
     7 section \<open>Type Definition Theorems\<close>
       
     8 
       
     9 theory Misc_Typedef
       
    10   imports Main Word Bit_Comprehension Bits_Int
       
    11 begin
       
    12 
       
    13 subsection "More lemmas about normal type definitions"
       
    14 
       
    15 lemma tdD1: "type_definition Rep Abs A \<Longrightarrow> \<forall>x. Rep x \<in> A"
       
    16   and tdD2: "type_definition Rep Abs A \<Longrightarrow> \<forall>x. Abs (Rep x) = x"
       
    17   and tdD3: "type_definition Rep Abs A \<Longrightarrow> \<forall>y. y \<in> A \<longrightarrow> Rep (Abs y) = y"
       
    18   by (auto simp: type_definition_def)
       
    19 
       
    20 lemma td_nat_int: "type_definition int nat (Collect ((\<le>) 0))"
       
    21   unfolding type_definition_def by auto
       
    22 
       
    23 context type_definition
       
    24 begin
       
    25 
       
    26 declare Rep [iff] Rep_inverse [simp] Rep_inject [simp]
       
    27 
       
    28 lemma Abs_eqD: "Abs x = Abs y \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x = y"
       
    29   by (simp add: Abs_inject)
       
    30 
       
    31 lemma Abs_inverse': "r \<in> A \<Longrightarrow> Abs r = a \<Longrightarrow> Rep a = r"
       
    32   by (safe elim!: Abs_inverse)
       
    33 
       
    34 lemma Rep_comp_inverse: "Rep \<circ> f = g \<Longrightarrow> Abs \<circ> g = f"
       
    35   using Rep_inverse by auto
       
    36 
       
    37 lemma Rep_eqD [elim!]: "Rep x = Rep y \<Longrightarrow> x = y"
       
    38   by simp
       
    39 
       
    40 lemma Rep_inverse': "Rep a = r \<Longrightarrow> Abs r = a"
       
    41   by (safe intro!: Rep_inverse)
       
    42 
       
    43 lemma comp_Abs_inverse: "f \<circ> Abs = g \<Longrightarrow> g \<circ> Rep = f"
       
    44   using Rep_inverse by auto
       
    45 
       
    46 lemma set_Rep: "A = range Rep"
       
    47 proof (rule set_eqI)
       
    48   show "x \<in> A \<longleftrightarrow> x \<in> range Rep" for x
       
    49     by (auto dest: Abs_inverse [of x, symmetric])
       
    50 qed
       
    51 
       
    52 lemma set_Rep_Abs: "A = range (Rep \<circ> Abs)"
       
    53 proof (rule set_eqI)
       
    54   show "x \<in> A \<longleftrightarrow> x \<in> range (Rep \<circ> Abs)" for x
       
    55     by (auto dest: Abs_inverse [of x, symmetric])
       
    56 qed
       
    57 
       
    58 lemma Abs_inj_on: "inj_on Abs A"
       
    59   unfolding inj_on_def
       
    60   by (auto dest: Abs_inject [THEN iffD1])
       
    61 
       
    62 lemma image: "Abs ` A = UNIV"
       
    63   by (fact Abs_image)
       
    64 
       
    65 lemmas td_thm = type_definition_axioms
       
    66 
       
    67 lemma fns1: "Rep \<circ> fa = fr \<circ> Rep \<or> fa \<circ> Abs = Abs \<circ> fr \<Longrightarrow> Abs \<circ> fr \<circ> Rep = fa"
       
    68   by (auto dest: Rep_comp_inverse elim: comp_Abs_inverse simp: o_assoc)
       
    69 
       
    70 lemmas fns1a = disjI1 [THEN fns1]
       
    71 lemmas fns1b = disjI2 [THEN fns1]
       
    72 
       
    73 lemma fns4: "Rep \<circ> fa \<circ> Abs = fr \<Longrightarrow> Rep \<circ> fa = fr \<circ> Rep \<and> fa \<circ> Abs = Abs \<circ> fr"
       
    74   by auto
       
    75 
       
    76 end
       
    77 
       
    78 interpretation nat_int: type_definition int nat "Collect ((\<le>) 0)"
       
    79   by (rule td_nat_int)
       
    80 
       
    81 declare
       
    82   nat_int.Rep_cases [cases del]
       
    83   nat_int.Abs_cases [cases del]
       
    84   nat_int.Rep_induct [induct del]
       
    85   nat_int.Abs_induct [induct del]
       
    86 
       
    87 
       
    88 subsection "Extended form of type definition predicate"
       
    89 
       
    90 lemma td_conds:
       
    91   "norm \<circ> norm = norm \<Longrightarrow>
       
    92     fr \<circ> norm = norm \<circ> fr \<longleftrightarrow> norm \<circ> fr \<circ> norm = fr \<circ> norm \<and> norm \<circ> fr \<circ> norm = norm \<circ> fr"
       
