src/ZF/Ordinal.ML
changeset 435 ca5356bd315a
child 437 435875e4b21d
equal deleted inserted replaced
434:89d45187f04d 435:ca5356bd315a
       
     1 (*  Title: 	ZF/Ordinal.thy
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1993  University of Cambridge
       
     5 
       
     6 For Ordinal.thy.  Ordinals in Zermelo-Fraenkel Set Theory 
       
     7 *)
       
     8 
       
     9 open Ordinal;
       
    10 
       
    11 (*** Rules for Transset ***)
       
    12 
       
    13 (** Two neat characterisations of Transset **)
       
    14 
       
    15 goalw Ordinal.thy [Transset_def] "Transset(A) <-> A<=Pow(A)";
       
    16 by (fast_tac ZF_cs 1);
       
    17 val Transset_iff_Pow = result();
       
    18 
       
    19 goalw Ordinal.thy [Transset_def] "Transset(A) <-> Union(succ(A)) = A";
       
    20 by (fast_tac (eq_cs addSEs [equalityE]) 1);
       
    21 val Transset_iff_Union_succ = result();
       
    22 
       
    23 (** Consequences of downwards closure **)
       
    24 
       
    25 goalw Ordinal.thy [Transset_def]
       
    26     "!!C a b. [| Transset(C); {a,b}: C |] ==> a:C & b: C";
       
    27 by (fast_tac ZF_cs 1);
       
    28 val Transset_doubleton_D = result();
       
    29 
       
    30 val [prem1,prem2] = goalw Ordinal.thy [Pair_def]
       
    31     "[| Transset(C); <a,b>: C |] ==> a:C & b: C";
       
    32 by (cut_facts_tac [prem2] 1);	
       
    33 by (fast_tac (ZF_cs addSDs [prem1 RS Transset_doubleton_D]) 1);
       
    34 val Transset_Pair_D = result();
       
    35 
       
    36 val prem1::prems = goal Ordinal.thy
       
    37     "[| Transset(C); A*B <= C; b: B |] ==> A <= C";
       
    38 by (cut_facts_tac prems 1);
       
    39 by (fast_tac (ZF_cs addSDs [prem1 RS Transset_Pair_D]) 1);
       
    40 val Transset_includes_domain = result();
       
    41 
       
    42 val prem1::prems = goal Ordinal.thy
       
    43     "[| Transset(C); A*B <= C; a: A |] ==> B <= C";
       
    44 by (cut_facts_tac prems 1);
       
    45 by (fast_tac (ZF_cs addSDs [prem1 RS Transset_Pair_D]) 1);
       
    46 val Transset_includes_range = result();
       
    47 
       
    48 val [prem1,prem2] = goalw (merge_theories(Ordinal.thy,Sum.thy)) [sum_def]
       
    49     "[| Transset(C); A+B <= C |] ==> A <= C & B <= C";
       
    50 by (rtac (prem2 RS (Un_subset_iff RS iffD1) RS conjE) 1);
       
    51 by (REPEAT (etac (prem1 RS Transset_includes_range) 1
       
    52      ORELSE resolve_tac [conjI, singletonI] 1));
       
    53 val Transset_includes_summands = result();
       
    54 
       
    55 val [prem] = goalw (merge_theories(Ordinal.thy,Sum.thy)) [sum_def]
       
    56     "Transset(C) ==> (A+B) Int C <= (A Int C) + (B Int C)";
       
    57 by (rtac (Int_Un_distrib RS ssubst) 1);
       
    58 by (fast_tac (ZF_cs addSDs [prem RS Transset_Pair_D]) 1);
       
    59 val Transset_sum_Int_subset = result();
       
    60 
       
    61 (** Closure properties **)
       
    62 
       
    63 goalw Ordinal.thy [Transset_def] "Transset(0)";
       
    64 by (fast_tac ZF_cs 1);
       
    65 val Transset_0 = result();
       
    66 
       
    67 goalw Ordinal.thy [Transset_def]
       
    68     "!!i j. [| Transset(i);  Transset(j) |] ==> Transset(i Un j)";
       
    69 by (fast_tac ZF_cs 1);
       
    70 val Transset_Un = result();
       
    71 
       
    72 goalw Ordinal.thy [Transset_def]
       
    73     "!!i j. [| Transset(i);  Transset(j) |] ==> Transset(i Int j)";
       
    74 by (fast_tac ZF_cs 1);
       
    75 val Transset_Int = result();
       
    76 
       
    77 goalw Ordinal.thy [Transset_def] "!!i. Transset(i) ==> Transset(succ(i))";
       
    78 by (fast_tac ZF_cs 1);
       
    79 val Transset_succ = result();
       
    80 
       
    81 goalw Ordinal.thy [Transset_def] "!!i. Transset(i) ==> Transset(Pow(i))";
       
    82 by (fast_tac ZF_cs 1);
       
