src/ZF/OrderArith.thy
changeset 13356 c9cfe1638bf2
parent 13269 3ba9be497c33
child 13512 80edb859fd24
equal deleted inserted replaced
13355:d19cdbd8b559 13356:c9cfe1638bf2
     1 (*  Title:      ZF/OrderArith.thy
     1 (*  Title:      ZF/OrderArith.thy
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1994  University of Cambridge
     4     Copyright   1994  University of Cambridge
     5 
     5 
     6 Towards ordinal arithmetic.  Also useful with wfrec.
       
     7 *)
     6 *)
       
     7 
       
     8 header{*Combining Orderings: Foundations of Ordinal Arithmetic*}
     8 
     9 
     9 theory OrderArith = Order + Sum + Ordinal:
    10 theory OrderArith = Order + Sum + Ordinal:
    10 constdefs
    11 constdefs
    11 
    12 
    12   (*disjoint sum of two relations; underlies ordinal addition*)
    13   (*disjoint sum of two relations; underlies ordinal addition*)
    30 
    31 
    31   measure :: "[i, i\<Rightarrow>i] \<Rightarrow> i"
    32   measure :: "[i, i\<Rightarrow>i] \<Rightarrow> i"
    32     "measure(A,f) == {<x,y>: A*A. f(x) < f(y)}"
    33     "measure(A,f) == {<x,y>: A*A. f(x) < f(y)}"
    33 
    34 
    34 
    35 
    35 (**** Addition of relations -- disjoint sum ****)
    36 subsection{*Addition of Relations -- Disjoint Sum*}
    36 
    37 
    37 (** Rewrite rules.  Can be used to obtain introduction rules **)
    38 (** Rewrite rules.  Can be used to obtain introduction rules **)
    38 
    39 
    39 lemma radd_Inl_Inr_iff [iff]: 
    40 lemma radd_Inl_Inr_iff [iff]: 
    40     "<Inl(a), Inr(b)> : radd(A,r,B,s)  <->  a:A & b:B"
    41     "<Inl(a), Inr(b)> : radd(A,r,B,s)  <->  a:A & b:B"
    41 apply (unfold radd_def, blast)
    42 by (unfold radd_def, blast)
    42 done
       
    43 
    43 
    44 lemma radd_Inl_iff [iff]: 
    44 lemma radd_Inl_iff [iff]: 
    45     "<Inl(a'), Inl(a)> : radd(A,r,B,s)  <->  a':A & a:A & <a',a>:r"
    45     "<Inl(a'), Inl(a)> : radd(A,r,B,s)  <->  a':A & a:A & <a',a>:r"
    46 apply (unfold radd_def, blast)
    46 by (unfold radd_def, blast)
    47 done
       
    48 
    47 
    49 lemma radd_Inr_iff [iff]: 
    48 lemma radd_Inr_iff [iff]: 
    50     "<Inr(b'), Inr(b)> : radd(A,r,B,s) <->  b':B & b:B & <b',b>:s"
    49     "<Inr(b'), Inr(b)> : radd(A,r,B,s) <->  b':B & b:B & <b',b>:s"
    51 apply (unfold radd_def, blast)
    50 by (unfold radd_def, blast)
    52 done
       
    53 
    51 
    54 lemma radd_Inr_Inl_iff [iff]: 
    52 lemma radd_Inr_Inl_iff [iff]: 
    55     "<Inr(b), Inl(a)> : radd(A,r,B,s) <->  False"
    53     "<Inr(b), Inl(a)> : radd(A,r,B,s) <->  False"
    56 apply (unfold radd_def, blast)
    54 by (unfold radd_def, blast)
    57 done
       
