src/ZF/Cardinal.ML
changeset 435 ca5356bd315a
child 437 435875e4b21d
equal deleted inserted replaced
434:89d45187f04d 435:ca5356bd315a
       
     1 (*  Title: 	ZF/Cardinal.ML
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1994  University of Cambridge
       
     5 
       
     6 Cardinals in Zermelo-Fraenkel Set Theory 
       
     7 
       
     8 This theory does NOT assume the Axiom of Choice
       
     9 *)
       
    10 
       
    11 open Cardinal;
       
    12 
       
    13 (*** The Schroeder-Bernstein Theorem -- see Davey & Priestly, page 106 ***)
       
    14 
       
    15 (** Lemma: Banach's Decomposition Theorem **)
       
    16 
       
    17 goal Cardinal.thy "bnd_mono(X, %W. X - g``(Y - f``W))";
       
    18 by (rtac bnd_monoI 1);
       
    19 by (REPEAT (ares_tac [Diff_subset, subset_refl, Diff_mono, image_mono] 1));
       
    20 val decomp_bnd_mono = result();
       
    21 
       
    22 val [gfun] = goal Cardinal.thy
       
    23     "g: Y->X ==>   					\
       
    24 \    g``(Y - f`` lfp(X, %W. X - g``(Y - f``W))) = 	\
       
    25 \    X - lfp(X, %W. X - g``(Y - f``W)) ";
       
    26 by (res_inst_tac [("P", "%u. ?v = X-u")] 
       
    27      (decomp_bnd_mono RS lfp_Tarski RS ssubst) 1);
       
    28 by (simp_tac (ZF_ss addsimps [subset_refl, double_complement,
       
    29 			     gfun RS fun_is_rel RS image_subset]) 1);
       
    30 val Banach_last_equation = result();
       
    31 
       
    32 val prems = goal Cardinal.thy
       
    33     "[| f: X->Y;  g: Y->X |] ==>   \
       
    34 \    EX XA XB YA YB. (XA Int XB = 0) & (XA Un XB = X) &    \
       
    35 \                    (YA Int YB = 0) & (YA Un YB = Y) &    \
       
    36 \                    f``XA=YA & g``YB=XB";
       
    37 by (REPEAT 
       
    38     (FIRSTGOAL
       
    39      (resolve_tac [refl, exI, conjI, Diff_disjoint, Diff_partition])));
       
    40 by (rtac Banach_last_equation 3);
       
    41 by (REPEAT (resolve_tac (prems@[fun_is_rel, image_subset, lfp_subset]) 1));
       
    42 val decomposition = result();
       
    43 
       
    44 val prems = goal Cardinal.thy
       
    45     "[| f: inj(X,Y);  g: inj(Y,X) |] ==> EX h. h: bij(X,Y)";
       
    46 by (cut_facts_tac prems 1);
       
    47 by (cut_facts_tac [(prems RL [inj_is_fun]) MRS decomposition] 1);
       
    48 by (fast_tac (ZF_cs addSIs [restrict_bij,bij_disjoint_Un]
       
    49                     addIs [bij_converse_bij]) 1);
       
    50 (* The instantiation of exI to "restrict(f,XA) Un converse(restrict(g,YB))"
       
    51    is forced by the context!! *)
       
    52 val schroeder_bernstein = result();
       
    53 
       
    54 
       
    55 (** Equipollence is an equivalence relation **)
       
    56 
       
    57 goalw Cardinal.thy [eqpoll_def] "X eqpoll X";
       
    58 br exI 1;
       
    59 br id_bij 1;
       
    60 val eqpoll_refl = result();
       
    61 
       
    62 goalw Cardinal.thy [eqpoll_def] "!!X Y. X eqpoll Y ==> Y eqpoll X";
       
    63 by (fast_tac (ZF_cs addIs [bij_converse_bij]) 1);
       
    64 val eqpoll_sym = result();
       
    65 
       
    66 goalw Cardinal.thy [eqpoll_def]
       
    67     "!!X Y. [| X eqpoll Y;  Y eqpoll Z |] ==> X eqpoll Z";
       
    68 by (fast_tac (ZF_cs addIs [comp_bij]) 1);
       
    69 val eqpoll_trans = result();
       
    70 
       
    71 (** Le-pollence is a partial ordering **)
       
    72 
       
    73 goalw Cardinal.thy [lepoll_def] "!!X Y. X<=Y ==> X lepoll Y";
       
    74 br exI 1;
       