    83 val Transset_Pow = result();
       
    84 
       
    85 goalw Ordinal.thy [Transset_def] "!!A. Transset(A) ==> Transset(Union(A))";
       
    86 by (fast_tac ZF_cs 1);
       
    87 val Transset_Union = result();
       
    88 
       
    89 val [Transprem] = goalw Ordinal.thy [Transset_def]
       
    90     "[| !!i. i:A ==> Transset(i) |] ==> Transset(Union(A))";
       
    91 by (fast_tac (ZF_cs addEs [Transprem RS bspec RS subsetD]) 1);
       
    92 val Transset_Union_family = result();
       
    93 
       
    94 val [prem,Transprem] = goalw Ordinal.thy [Transset_def]
       
    95     "[| j:A;  !!i. i:A ==> Transset(i) |] ==> Transset(Inter(A))";
       
    96 by (cut_facts_tac [prem] 1);
       
    97 by (fast_tac (ZF_cs addEs [Transprem RS bspec RS subsetD]) 1);
       
    98 val Transset_Inter_family = result();
       
    99 
       
   100 (*** Natural Deduction rules for Ord ***)
       
   101 
       
   102 val prems = goalw Ordinal.thy [Ord_def]
       
   103     "[| Transset(i);  !!x. x:i ==> Transset(x) |]  ==>  Ord(i) ";
       
   104 by (REPEAT (ares_tac (prems@[ballI,conjI]) 1));
       
   105 val OrdI = result();
       
   106 
       
   107 val [major] = goalw Ordinal.thy [Ord_def]
       
   108     "Ord(i) ==> Transset(i)";
       
   109 by (rtac (major RS conjunct1) 1);
       
   110 val Ord_is_Transset = result();
       
   111 
       
   112 val [major,minor] = goalw Ordinal.thy [Ord_def]
       
   113     "[| Ord(i);  j:i |] ==> Transset(j) ";
       
   114 by (rtac (minor RS (major RS conjunct2 RS bspec)) 1);
       
   115 val Ord_contains_Transset = result();
       
   116 
       
   117 (*** Lemmas for ordinals ***)
       
   118 
       
   119 goalw Ordinal.thy [Ord_def,Transset_def] "!!i j.[| Ord(i);  j:i |] ==> Ord(j)";
       
   120 by (fast_tac ZF_cs 1);
       
   121 val Ord_in_Ord = result();
       
   122 
       
   123 (* Ord(succ(j)) ==> Ord(j) *)
       
   124 val Ord_succD = succI1 RSN (2, Ord_in_Ord);
       
   125 
       
   126 goal Ordinal.thy "!!i j. [| Ord(i);  Transset(j);  j<=i |] ==> Ord(j)";
       
   127 by (REPEAT (ares_tac [OrdI] 1
       
   128      ORELSE eresolve_tac [Ord_contains_Transset, subsetD] 1));
       
   129 val Ord_subset_Ord = result();
       
   130 
       
   131 goalw Ordinal.thy [Ord_def,Transset_def] "!!i j. [| j:i;  Ord(i) |] ==> j<=i";
       
   132 by (fast_tac ZF_cs 1);
       
   133 val OrdmemD = result();
       
   134 
       
   135 goal Ordinal.thy "!!i j k. [| i:j;  j:k;  Ord(k) |] ==> i:k";
       
   136 by (REPEAT (ares_tac [OrdmemD RS subsetD] 1));
       
   137 val Ord_trans = result();
       
   138 
       
   139 goal Ordinal.thy "!!i j. [| i:j;  Ord(j) |] ==> succ(i) <= j";
       
   140 by (REPEAT (ares_tac [OrdmemD RSN (2,succ_subsetI)] 1));
       
   141 val Ord_succ_subsetI = result();
       
   142 
       
   143 
       
   144 (*** The construction of ordinals: 0, succ, Union ***)
       
   145 
       
   146 goal Ordinal.thy "Ord(0)";
       
   147 by (REPEAT (ares_tac [OrdI,Transset_0] 1 ORELSE etac emptyE 1));
       
   148 val Ord_0 = result();
       
   149 
       
   150 goal Ordinal.thy "!!i. Ord(i) ==> Ord(succ(i))";
       
   151 by (REPEAT (ares_tac [OrdI,Transset_succ] 1
       
   152      ORELSE eresolve_tac [succE,ssubst,Ord_is_Transset,
       
   153 			  Ord_contains_Transset] 1));
       
   154 val Ord_succ = result();
       
   155 
       
   156 goal Ordinal.thy "Ord(succ(i)) <-> Ord(i)";
       
   157 by (fast_tac (ZF_cs addIs [Ord_succ] addDs [Ord_succD]) 1);
       
   158 val Ord_succ_iff = result();
       
   159 
       
   160 goalw Ordinal.thy [Ord_def] "!!i j. [| Ord(i); Ord(j) |] ==> Ord(i Un j)";
       