    93   apply safe
       
    94     apply (simp_all add: comp_assoc)
       
    95    apply (simp_all add: o_assoc)
       
    96   done
       
    97 
       
    98 lemma fn_comm_power: "fa \<circ> tr = tr \<circ> fr \<Longrightarrow> fa ^^ n \<circ> tr = tr \<circ> fr ^^ n"
       
    99   apply (rule ext)
       
   100   apply (induct n)
       
   101    apply (auto dest: fun_cong)
       
   102   done
       
   103 
       
   104 lemmas fn_comm_power' =
       
   105   ext [THEN fn_comm_power, THEN fun_cong, unfolded o_def]
       
   106 
       
   107 
       
   108 locale td_ext = type_definition +
       
   109   fixes norm
       
   110   assumes eq_norm: "\<And>x. Rep (Abs x) = norm x"
       
   111 begin
       
   112 
       
   113 lemma Abs_norm [simp]: "Abs (norm x) = Abs x"
       
   114   using eq_norm [of x] by (auto elim: Rep_inverse')
       
   115 
       
   116 lemma td_th: "g \<circ> Abs = f \<Longrightarrow> f (Rep x) = g x"
       
   117   by (drule comp_Abs_inverse [symmetric]) simp
       
   118 
       
   119 lemma eq_norm': "Rep \<circ> Abs = norm"
       
   120   by (auto simp: eq_norm)
       
   121 
       
   122 lemma norm_Rep [simp]: "norm (Rep x) = Rep x"
       
   123   by (auto simp: eq_norm' intro: td_th)
       
   124 
       
   125 lemmas td = td_thm
       
   126 
       
   127 lemma set_iff_norm: "w \<in> A \<longleftrightarrow> w = norm w"
       
   128   by (auto simp: set_Rep_Abs eq_norm' eq_norm [symmetric])
       
   129 
       
   130 lemma inverse_norm: "Abs n = w \<longleftrightarrow> Rep w = norm n"
       
   131   apply (rule iffI)
       
   132    apply (clarsimp simp add: eq_norm)
       
   133   apply (simp add: eq_norm' [symmetric])
       
   134   done
       
   135 
       
   136 lemma norm_eq_iff: "norm x = norm y \<longleftrightarrow> Abs x = Abs y"
       
   137   by (simp add: eq_norm' [symmetric])
       
   138 
       
   139 lemma norm_comps:
       
   140   "Abs \<circ> norm = Abs"
       
   141   "norm \<circ> Rep = Rep"
       
   142   "norm \<circ> norm = norm"
       
   143   by (auto simp: eq_norm' [symmetric] o_def)
       
   144 
       
   145 lemmas norm_norm [simp] = norm_comps
       
   146 
       
   147 lemma fns5: "Rep \<circ> fa \<circ> Abs = fr \<Longrightarrow> fr \<circ> norm = fr \<and> norm \<circ> fr = fr"
       
   148   by (fold eq_norm') auto
       
   149 
       
   150 text \<open>
       
   151   following give conditions for converses to \<open>td_fns1\<close>
       
   152   \<^item> the condition \<open>norm \<circ> fr \<circ> norm = fr \<circ> norm\<close> says that
       
   153     \<open>fr\<close> takes normalised arguments to normalised results
       
   154   \<^item> \<open>norm \<circ> fr \<circ> norm = norm \<circ> fr\<close> says that \<open>fr\<close>
       
   155     takes norm-equivalent arguments to norm-equivalent results
       
   156   \<^item> \<open>fr \<circ> norm = fr\<close> says that \<open>fr\<close>
       
   157     takes norm-equivalent arguments to the same result
       
   158   \<^item> \<open>norm \<circ> fr = fr\<close> says that \<open>fr\<close> takes any argument to a normalised result
       
   159 \<close>
       
   160 lemma fns2: "Abs \<circ> fr \<circ> Rep = fa \<Longrightarrow> norm \<circ> fr \<circ> norm = fr \<circ> norm \<longleftrightarrow> Rep \<circ> fa = fr \<circ> Rep"
       
   161   apply (fold eq_norm')
       
   162   apply safe
       
   163    prefer 2
       
   164    apply (simp add: o_assoc)
       
   165   apply (rule ext)
       
   166   apply (drule_tac x="Rep x" in fun_cong)
       
   167   apply auto
       
   168   done
       
   169 
       
   170 lemma fns3: "Abs \<circ> fr \<circ> Rep = fa \<Longrightarrow> norm \<circ> fr \<circ> norm = norm \<circ> fr \<longleftrightarrow> fa \<circ> Abs = Abs \<circ> fr"
       
   171   apply (fold eq_norm')
       