    58 
    55 
    59 (** Elimination Rule **)
    56 (** Elimination Rule **)
    60 
    57 
    61 lemma raddE:
    58 lemma raddE:
    62     "[| <p',p> : radd(A,r,B,s);                  
    59     "[| <p',p> : radd(A,r,B,s);                  
    63         !!x y. [| p'=Inl(x); x:A; p=Inr(y); y:B |] ==> Q;        
    60         !!x y. [| p'=Inl(x); x:A; p=Inr(y); y:B |] ==> Q;        
    64         !!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x:A |] ==> Q;  
    61         !!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x:A |] ==> Q;  
    65         !!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y:B |] ==> Q   
    62         !!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y:B |] ==> Q   
    66      |] ==> Q"
    63      |] ==> Q"
    67 apply (unfold radd_def, blast) 
    64 by (unfold radd_def, blast) 
    68 done
       
    69 
    65 
    70 (** Type checking **)
    66 (** Type checking **)
    71 
    67 
    72 lemma radd_type: "radd(A,r,B,s) <= (A+B) * (A+B)"
    68 lemma radd_type: "radd(A,r,B,s) <= (A+B) * (A+B)"
    73 apply (unfold radd_def)
    69 apply (unfold radd_def)
    78 
    74 
    79 (** Linearity **)
    75 (** Linearity **)
    80 
    76 
    81 lemma linear_radd: 
    77 lemma linear_radd: 
    82     "[| linear(A,r);  linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))"
    78     "[| linear(A,r);  linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))"
    83 apply (unfold linear_def, blast) 
    79 by (unfold linear_def, blast) 
    84 done
       
    85 
    80 
    86 
    81 
    87 (** Well-foundedness **)
    82 (** Well-foundedness **)
    88 
    83 
    89 lemma wf_on_radd: "[| wf[A](r);  wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))"
    84 lemma wf_on_radd: "[| wf[A](r);  wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))"
   117 (** An ord_iso congruence law **)
   112 (** An ord_iso congruence law **)
   118 
   113 
   119 lemma sum_bij:
   114 lemma sum_bij:
   120      "[| f: bij(A,C);  g: bij(B,D) |]
   115      "[| f: bij(A,C);  g: bij(B,D) |]
   121       ==> (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)"
   116       ==> (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)"
   122 apply (rule_tac d = "case (%x. Inl (converse (f) `x), %y. Inr (converse (g) `y))" in lam_bijective)
   117 apply (rule_tac d = "case (%x. Inl (converse(f)`x), %y. Inr(converse(g)`y))" 
       
   118        in lam_bijective)
   123 apply (typecheck add: bij_is_inj inj_is_fun) 
   119 apply (typecheck add: bij_is_inj inj_is_fun) 
   124 apply (auto simp add: left_inverse_bij right_inverse_bij) 
   120 apply (auto simp add: left_inverse_bij right_inverse_bij) 
   125 done
   121 done
   126 
   122 
   127 lemma sum_ord_iso_cong: 
   123 lemma sum_ord_iso_cong: 
   154 
   150 
   155 lemma sum_assoc_ord_iso:
   151 lemma sum_assoc_ord_iso:
   156      "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  
   152      "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  
   157       : ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),     
   153       : ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),     
   158                 A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))"
   154                 A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))"
   159 apply (rule sum_assoc_bij [THEN ord_isoI], auto)
   155 by (rule sum_assoc_bij [THEN ord_isoI], auto)
   160 done
   156 
   161 
   157 
   162 
   158 subsection{*Multiplication of Relations -- Lexicographic Product*}
   163 (**** Multiplication of relations -- lexicographic product ****)
       
   164 
   159 
   165 (** Rewrite rule.  Can be used to obtain introduction rules **)
   160 (** Rewrite rule.  Can be used to obtain introduction rules **)
   166 
   161 
   167 lemma  rmult_iff [iff]: 
   162 lemma  rmult_iff [iff]: 
   168     "<<a',b'>, <a,b>> : rmult(A,r,B,s) <->        
   163     "<<a',b'>, <a,b>> : rmult(A,r,B,s) <->        
   169             (<a',a>: r  & a':A & a:A & b': B & b: B) |   
   164             (<a',a>: r  & a':A & a:A & b': B & b: B) |   
   170             (<b',b>: s  & a'=a & a:A & b': B & b: B)"
   165             (<b',b>: s  & a'=a & a:A & b': B & b: B)"
   171 
   166 
   172 apply (unfold rmult_def, blast)
   167 by (unfold rmult_def, blast)
   173 done
       