   161 by (fast_tac (ZF_cs addSIs [Transset_Un]) 1);
       
   162 val Ord_Un = result();
       
   163 
       
   164 goalw Ordinal.thy [Ord_def] "!!i j. [| Ord(i); Ord(j) |] ==> Ord(i Int j)";
       
   165 by (fast_tac (ZF_cs addSIs [Transset_Int]) 1);
       
   166 val Ord_Int = result();
       
   167 
       
   168 val nonempty::prems = goal Ordinal.thy
       
   169     "[| j:A;  !!i. i:A ==> Ord(i) |] ==> Ord(Inter(A))";
       
   170 by (rtac (nonempty RS Transset_Inter_family RS OrdI) 1);
       
   171 by (rtac Ord_is_Transset 1);
       
   172 by (REPEAT (ares_tac ([Ord_contains_Transset,nonempty]@prems) 1
       
   173      ORELSE etac InterD 1));
       
   174 val Ord_Inter = result();
       
   175 
       
   176 val jmemA::prems = goal Ordinal.thy
       
   177     "[| j:A;  !!x. x:A ==> Ord(B(x)) |] ==> Ord(INT x:A. B(x))";
       
   178 by (rtac (jmemA RS RepFunI RS Ord_Inter) 1);
       
   179 by (etac RepFunE 1);
       
   180 by (etac ssubst 1);
       
   181 by (eresolve_tac prems 1);
       
   182 val Ord_INT = result();
       
   183 
       
   184 (*There is no set of all ordinals, for then it would contain itself*)
       
   185 goal Ordinal.thy "~ (ALL i. i:X <-> Ord(i))";
       
   186 by (rtac notI 1);
       
   187 by (forw_inst_tac [("x", "X")] spec 1);
       
   188 by (safe_tac (ZF_cs addSEs [mem_anti_refl]));
       
   189 by (swap_res_tac [Ord_is_Transset RSN (2,OrdI)] 1);
       
   190 by (fast_tac ZF_cs 2);
       
   191 bw Transset_def;
       
   192 by (safe_tac ZF_cs);
       
   193 by (asm_full_simp_tac ZF_ss 1);
       
   194 by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1));
       
   195 val ON_class = result();
       
   196 
       
   197 (*** < is 'less than' for ordinals ***)
       
   198 
       
   199 goalw Ordinal.thy [lt_def] "!!i j. [| i:j;  Ord(j) |] ==> i<j";
       
   200 by (REPEAT (ares_tac [conjI] 1));
       
   201 val ltI = result();
       
   202 
       
   203 val major::prems = goalw Ordinal.thy [lt_def]
       
   204     "[| i<j;  [| i:j;  Ord(i);  Ord(j) |] ==> P |] ==> P";
       
   205 by (rtac (major RS conjE) 1);
       
   206 by (REPEAT (ares_tac (prems@[Ord_in_Ord]) 1));
       
   207 val ltE = result();
       
   208 
       
   209 goal Ordinal.thy "!!i j. i<j ==> i:j";
       
   210 by (etac ltE 1);
       
   211 by (assume_tac 1);
       
   212 val ltD = result();
       
   213 
       
   214 goalw Ordinal.thy [lt_def] "~ i<0";
       
   215 by (fast_tac ZF_cs 1);
       
   216 val not_lt0 = result();
       
   217 
       
   218 (* i<0 ==> R *)
       
   219 val lt0E = standard (not_lt0 RS notE);
       
   220 
       
   221 goal Ordinal.thy "!!i j k. [| i<j;  j<k |] ==> i<k";
       
   222 by (fast_tac (ZF_cs addSIs [ltI] addSEs [ltE, Ord_trans]) 1);
       
   223 val lt_trans = result();
       
   224 
       
   225 goalw Ordinal.thy [lt_def] "!!i j. [| i<j;  j<i |] ==> P";
       
   226 by (REPEAT (eresolve_tac [asm_rl, conjE, mem_anti_sym] 1));
       
   227 val lt_anti_sym = result();
       
   228 
       
   229 val lt_anti_refl = prove_goal Ordinal.thy "i<i ==> P"
       
   230  (fn [major]=> [ (rtac (major RS (major RS lt_anti_sym)) 1) ]);
       
   231 
       
   232 val lt_not_refl = prove_goal Ordinal.thy "~ i<i"
       
   233  (fn _=> [ (rtac notI 1), (etac lt_anti_refl 1) ]);
       
   234 
       
   235 (** le is less than or equals;  recall  i le j  abbrevs  i<succ(j) !! **)
       
   236 
       
   237 goalw Ordinal.thy [lt_def] "i le j <-> i<j | (i=j & Ord(j))";
       
   238 by (fast_tac (ZF_cs addSIs [Ord_succ] addSDs [Ord_succD]) 1);
       