   172   apply safe
       
   173    prefer 2
       
   174    apply (simp add: comp_assoc)
       
   175   apply (rule ext)
       
   176   apply (drule_tac f="a \<circ> b" for a b in fun_cong)
       
   177   apply simp
       
   178   done
       
   179 
       
   180 lemma fns: "fr \<circ> norm = norm \<circ> fr \<Longrightarrow> fa \<circ> Abs = Abs \<circ> fr \<longleftrightarrow> Rep \<circ> fa = fr \<circ> Rep"
       
   181   apply safe
       
   182    apply (frule fns1b)
       
   183    prefer 2
       
   184    apply (frule fns1a)
       
   185    apply (rule fns3 [THEN iffD1])
       
   186      prefer 3
       
   187      apply (rule fns2 [THEN iffD1])
       
   188        apply (simp_all add: comp_assoc)
       
   189    apply (simp_all add: o_assoc)
       
   190   done
       
   191 
       
   192 lemma range_norm: "range (Rep \<circ> Abs) = A"
       
   193   by (simp add: set_Rep_Abs)
       
   194 
       
   195 end
       
   196 
       
   197 lemmas td_ext_def' =
       
   198   td_ext_def [unfolded type_definition_def td_ext_axioms_def]
       
   199 
       
   200 
       
   201 subsection \<open>Type-definition locale instantiations\<close>
       
   202 
       
   203 definition uints :: "nat \<Rightarrow> int set"
       
   204   \<comment> \<open>the sets of integers representing the words\<close>
       
   205   where "uints n = range (take_bit n)"
       
   206 
       
   207 definition sints :: "nat \<Rightarrow> int set"
       
   208   where "sints n = range (signed_take_bit (n - 1))"
       
   209 
       
   210 lemma uints_num: "uints n = {i. 0 \<le> i \<and> i < 2 ^ n}"
       
   211   by (simp add: uints_def range_bintrunc)
       
   212 
       
   213 lemma sints_num: "sints n = {i. - (2 ^ (n - 1)) \<le> i \<and> i < 2 ^ (n - 1)}"
       
   214   by (simp add: sints_def range_sbintrunc)
       
   215 
       
   216 definition unats :: "nat \<Rightarrow> nat set"
       
   217   where "unats n = {i. i < 2 ^ n}"
       
   218 
       
   219 \<comment> \<open>naturals\<close>
       
   220 lemma uints_unats: "uints n = int ` unats n"
       
   221   apply (unfold unats_def uints_num)
       
   222   apply safe
       
   223     apply (rule_tac image_eqI)
       
   224      apply (erule_tac nat_0_le [symmetric])
       
   225   by auto
       
   226 
       
   227 lemma unats_uints: "unats n = nat ` uints n"
       
   228   by (auto simp: uints_unats image_iff)
       
   229 
       
   230 lemma td_ext_uint:
       
   231   "td_ext (uint :: 'a word \<Rightarrow> int) word_of_int (uints (LENGTH('a::len)))
       
   232     (\<lambda>w::int. w mod 2 ^ LENGTH('a))"
       
   233   apply (unfold td_ext_def')
       
   234   apply transfer
       
   235   apply (simp add: uints_num take_bit_eq_mod)
       
   236   done
       
   237 
       
   238 interpretation word_uint:
       
   239   td_ext
       
   240     "uint::'a::len word \<Rightarrow> int"
       
   241     word_of_int
       
   242     "uints (LENGTH('a::len))"
       
   243     "\<lambda>w. w mod 2 ^ LENGTH('a::len)"
       
   244   by (fact td_ext_uint)
       
   245 
       
   246 lemmas td_uint = word_uint.td_thm
       
   247 lemmas int_word_uint = word_uint.eq_norm
       
   248 
       
   249 lemma td_ext_ubin:
       
   250   "td_ext (uint :: 'a word \<Rightarrow> int) word_of_int (uints (LENGTH('a::len)))
       
   251     (take_bit (LENGTH('a)))"
       
   252   apply standard
       
   253   apply transfer
       
   254   apply simp
       
   255   done
       
   256 
       
   257 interpretation word_ubin:
       
   258   td_ext
       
   259     "uint::'a::len word \<Rightarrow> int"
       
   260     word_of_int
       
   261     "uints (LENGTH('a::len))"
       
   262     "take_bit (LENGTH('a::len))"
       
   263   by (fact td_ext_ubin)
       
   264 
       
   265 lemma td_ext_unat [OF refl]:
       
   266   "n = LENGTH('a::len) \<Longrightarrow>
       
   267     td_ext (unat :: 'a word \<Rightarrow> nat) of_nat (unats n) (\<lambda>i. i mod 2 ^ n)"
       
   268   apply (standard; transfer)
       
   269      apply (simp_all add: unats_def take_bit_of_nat take_bit_nat_eq_self_iff
       
   270       flip: take_bit_eq_mod)
       