    75 be id_subset_inj 1;
       
    76 val subset_imp_lepoll = result();
       
    77 
       
    78 val lepoll_refl = subset_refl RS subset_imp_lepoll;
       
    79 
       
    80 goalw Cardinal.thy [eqpoll_def, bij_def, lepoll_def]
       
    81     "!!X Y. X eqpoll Y ==> X lepoll Y";
       
    82 by (fast_tac ZF_cs 1);
       
    83 val eqpoll_imp_lepoll = result();
       
    84 
       
    85 goalw Cardinal.thy [lepoll_def]
       
    86     "!!X Y. [| X lepoll Y;  Y lepoll Z |] ==> X lepoll Z";
       
    87 by (fast_tac (ZF_cs addIs [comp_inj]) 1);
       
    88 val lepoll_trans = result();
       
    89 
       
    90 (*Asymmetry law*)
       
    91 goalw Cardinal.thy [lepoll_def,eqpoll_def]
       
    92     "!!X Y. [| X lepoll Y;  Y lepoll X |] ==> X eqpoll Y";
       
    93 by (REPEAT (etac exE 1));
       
    94 by (rtac schroeder_bernstein 1);
       
    95 by (REPEAT (assume_tac 1));
       
    96 val eqpollI = result();
       
    97 
       
    98 val [major,minor] = goal Cardinal.thy
       
    99     "[| X eqpoll Y; [| X lepoll Y; Y lepoll X |] ==> P |] ==> P";
       
   100 br minor 1;
       
   101 by (REPEAT (resolve_tac [major, eqpoll_imp_lepoll, eqpoll_sym] 1));
       
   102 val eqpollE = result();
       
   103 
       
   104 goal Cardinal.thy "X eqpoll Y <-> X lepoll Y & Y lepoll X";
       
   105 by (fast_tac (ZF_cs addIs [eqpollI] addSEs [eqpollE]) 1);
       
   106 val eqpoll_iff = result();
       
   107 
       
   108 
       
   109 (** LEAST -- the least number operator [from HOL/Univ.ML] **)
       
   110 
       
   111 val [premP,premOrd,premNot] = goalw Cardinal.thy [Least_def]
       
   112     "[| P(i);  Ord(i);  !!x. x<i ==> ~P(x) |] ==> (LEAST x.P(x)) = i";
       
   113 by (rtac the_equality 1);
       
   114 by (fast_tac (ZF_cs addSIs [premP,premOrd,premNot]) 1);
       
   115 by (REPEAT (etac conjE 1));
       
   116 be (premOrd RS Ord_linear_lt) 1;
       
   117 by (ALLGOALS (fast_tac (ZF_cs addSIs [premP] addSDs [premNot])));
       
   118 val Least_equality = result();
       
   119 
       
   120 goal Cardinal.thy "!!i. [| P(i);  Ord(i) |] ==> P(LEAST x.P(x))";
       
   121 by (etac rev_mp 1);
       
   122 by (trans_ind_tac "i" [] 1);
       
   123 by (rtac impI 1);
       
   124 by (rtac classical 1);
       
   125 by (EVERY1 [rtac (Least_equality RS ssubst), assume_tac, assume_tac]);
       
   126 by (assume_tac 2);
       
   127 by (fast_tac (ZF_cs addSEs [ltE]) 1);
       
   128 val LeastI = result();
       
   129 
       
   130 (*Proof is almost identical to the one above!*)
       
   131 goal Cardinal.thy "!!i. [| P(i);  Ord(i) |] ==> (LEAST x.P(x)) le i";
       
   132 by (etac rev_mp 1);
       
   133 by (trans_ind_tac "i" [] 1);
       
   134 by (rtac impI 1);
       
   135 by (rtac classical 1);
       
   136 by (EVERY1 [rtac (Least_equality RS ssubst), assume_tac, assume_tac]);
       
   137 by (etac le_refl 2);
       
   138 by (fast_tac (ZF_cs addEs [ltE, lt_trans1] addIs [leI, ltI]) 1);
       
   139 val Least_le = result();
       
   140 
       
   141 (*LEAST really is the smallest*)
       
   142 goal Cardinal.thy "!!i. [| P(i);  i < (LEAST x.P(x)) |] ==> Q";
       
   143 br (Least_le RSN (2,lt_trans2) RS lt_anti_refl) 1;
       
   144 by (REPEAT (eresolve_tac [asm_rl, ltE] 1));
       
   145 val less_LeastE = result();
       