   239 val le_iff = result();
       
   240 
       
   241 goal Ordinal.thy "!!i j. i<j ==> i le j";
       
   242 by (asm_simp_tac (ZF_ss addsimps [le_iff]) 1);
       
   243 val leI = result();
       
   244 
       
   245 goal Ordinal.thy "!!i. [| i=j;  Ord(j) |] ==> i le j";
       
   246 by (asm_simp_tac (ZF_ss addsimps [le_iff]) 1);
       
   247 val le_eqI = result();
       
   248 
       
   249 val le_refl = refl RS le_eqI;
       
   250 
       
   251 val [prem] = goal Ordinal.thy "(~ (i=j & Ord(j)) ==> i<j) ==> i le j";
       
   252 by (rtac (disjCI RS (le_iff RS iffD2)) 1);
       
   253 by (etac prem 1);
       
   254 val leCI = result();
       
   255 
       
   256 val major::prems = goal Ordinal.thy
       
   257     "[| i le j;  i<j ==> P;  [| i=j;  Ord(j) |] ==> P |] ==> P";
       
   258 by (rtac (major RS (le_iff RS iffD1 RS disjE)) 1);
       
   259 by (DEPTH_SOLVE (ares_tac prems 1 ORELSE etac conjE 1));
       
   260 val leE = result();
       
   261 
       
   262 goal Ordinal.thy "!!i j. [| i le j;  j le i |] ==> i=j";
       
   263 by (asm_full_simp_tac (ZF_ss addsimps [le_iff]) 1);
       
   264 by (fast_tac (ZF_cs addEs [lt_anti_sym]) 1);
       
   265 val le_asym = result();
       
   266 
       
   267 goal Ordinal.thy "i le 0 <-> i=0";
       
   268 by (fast_tac (ZF_cs addSIs [Ord_0 RS le_refl] addSEs [leE, lt0E]) 1);
       
   269 val le0_iff = result();
       
   270 
       
   271 val le0D = standard (le0_iff RS iffD1);
       
   272 
       
   273 val lt_cs = 
       
   274     ZF_cs addSIs [le_refl, leCI]
       
   275           addSDs [le0D]
       
   276           addSEs [lt_anti_refl, lt0E, leE];
       
   277 
       
   278 
       
   279 (*** Natural Deduction rules for Memrel ***)
       
   280 
       
   281 goalw Ordinal.thy [Memrel_def] "<a,b> : Memrel(A) <-> a:b & a:A & b:A";
       
   282 by (fast_tac ZF_cs 1);
       
   283 val Memrel_iff = result();
       
   284 
       
   285 val prems = goal Ordinal.thy "[| a: b;  a: A;  b: A |] ==> <a,b> : Memrel(A)";
       
   286 by (REPEAT (resolve_tac (prems@[conjI, Memrel_iff RS iffD2]) 1));
       
   287 val MemrelI = result();
       
   288 
       
   289 val [major,minor] = goal Ordinal.thy
       
   290     "[| <a,b> : Memrel(A);  \
       
   291 \       [| a: A;  b: A;  a:b |]  ==> P \
       
   292 \    |]  ==> P";
       
   293 by (rtac (major RS (Memrel_iff RS iffD1) RS conjE) 1);
       
   294 by (etac conjE 1);
       
   295 by (rtac minor 1);
       
   296 by (REPEAT (assume_tac 1));
       
   297 val MemrelE = result();
       
   298 
       
   299 (*The membership relation (as a set) is well-founded.
       
   300   Proof idea: show A<=B by applying the foundation axiom to A-B *)
       
   301 goalw Ordinal.thy [wf_def] "wf(Memrel(A))";
       
   302 by (EVERY1 [rtac (foundation RS disjE RS allI),
       
   303 	    etac disjI1,
       
   304 	    etac bexE, 
       
   305 	    rtac (impI RS allI RS bexI RS disjI2),
       
   306 	    etac MemrelE,
       
   307 	    etac bspec,
       
   308 	    REPEAT o assume_tac]);
       
   309 val wf_Memrel = result();
       
   310 
       
   311 (*Transset(i) does not suffice, though ALL j:i.Transset(j) does*)
       
   312 goalw Ordinal.thy [Ord_def, Transset_def, trans_def]
       
   313     "!!i. Ord(i) ==> trans(Memrel(i))";
       
   314 by (fast_tac (ZF_cs addSIs [MemrelI] addSEs [MemrelE]) 1);
       
   315 val trans_Memrel = result();
       
   316 
       
   317 (*If Transset(A) then Memrel(A) internalizes the membership relation below A*)
       
   318 goalw Ordinal.thy [Transset_def]
       
   319     "!!A. Transset(A) ==> <a,b> : Memrel(A) <-> a:b & b:A";
       
   320 by (fast_tac (ZF_cs addSIs [MemrelI] addSEs [MemrelE]) 1);
       