   271   done
       
   272 
       
   273 lemmas unat_of_nat = td_ext_unat [THEN td_ext.eq_norm]
       
   274 
       
   275 interpretation word_unat:
       
   276   td_ext
       
   277     "unat::'a::len word \<Rightarrow> nat"
       
   278     of_nat
       
   279     "unats (LENGTH('a::len))"
       
   280     "\<lambda>i. i mod 2 ^ LENGTH('a::len)"
       
   281   by (rule td_ext_unat)
       
   282 
       
   283 lemmas td_unat = word_unat.td_thm
       
   284 
       
   285 lemmas unat_lt2p [iff] = word_unat.Rep [unfolded unats_def mem_Collect_eq]
       
   286 
       
   287 lemma unat_le: "y \<le> unat z \<Longrightarrow> y \<in> unats (LENGTH('a))"
       
   288   for z :: "'a::len word"
       
   289   apply (unfold unats_def)
       
   290   apply clarsimp
       
   291   apply (rule xtrans, rule unat_lt2p, assumption)
       
   292   done
       
   293 
       
   294 lemma td_ext_sbin:
       
   295   "td_ext (sint :: 'a word \<Rightarrow> int) word_of_int (sints (LENGTH('a::len)))
       
   296     (signed_take_bit (LENGTH('a) - 1))"
       
   297   by (standard; transfer) (auto simp add: sints_def)
       
   298 
       
   299 lemma td_ext_sint:
       
   300   "td_ext (sint :: 'a word \<Rightarrow> int) word_of_int (sints (LENGTH('a::len)))
       
   301      (\<lambda>w. (w + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) -
       
   302          2 ^ (LENGTH('a) - 1))"
       
   303   using td_ext_sbin [where ?'a = 'a] by (simp add: no_sbintr_alt2)
       
   304 
       
   305 text \<open>
       
   306   We do \<open>sint\<close> before \<open>sbin\<close>, before \<open>sint\<close> is the user version
       
   307   and interpretations do not produce thm duplicates. I.e.
       
   308   we get the name \<open>word_sint.Rep_eqD\<close>, but not \<open>word_sbin.Req_eqD\<close>,
       
   309   because the latter is the same thm as the former.
       
   310 \<close>
       
   311 interpretation word_sint:
       
   312   td_ext
       
   313     "sint ::'a::len word \<Rightarrow> int"
       
   314     word_of_int
       
   315     "sints (LENGTH('a::len))"
       
   316     "\<lambda>w. (w + 2^(LENGTH('a::len) - 1)) mod 2^LENGTH('a::len) -
       
   317       2 ^ (LENGTH('a::len) - 1)"
       
   318   by (rule td_ext_sint)
       
   319 
       
   320 interpretation word_sbin:
       
   321   td_ext
       
   322     "sint ::'a::len word \<Rightarrow> int"
       
   323     word_of_int
       
   324     "sints (LENGTH('a::len))"
       
   325     "signed_take_bit (LENGTH('a::len) - 1)"
       
   326   by (rule td_ext_sbin)
       
   327 
       
   328 lemmas int_word_sint = td_ext_sint [THEN td_ext.eq_norm]
       
   329 
       
   330 lemmas td_sint = word_sint.td
       
   331 
       
   332 lemma uints_mod: "uints n = range (\<lambda>w. w mod 2 ^ n)"
       
   333   by (fact uints_def [unfolded no_bintr_alt1])
       
   334 
       
   335 lemmas uint_range' = word_uint.Rep [unfolded uints_num mem_Collect_eq]
       
   336 lemmas sint_range' = word_sint.Rep [unfolded One_nat_def sints_num mem_Collect_eq]
       
   337 
       
   338 lemmas bintr_num =
       
   339   word_ubin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b
       
   340 lemmas sbintr_num =
       
   341   word_sbin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b
       
   342 
       
   343 lemmas uint_div_alt = word_div_def [THEN trans [OF uint_cong int_word_uint]]
       
   344 lemmas uint_mod_alt = word_mod_def [THEN trans [OF uint_cong int_word_uint]]
       
   345 
       
   346 interpretation test_bit:
       
   347   td_ext
       
   348     "(!!) :: 'a::len word \<Rightarrow> nat \<Rightarrow> bool"
       
   349     set_bits
       
   350     "{f. \<forall>i. f i \<longrightarrow> i < LENGTH('a::len)}"
       
   351     "(\<lambda>h i. h i \<and> i < LENGTH('a::len))"
       
   352   by standard (auto simp add: test_bit_word_eq bit_imp_le_length bit_set_bits_word_iff set_bits_bit_eq)
       
   353 
       
   354 lemmas td_nth = test_bit.td_thm
       
   355 
       
   356 end