   146 
       
   147 goal Cardinal.thy "Ord(LEAST x.P(x))";
       
   148 by (res_inst_tac [("Q","EX i. Ord(i) & P(i)")] (excluded_middle RS disjE) 1);
       
   149 by (safe_tac ZF_cs);
       
   150 br (Least_le RS ltE) 2;
       
   151 by (REPEAT_SOME assume_tac);
       
   152 bw Least_def;
       
   153 by (rtac (the_0 RS ssubst) 1 THEN rtac Ord_0 2);
       
   154 by (fast_tac FOL_cs 1);
       
   155 val Ord_Least = result();
       
   156 
       
   157 
       
   158 (** Basic properties of cardinals **)
       
   159 
       
   160 (*Not needed for simplification, but helpful below*)
       
   161 val prems = goal Cardinal.thy
       
   162     "[| !!y. P(y) <-> Q(y) |] ==> (LEAST x.P(x)) = (LEAST x.Q(x))";
       
   163 by (simp_tac (FOL_ss addsimps prems) 1);
       
   164 val Least_cong = result();
       
   165 
       
   166 (*Need AC to prove   X lepoll Y ==> |X| le |Y| ; see well_ord_lepoll_imp_le  *)
       
   167 goalw Cardinal.thy [eqpoll_def,cardinal_def] "!!X Y. X eqpoll Y ==> |X| = |Y|";
       
   168 br Least_cong 1;
       
   169 by (fast_tac (ZF_cs addEs [comp_bij,bij_converse_bij]) 1);
       
   170 val cardinal_cong = result();
       
   171 
       
   172 (*Under AC, the premise becomes trivial; one consequence is ||A|| = |A|*)
       
   173 goalw Cardinal.thy [eqpoll_def, cardinal_def]
       
   174     "!!A. well_ord(A,r) ==> |A| eqpoll A";
       
   175 br LeastI 1;
       
   176 be Ord_ordertype 2;
       
   177 br exI 1;
       
   178 be (ordertype_bij RS bij_converse_bij) 1;
       
   179 val well_ord_cardinal_eqpoll = result();
       
   180 
       
   181 val Ord_cardinal_eqpoll = well_ord_Memrel RS well_ord_cardinal_eqpoll 
       
   182                           |> standard;
       
   183 
       
   184 goal Cardinal.thy
       
   185     "!!X Y. [| well_ord(X,r);  well_ord(Y,s);  |X| = |Y| |] ==> X eqpoll Y";
       
   186 br (eqpoll_sym RS eqpoll_trans) 1;
       
   187 be well_ord_cardinal_eqpoll 1;
       
   188 by (asm_simp_tac (ZF_ss addsimps [well_ord_cardinal_eqpoll]) 1);
       
   189 val well_ord_cardinal_eqE = result();
       
   190 
       
   191 
       
   192 (** Observations from Kunen, page 28 **)
       
   193 
       
   194 goalw Cardinal.thy [cardinal_def] "!!i. Ord(i) ==> |i| le i";
       
   195 be (eqpoll_refl RS Least_le) 1;
       
   196 val Ord_cardinal_le = result();
       
   197 
       
   198 goalw Cardinal.thy [Card_def] "!!i. Card(i) ==> |i| = i";
       
   199 be sym 1;
       
   200 val Card_cardinal_eq = result();
       
   201 
       
   202 val prems = goalw Cardinal.thy [Card_def,cardinal_def]
       
   203     "[| Ord(i);  !!j. j<i ==> ~(j eqpoll i) |] ==> Card(i)";
       
   204 br (Least_equality RS ssubst) 1;
       
   205 by (REPEAT (ares_tac ([refl,eqpoll_refl]@prems) 1));
       
   206 val CardI = result();
       
   207 
       
   208 goalw Cardinal.thy [Card_def, cardinal_def] "!!i. Card(i) ==> Ord(i)";
       
   209 be ssubst 1;
       
   210 br Ord_Least 1;
       
   211 val Card_is_Ord = result();
       
   212 
       
   213 goalw Cardinal.thy [cardinal_def] "Ord( |i| )";
       
   214 br Ord_Least 1;
       
   215 val Ord_cardinal = result();
       
   216 
       
   217 (*Kunen's Lemma 10.5*)
       
   218 goal Cardinal.thy "!!i j. [| |i| le j;  j le i |] ==> |j| = |i|";
       
   219 br (eqpollI RS cardinal_cong) 1;
       