   321 val Transset_Memrel_iff = result();
       
   322 
       
   323 
       
   324 (*** Transfinite induction ***)
       
   325 
       
   326 (*Epsilon induction over a transitive set*)
       
   327 val major::prems = goalw Ordinal.thy [Transset_def]
       
   328     "[| i: k;  Transset(k);                          \
       
   329 \       !!x.[| x: k;  ALL y:x. P(y) |] ==> P(x) \
       
   330 \    |]  ==>  P(i)";
       
   331 by (rtac (major RS (wf_Memrel RS wf_induct2)) 1);
       
   332 by (fast_tac (ZF_cs addEs [MemrelE]) 1);
       
   333 by (resolve_tac prems 1);
       
   334 by (assume_tac 1);
       
   335 by (cut_facts_tac prems 1);
       
   336 by (fast_tac (ZF_cs addIs [MemrelI]) 1);
       
   337 val Transset_induct = result();
       
   338 
       
   339 (*Induction over an ordinal*)
       
   340 val Ord_induct = Ord_is_Transset RSN (2, Transset_induct);
       
   341 
       
   342 (*Induction over the class of ordinals -- a useful corollary of Ord_induct*)
       
   343 val [major,indhyp] = goal Ordinal.thy
       
   344     "[| Ord(i); \
       
   345 \       !!x.[| Ord(x);  ALL y:x. P(y) |] ==> P(x) \
       
   346 \    |]  ==>  P(i)";
       
   347 by (rtac (major RS Ord_succ RS (succI1 RS Ord_induct)) 1);
       
   348 by (rtac indhyp 1);
       
   349 by (rtac (major RS Ord_succ RS Ord_in_Ord) 1);
       
   350 by (REPEAT (assume_tac 1));
       
   351 val trans_induct = result();
       
   352 
       
   353 (*Perform induction on i, then prove the Ord(i) subgoal using prems. *)
       
   354 fun trans_ind_tac a prems i = 
       
   355     EVERY [res_inst_tac [("i",a)] trans_induct i,
       
   356 	   rename_last_tac a ["1"] (i+1),
       
   357 	   ares_tac prems i];
       
   358 
       
   359 
       
   360 (*** Fundamental properties of the epsilon ordering (< on ordinals) ***)
       
   361 
       
   362 (*Finds contradictions for the following proof*)
       
   363 val Ord_trans_tac = EVERY' [etac notE, etac Ord_trans, REPEAT o atac];
       
   364 
       
   365 (** Proving that < is a linear ordering on the ordinals **)
       
   366 
       
   367 val prems = goal Ordinal.thy
       
   368     "Ord(i) ==> (ALL j. Ord(j) --> i:j | i=j | j:i)";
       
   369 by (trans_ind_tac "i" prems 1);
       
   370 by (rtac (impI RS allI) 1);
       
   371 by (trans_ind_tac "j" [] 1);
       
   372 by (DEPTH_SOLVE (step_tac eq_cs 1 ORELSE Ord_trans_tac 1));
       
   373 val Ord_linear_lemma = result();
       
   374 val Ord_linear = standard (Ord_linear_lemma RS spec RS mp);
       
   375 
       
   376 (*The trichotomy law for ordinals!*)
       
   377 val ordi::ordj::prems = goalw Ordinal.thy [lt_def]
       
   378     "[| Ord(i);  Ord(j);  i<j ==> P;  i=j ==> P;  j<i ==> P |] ==> P";
       
   379 by (rtac ([ordi,ordj] MRS Ord_linear RS disjE) 1);
       
   380 by (etac disjE 2);
       
   381 by (DEPTH_SOLVE (ares_tac ([ordi,ordj,conjI] @ prems) 1));
       
   382 val Ord_linear_lt = result();
       
   383 
       
   384 val prems = goal Ordinal.thy
       
   385     "[| Ord(i);  Ord(j);  i<j ==> P;  j le i ==> P |]  ==> P";
       
   386 by (res_inst_tac [("i","i"),("j","j")] Ord_linear_lt 1);
       
   387 by (DEPTH_SOLVE (ares_tac ([leI, sym RS le_eqI] @ prems) 1));
       
   388 val Ord_linear2 = result();
       
   389 
       
   390 val prems = goal Ordinal.thy
       
   391     "[| Ord(i);  Ord(j);  i le j ==> P;  j le i ==> P |]  ==> P";
       
   392 by (res_inst_tac [("i","i"),("j","j")] Ord_linear_lt 1);
       
   393 by (DEPTH_SOLVE (ares_tac ([leI,le_eqI] @ prems) 1));
       
   394 val Ord_linear_le = result();
       
   395 
       
   396 goal Ordinal.thy "!!i j. j le i ==> ~ i<j";
       
   397 by (fast_tac (lt_cs addEs [lt_anti_sym]) 1);
       