   174 
   168 
   175 lemma rmultE: 
   169 lemma rmultE: 
   176     "[| <<a',b'>, <a,b>> : rmult(A,r,B,s);               
   170     "[| <<a',b'>, <a,b>> : rmult(A,r,B,s);               
   177         [| <a',a>: r;  a':A;  a:A;  b':B;  b:B |] ==> Q;         
   171         [| <a',a>: r;  a':A;  a:A;  b':B;  b:B |] ==> Q;         
   178         [| <b',b>: s;  a:A;  a'=a;  b':B;  b:B |] ==> Q  
   172         [| <b',b>: s;  a:A;  a'=a;  b':B;  b:B |] ==> Q  
   179      |] ==> Q"
   173      |] ==> Q"
   180 apply blast 
   174 by blast 
   181 done
       
   182 
   175 
   183 (** Type checking **)
   176 (** Type checking **)
   184 
   177 
   185 lemma rmult_type: "rmult(A,r,B,s) <= (A*B) * (A*B)"
   178 lemma rmult_type: "rmult(A,r,B,s) <= (A*B) * (A*B)"
   186 apply (unfold rmult_def)
   179 by (unfold rmult_def, rule Collect_subset)
   187 apply (rule Collect_subset)
       
   188 done
       
   189 
   180 
   190 lemmas field_rmult = rmult_type [THEN field_rel_subset]
   181 lemmas field_rmult = rmult_type [THEN field_rel_subset]
   191 
   182 
   192 (** Linearity **)
   183 (** Linearity **)
   193 
   184 
   194 lemma linear_rmult:
   185 lemma linear_rmult:
   195     "[| linear(A,r);  linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))"
   186     "[| linear(A,r);  linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))"
   196 apply (simp add: linear_def, blast) 
   187 by (simp add: linear_def, blast) 
   197 done
       
   198 
   188 
   199 (** Well-foundedness **)
   189 (** Well-foundedness **)
   200 
   190 
   201 lemma wf_on_rmult: "[| wf[A](r);  wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))"
   191 lemma wf_on_rmult: "[| wf[A](r);  wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))"
   202 apply (rule wf_onI2)
   192 apply (rule wf_onI2)
   287 (** Distributive law **)
   277 (** Distributive law **)
   288 
   278 
   289 lemma sum_prod_distrib_bij:
   279 lemma sum_prod_distrib_bij:
   290      "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
   280      "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
   291       : bij((A+B)*C, (A*C)+(B*C))"
   281       : bij((A+B)*C, (A*C)+(B*C))"
   292 apply (rule_tac d = "case (%<x,y>.<Inl (x),y>, %<x,y>.<Inr (x),y>) " 
   282 by (rule_tac d = "case (%<x,y>.<Inl (x),y>, %<x,y>.<Inr (x),y>) " 
   293        in lam_bijective)
   283     in lam_bijective, auto)
   294 apply auto
       
   295 done
       
   296 
   284 
   297 lemma sum_prod_distrib_ord_iso:
   285 lemma sum_prod_distrib_ord_iso:
   298  "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
   286  "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
   299   : ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t),  
   287   : ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t),  
   300             (A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))"
   288             (A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))"
   301 apply (rule sum_prod_distrib_bij [THEN ord_isoI], auto)
   289 by (rule sum_prod_distrib_bij [THEN ord_isoI], auto)
   302 done
       
   303 
   290 
   304 (** Associativity **)
   291 (** Associativity **)
   305 
   292 
   306 lemma prod_assoc_bij:
   293 lemma prod_assoc_bij:
   307      "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))"
   294      "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))"
   308 apply (rule_tac d = "%<x, <y,z>>. <<x,y>, z>" in lam_bijective, auto)
   295 by (rule_tac d = "%<x, <y,z>>. <<x,y>, z>" in lam_bijective, auto)
   309 done
       