   220 be (le_imp_subset RS subset_imp_lepoll) 1;
       
   221 br lepoll_trans 1;
       
   222 be (le_imp_subset RS subset_imp_lepoll) 2;
       
   223 br (eqpoll_sym RS eqpoll_imp_lepoll) 1;
       
   224 br Ord_cardinal_eqpoll 1;
       
   225 by (REPEAT (eresolve_tac [ltE, Ord_succD] 1));
       
   226 val cardinal_eq_lemma = result();
       
   227 
       
   228 goal Cardinal.thy "!!i j. i le j ==> |i| le |j|";
       
   229 by (res_inst_tac [("i","|i|"),("j","|j|")] Ord_linear_le 1);
       
   230 by (REPEAT_FIRST (ares_tac [Ord_cardinal, le_eqI]));
       
   231 br cardinal_eq_lemma 1;
       
   232 ba 2;
       
   233 be le_trans 1;
       
   234 be ltE 1;
       
   235 be Ord_cardinal_le 1;
       
   236 val cardinal_mono = result();
       
   237 
       
   238 (*Since we have |succ(nat)| le |nat|, the converse of cardinal_mono fails!*)
       
   239 goal Cardinal.thy "!!i j. [| |i| < |j|;  Ord(i);  Ord(j) |] ==> i < j";
       
   240 br Ord_linear2 1;
       
   241 by (REPEAT_SOME assume_tac);
       
   242 be (lt_trans2 RS lt_anti_refl) 1;
       
   243 be cardinal_mono 1;
       
   244 val cardinal_lt_imp_lt = result();
       
   245 
       
   246 goal Cardinal.thy "!!i j. [| |i| < k;  Ord(i);  Card(k) |] ==> i < k";
       
   247 by (asm_simp_tac (ZF_ss addsimps 
       
   248 		  [cardinal_lt_imp_lt, Card_is_Ord, Card_cardinal_eq]) 1);
       
   249 val Card_lt_imp_lt = result();
       
   250 
       
   251 
       
   252 (** The swap operator [NOT USED] **)
       
   253 
       
   254 goalw Cardinal.thy [swap_def]
       
   255     "!!A. [| x:A;  y:A |] ==> swap(A,x,y) : A->A";
       
   256 by (REPEAT (ares_tac [lam_type,if_type] 1));
       
   257 val swap_type = result();
       
   258 
       
   259 goalw Cardinal.thy [swap_def]
       
   260     "!!A. [| x:A;  y:A;  z:A |] ==> swap(A,x,y)`(swap(A,x,y)`z) = z";
       
   261 by (asm_simp_tac (ZF_ss setloop split_tac [expand_if]) 1);
       
   262 val swap_swap_identity = result();
       
   263 
       
   264 goal Cardinal.thy "!!A. [| x:A;  y:A |] ==> swap(A,x,y) : bij(A,A)";
       
   265 br nilpotent_imp_bijective 1;
       
   266 by (REPEAT (ares_tac [swap_type, comp_eq_id_iff RS iffD2,
       
   267 		      ballI, swap_swap_identity] 1));
       
   268 val swap_bij = result();
       
   269 
       
   270 (*** The finite cardinals ***)
       
   271 
       
   272 (*Lemma suggested by Mike Fourman*)
       
   273 val [prem] = goalw Cardinal.thy [inj_def]
       
   274  "f: inj(succ(m), succ(n)) ==> (lam x:m. if(f`x=n, f`m, f`x)) : inj(m,n)";
       
   275 br CollectI 1;
       
   276 (*Proving it's in the function space m->n*)
       
   277 by (cut_facts_tac [prem] 1);
       
   278 br (if_type RS lam_type) 1;
       
   279 by (fast_tac (ZF_cs addSEs [mem_anti_refl] addEs [apply_funtype RS succE]) 1);
       
   280 by (fast_tac (ZF_cs addSEs [mem_anti_refl] addEs [apply_funtype RS succE]) 1);
       
   281 (*Proving it's injective*)
       
   282 by (asm_simp_tac (ZF_ss setloop split_tac [expand_if]) 1);
       
   283 (*Adding  prem  earlier would cause the simplifier to loop*)
       
   284 by (cut_facts_tac [prem] 1);
       
   285 by (fast_tac (ZF_cs addSEs [mem_anti_refl]) 1);
       
   286 val inj_succ_succD = result();
       
   287 
       
   288 val [prem] = goalw Cardinal.thy [lepoll_def]
       