   398 val le_imp_not_lt = result();
       
   399 
       
   400 goal Ordinal.thy "!!i j. [| ~ i<j;  Ord(i);  Ord(j) |] ==> j le i";
       
   401 by (res_inst_tac [("i","i"),("j","j")] Ord_linear2 1);
       
   402 by (REPEAT (SOMEGOAL assume_tac));
       
   403 by (fast_tac (lt_cs addEs [lt_anti_sym]) 1);
       
   404 val not_lt_imp_le = result();
       
   405 
       
   406 goal Ordinal.thy "!!i j. [| Ord(i);  Ord(j) |] ==> ~ i<j <-> j le i";
       
   407 by (REPEAT (ares_tac [iffI, le_imp_not_lt, not_lt_imp_le] 1));
       
   408 val not_lt_iff_le = result();
       
   409 
       
   410 goal Ordinal.thy "!!i j. [| Ord(i);  Ord(j) |] ==> ~ i le j <-> j<i";
       
   411 by (asm_simp_tac (ZF_ss addsimps [not_lt_iff_le RS iff_sym]) 1);
       
   412 val not_le_iff_lt = result();
       
   413 
       
   414 goal Ordinal.thy "!!i. Ord(i) ==> 0 le i";
       
   415 by (etac (not_lt_iff_le RS iffD1) 1);
       
   416 by (REPEAT (resolve_tac [Ord_0, not_lt0] 1));
       
   417 val Ord_0_le = result();
       
   418 
       
   419 goal Ordinal.thy "!!i. [| Ord(i);  i~=0 |] ==> 0<i";
       
   420 by (etac (not_le_iff_lt RS iffD1) 1);
       
   421 by (rtac Ord_0 1);
       
   422 by (fast_tac lt_cs 1);
       
   423 val Ord_0_lt = result();
       
   424 
       
   425 (*** Results about less-than or equals ***)
       
   426 
       
   427 (** For ordinals, j<=i (subset) implies j le i (less-than or equals) **)
       
   428 
       
   429 goal Ordinal.thy "!!i j. [| j<=i;  Ord(i);  Ord(j) |] ==> j le i";
       
   430 by (rtac (not_lt_iff_le RS iffD1) 1);
       
   431 by (assume_tac 1);
       
   432 by (assume_tac 1);
       
   433 by (fast_tac (ZF_cs addEs [ltE, mem_anti_refl]) 1);
       
   434 val subset_imp_le = result();
       
   435 
       
   436 goal Ordinal.thy "!!i j. i le j ==> i<=j";
       
   437 by (etac leE 1);
       
   438 by (fast_tac ZF_cs 2);
       
   439 by (fast_tac (subset_cs addIs [OrdmemD] addEs [ltE]) 1);
       
   440 val le_imp_subset = result();
       
   441 
       
   442 goal Ordinal.thy "j le i <-> j<=i & Ord(i) & Ord(j)";
       
   443 by (fast_tac (ZF_cs addSEs [subset_imp_le, le_imp_subset]
       
   444 	            addEs [ltE, make_elim Ord_succD]) 1);
       
   445 val le_subset_iff = result();
       
   446 
       
   447 goal Ordinal.thy "i le succ(j) <-> i le j | i=succ(j) & Ord(i)";
       
   448 by (simp_tac (ZF_ss addsimps [le_iff]) 1);
       
   449 by (fast_tac (ZF_cs addIs [Ord_succ] addDs [Ord_succD]) 1);
       
   450 val le_succ_iff = result();
       
   451 
       
   452 (*Just a variant of subset_imp_le*)
       
   453 val [ordi,ordj,minor] = goal Ordinal.thy
       
   454     "[| Ord(i);  Ord(j);  !!x. x<j ==> x<i |] ==> j le i";
       
   455 by (REPEAT_FIRST (ares_tac [notI RS not_lt_imp_le, ordi, ordj]));
       
   456 be (minor RS lt_anti_refl) 1;
       
   457 val all_lt_imp_le = result();
       
   458 
       
   459 (** Transitive laws **)
       
   460 
       
   461 goal Ordinal.thy "!!i j. [| i le j;  j<k |] ==> i<k";
       
   462 by (fast_tac (ZF_cs addEs [leE, lt_trans]) 1);
       
   463 val lt_trans1 = result();
       
   464 
       
   465 goal Ordinal.thy "!!i j. [| i<j;  j le k |] ==> i<k";
       
   466 by (fast_tac (ZF_cs addEs [leE, lt_trans]) 1);
       
   467 val lt_trans2 = result();
       
   468 
       
   469 goal Ordinal.thy "!!i j. [| i le j;  j le k |] ==> i le k";
       
   470 by (REPEAT (ares_tac [lt_trans1] 1));
       
   471 val le_trans = result();
       
   472 
       
   473 goal Ordinal.thy "!!i j. i<j ==> succ(i) le j";
       