   310 
   296 
   311 lemma prod_assoc_ord_iso:
   297 lemma prod_assoc_ord_iso:
   312  "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)                    
   298  "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)                    
   313   : ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),   
   299   : ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),   
   314             A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))"
   300             A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))"
   315 apply (rule prod_assoc_bij [THEN ord_isoI], auto)
   301 by (rule prod_assoc_bij [THEN ord_isoI], auto)
   316 done
   302 
   317 
   303 subsection{*Inverse Image of a Relation*}
   318 (**** Inverse image of a relation ****)
       
   319 
   304 
   320 (** Rewrite rule **)
   305 (** Rewrite rule **)
   321 
   306 
   322 lemma rvimage_iff: "<a,b> : rvimage(A,f,r)  <->  <f`a,f`b>: r & a:A & b:A"
   307 lemma rvimage_iff: "<a,b> : rvimage(A,f,r)  <->  <f`a,f`b>: r & a:A & b:A"
   323 by (unfold rvimage_def, blast)
   308 by (unfold rvimage_def, blast)
   324 
   309 
   325 (** Type checking **)
   310 (** Type checking **)
   326 
   311 
   327 lemma rvimage_type: "rvimage(A,f,r) <= A*A"
   312 lemma rvimage_type: "rvimage(A,f,r) <= A*A"
   328 apply (unfold rvimage_def)
   313 apply (unfold rvimage_def, rule Collect_subset)
   329 apply (rule Collect_subset)
       
   330 done
   314 done
   331 
   315 
   332 lemmas field_rvimage = rvimage_type [THEN field_rel_subset]
   316 lemmas field_rvimage = rvimage_type [THEN field_rel_subset]
   333 
   317 
   334 lemma rvimage_converse: "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))"
   318 lemma rvimage_converse: "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))"
   408 apply (simp add: rvimage_iff)
   392 apply (simp add: rvimage_iff)
   409 done
   393 done
   410 
   394 
   411 lemma ord_iso_rvimage_eq: 
   395 lemma ord_iso_rvimage_eq: 
   412     "f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r Int A*A"
   396     "f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r Int A*A"
   413 apply (unfold ord_iso_def rvimage_def, blast)
   397 by (unfold ord_iso_def rvimage_def, blast)
   414 done
       
   415 
   398 
   416 
   399 
   417 (** The "measure" relation is useful with wfrec **)
   400 (** The "measure" relation is useful with wfrec **)
   418 
   401 
   419 lemma measure_eq_rvimage_Memrel:
   402 lemma measure_eq_rvimage_Memrel:
   422 apply (rule equalityI, auto)
   405 apply (rule equalityI, auto)
   423 apply (auto intro: Ord_in_Ord simp add: lt_def)
   406 apply (auto intro: Ord_in_Ord simp add: lt_def)
   424 done
   407 done
   425 
   408 
   426 lemma wf_measure [iff]: "wf(measure(A,f))"
   409 lemma wf_measure [iff]: "wf(measure(A,f))"
   427 apply (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage)
   410 by (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage)
   428 done
       
   429 
   411 
   430 lemma measure_iff [iff]: "<x,y> : measure(A,f) <-> x:A & y:A & f(x)<f(y)"
   412 lemma measure_iff [iff]: "<x,y> : measure(A,f) <-> x:A & y:A & f(x)<f(y)"
   431 apply (simp (no_asm) add: measure_def)
   413 by (simp (no_asm) add: measure_def)
   432 done
       
   433 
   414 
   434 ML {*
   415 ML {*
   435 val measure_def = thm "measure_def";
   416 val measure_def = thm "measure_def";
   436 val radd_Inl_Inr_iff = thm "radd_Inl_Inr_iff";
   417 val radd_Inl_Inr_iff = thm "radd_Inl_Inr_iff";
   437 val radd_Inl_iff = thm "radd_Inl_iff";
   418 val radd_Inl_iff = thm "radd_Inl_iff";