   289     "m:nat ==> ALL n: nat. m lepoll n --> m le n";
       
   290 by (nat_ind_tac "m" [prem] 1);
       
   291 by (fast_tac (ZF_cs addSIs [nat_0_le]) 1);
       
   292 br ballI 1;
       
   293 by (eres_inst_tac [("n","n")] natE 1);
       
   294 by (asm_simp_tac (ZF_ss addsimps [inj_def, succI1 RS Pi_empty2]) 1);
       
   295 by (fast_tac (ZF_cs addSIs [succ_leI] addSDs [inj_succ_succD]) 1);
       
   296 val nat_lepoll_imp_le_lemma = result();
       
   297 val nat_lepoll_imp_le = nat_lepoll_imp_le_lemma RS bspec RS mp |> standard;
       
   298 
       
   299 goal Cardinal.thy
       
   300     "!!m n. [| m:nat; n: nat |] ==> m eqpoll n <-> m = n";
       
   301 br iffI 1;
       
   302 by (asm_simp_tac (ZF_ss addsimps [eqpoll_refl]) 2);
       
   303 by (fast_tac (ZF_cs addIs [nat_lepoll_imp_le, le_asym] addSEs [eqpollE]) 1);
       
   304 val nat_eqpoll_iff = result();
       
   305 
       
   306 goalw Cardinal.thy [Card_def,cardinal_def]
       
   307     "!!n. n: nat ==> Card(n)";
       
   308 br (Least_equality RS ssubst) 1;
       
   309 by (REPEAT_FIRST (ares_tac [eqpoll_refl, nat_into_Ord, refl]));
       
   310 by (asm_simp_tac (ZF_ss addsimps [lt_nat_in_nat RS nat_eqpoll_iff]) 1);
       
   311 by (fast_tac (ZF_cs addSEs [lt_anti_refl]) 1);
       
   312 val nat_into_Card = result();
       
   313 
       
   314 val Card_0 = nat_0I RS nat_into_Card;
       
   315 
       
   316 (*Part of Kunen's Lemma 10.6*)
       
   317 goal Cardinal.thy "!!n. [| succ(n) lepoll n;  n:nat |] ==> P";
       
   318 br (nat_lepoll_imp_le RS lt_anti_refl) 1;
       
   319 by (REPEAT (ares_tac [nat_succI] 1));
       
   320 val succ_lepoll_natE = result();
       
   321 
       
   322 
       
   323 (*** The first infinite cardinal: Omega, or nat ***)
       
   324 
       
   325 (*This implies Kunen's Lemma 10.6*)
       
   326 goal Cardinal.thy "!!n. [| n<i;  n:nat |] ==> ~ i lepoll n";
       
   327 br notI 1;
       
   328 by (rtac succ_lepoll_natE 1 THEN assume_tac 2);
       
   329 by (rtac lepoll_trans 1 THEN assume_tac 2);
       
   330 be ltE 1;
       
   331 by (REPEAT (ares_tac [Ord_succ_subsetI RS subset_imp_lepoll] 1));
       
   332 val lt_not_lepoll = result();
       
   333 
       
   334 goalw Cardinal.thy [Card_def,cardinal_def] "Card(nat)";
       
   335 br (Least_equality RS ssubst) 1;
       
   336 by (REPEAT_FIRST (ares_tac [eqpoll_refl, Ord_nat, refl]));
       
   337 be ltE 1;
       
   338 by (asm_simp_tac (ZF_ss addsimps [eqpoll_iff, lt_not_lepoll, ltI]) 1);
       
   339 val Card_nat = result();
       
   340 
       
   341 goal Cardinal.thy "!!i n. [| Ord(i);  n:nat |] ==> i eqpoll n <-> i=n";
       
   342 br iffI 1;
       
   343 by (asm_simp_tac (ZF_ss addsimps [eqpoll_refl]) 2);
       
   344 by (rtac Ord_linear_lt 1);
       
   345 by (REPEAT_SOME (eresolve_tac [asm_rl, nat_into_Ord]));
       
   346 by (etac (lt_nat_in_nat RS nat_eqpoll_iff RS iffD1) 1 THEN
       
   347     REPEAT (assume_tac 1));
       
   348 by (rtac (lt_not_lepoll RS notE) 1 THEN (REPEAT (assume_tac 1)));
       
   349 be eqpoll_imp_lepoll 1;
       
   350 val Ord_nat_eqpoll_iff = result();
       
   351 
       
   352