   474 by (rtac (not_lt_iff_le RS iffD1) 1);
       
   475 by (fast_tac (lt_cs addEs [lt_anti_sym]) 3);
       
   476 by (ALLGOALS (fast_tac (ZF_cs addEs [ltE] addIs [Ord_succ])));
       
   477 val succ_leI = result();
       
   478 
       
   479 goal Ordinal.thy "!!i j. succ(i) le j ==> i<j";
       
   480 by (rtac (not_le_iff_lt RS iffD1) 1);
       
   481 by (fast_tac (lt_cs addEs [lt_anti_sym]) 3);
       
   482 by (ALLGOALS (fast_tac (ZF_cs addEs [ltE, make_elim Ord_succD])));
       
   483 val succ_leE = result();
       
   484 
       
   485 goal Ordinal.thy "succ(i) le j <-> i<j";
       
   486 by (REPEAT (ares_tac [iffI,succ_leI,succ_leE] 1));
       
   487 val succ_le_iff = result();
       
   488 
       
   489 (** Union and Intersection **)
       
   490 
       
   491 goal Ordinal.thy "!!i j. [| Ord(i); Ord(j) |] ==> i le i Un j";
       
   492 by (rtac (Un_upper1 RS subset_imp_le) 1);
       
   493 by (REPEAT (ares_tac [Ord_Un] 1));
       
   494 val Un_upper1_le = result();
       
   495 
       
   496 goal Ordinal.thy "!!i j. [| Ord(i); Ord(j) |] ==> j le i Un j";
       
   497 by (rtac (Un_upper2 RS subset_imp_le) 1);
       
   498 by (REPEAT (ares_tac [Ord_Un] 1));
       
   499 val Un_upper2_le = result();
       
   500 
       
   501 (*Replacing k by succ(k') yields the similar rule for le!*)
       
   502 goal Ordinal.thy "!!i j k. [| i<k;  j<k |] ==> i Un j < k";
       
   503 by (res_inst_tac [("i","i"),("j","j")] Ord_linear_le 1);
       
   504 by (rtac (Un_commute RS ssubst) 4);
       
   505 by (asm_full_simp_tac (ZF_ss addsimps [le_subset_iff, subset_Un_iff]) 4);
       
   506 by (asm_full_simp_tac (ZF_ss addsimps [le_subset_iff, subset_Un_iff]) 3);
       
   507 by (REPEAT (eresolve_tac [asm_rl, ltE] 1));
       
   508 val Un_least_lt = result();
       
   509 
       
   510 goal Ordinal.thy "!!i j. [| Ord(i); Ord(j) |] ==> i Un j < k  <->  i<k & j<k";
       
   511 by (safe_tac (ZF_cs addSIs [Un_least_lt]));
       
   512 br (Un_upper2_le RS lt_trans1) 2;
       
   513 br (Un_upper1_le RS lt_trans1) 1;
       
   514 by (REPEAT_SOME assume_tac);
       
   515 val Un_least_lt_iff = result();
       
   516 
       
   517 val [ordi,ordj,ordk] = goal Ordinal.thy
       
   518     "[| Ord(i); Ord(j); Ord(k) |] ==> i Un j : k  <->  i:k & j:k";
       
   519 by (cut_facts_tac [[ordi,ordj] MRS 
       
   520 		   read_instantiate [("k","k")] Un_least_lt_iff] 1);
       
   521 by (asm_full_simp_tac (ZF_ss addsimps [lt_def,ordi,ordj,ordk]) 1);
       
   522 val Un_least_mem_iff = result();
       
   523 
       
   524 (*Replacing k by succ(k') yields the similar rule for le!*)
       
   525 goal Ordinal.thy "!!i j k. [| i<k;  j<k |] ==> i Int j < k";
       
   526 by (res_inst_tac [("i","i"),("j","j")] Ord_linear_le 1);
       
   527 by (rtac (Int_commute RS ssubst) 4);
       
   528 by (asm_full_simp_tac (ZF_ss addsimps [le_subset_iff, subset_Int_iff]) 4);
       
   529 by (asm_full_simp_tac (ZF_ss addsimps [le_subset_iff, subset_Int_iff]) 3);
       
   530 by (REPEAT (eresolve_tac [asm_rl, ltE] 1));
       
   531 val Int_greatest_lt = result();
       
   532 
       
   533 (*FIXME: the Intersection duals are missing!*)
       
   534 
       
   535 
       
   536 (*** Results about limits ***)
       
   537 
       
   538 val prems = goal Ordinal.thy "[| !!i. i:A ==> Ord(i) |] ==> Ord(Union(A))";
       
   539 by (rtac (Ord_is_Transset RS Transset_Union_family RS OrdI) 1);
       
   540 by (REPEAT (etac UnionE 1 ORELSE ares_tac ([Ord_contains_Transset]@prems) 1));
       
   541 val Ord_Union = result();
       
   542 
       
   543 val prems = goal Ordinal.thy
       
   544     "[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(UN x:A. B(x))";
       
   545 by (rtac Ord_Union 1);
       
   546 by (etac RepFunE 1);
       
   547 by (etac ssubst 1);
       
   548 by (eresolve_tac prems 1);
       
   549 val Ord_UN = result();
       
   550 
       
   551 (* No < version; consider (UN i:nat.i)=nat *)
       
   552 val [ordi,limit] = goal Ordinal.thy
       
   553     "[| Ord(i);  !!x. x:A ==> b(x) le i |] ==> (UN x:A. b(x)) le i";
       
   554 by (rtac (le_imp_subset RS UN_least RS subset_imp_le) 1);
       
   555 by (REPEAT (ares_tac [ordi, Ord_UN, limit] 1 ORELSE etac (limit RS ltE) 1));
       
   556 val UN_least_le = result();
       
   557 
       
   558 val [jlti,limit] = goal Ordinal.thy
       
   559     "[| j<i;  !!x. x:A ==> b(x)<j |] ==> (UN x:A. succ(b(x))) < i";
       
   560 by (rtac (jlti RS ltE) 1);
       
   561 by (rtac (UN_least_le RS lt_trans2) 1);
       
   562 by (REPEAT (ares_tac [jlti, succ_leI, limit] 1));
       
   563 val UN_succ_least_lt = result();
       
   564 
       
   565 val prems = goal Ordinal.thy
       
   566     "[| a: A;  i le b(a);  !!x. x:A ==> Ord(b(x)) |] ==> i le (UN x:A. b(x))";
       
   567 by (resolve_tac (prems RL [ltE]) 1);
       
   568 by (rtac (le_imp_subset RS subset_trans RS subset_imp_le) 1);
       
   569 by (REPEAT (ares_tac (prems @ [UN_upper, Ord_UN]) 1));
       
   570 val UN_upper_le = result();
       
   571 
       
   572 goal Ordinal.thy "!!i. Ord(i) ==> (UN y:i. succ(y)) = i";
       
   573 by (fast_tac (eq_cs addEs [Ord_trans]) 1);
       
   574 val Ord_equality = result();
       
   575 
       
   576 (*Holds for all transitive sets, not just ordinals*)
       
   577 goal Ordinal.thy "!!i. Ord(i) ==> Union(i) <= i";
       
   578 by (fast_tac (ZF_cs addSEs [Ord_trans]) 1);
       
   579 val Ord_Union_subset = result();
       
   580 
       
   581 
       
   582 (*** Limit ordinals -- general properties ***)
       
   583 
       
   584 goalw Ordinal.thy [Limit_def] "!!i. Limit(i) ==> Union(i) = i";
       
   585 by (fast_tac (eq_cs addSIs [ltI] addSEs [ltE] addEs [Ord_trans]) 1);
       
   586 val Limit_Union_eq = result();
       
   587 
       
   588 goalw Ordinal.thy [Limit_def] "!!i. Limit(i) ==> Ord(i)";
       
   589 by (etac conjunct1 1);
       
   590 val Limit_is_Ord = result();
       
   591 
       
   592 goalw Ordinal.thy [Limit_def] "!!i. Limit(i) ==> 0 < i";
       
   593 by (etac (conjunct2 RS conjunct1) 1);
       
   594 val Limit_has_0 = result();
       
   595 
       
   596 goalw Ordinal.thy [Limit_def] "!!i. [| Limit(i);  j<i |] ==> succ(j) < i";
       
   597 by (fast_tac ZF_cs 1);
       
   598 val Limit_has_succ = result();
       
   599 
       
   600 goalw Ordinal.thy [Limit_def]
       
   601     "!!i. [| 0<i;  ALL y. succ(y) ~= i |] ==> Limit(i)";
       
   602 by (safe_tac subset_cs);
       
   603 by (rtac (not_le_iff_lt RS iffD1) 2);
       
   604 by (fast_tac (lt_cs addEs [lt_anti_sym]) 4);
       
   605 by (REPEAT (eresolve_tac [asm_rl, ltE, Ord_succ] 1));
       
   606 val non_succ_LimitI = result();
       
   607 
       
   608 goal Ordinal.thy "!!i. Limit(succ(i)) ==> P";
       
   609 br lt_anti_refl 1;
       
   610 br Limit_has_succ 1;
       
   611 ba 1;
       
   612 be (Limit_is_Ord RS Ord_succD RS le_refl) 1;
       
   613 val succ_LimitE = result();
       
   614 
       
   615 goal Ordinal.thy "!!i. [| Limit(i);  i le succ(j) |] ==> i le j";
       
   616 by (safe_tac (ZF_cs addSEs [succ_LimitE, leE]));
       
   617 val Limit_le_succD = result();
       
   618 
       
   619