src/HOL/Metis_Examples/Big_O.thy
changeset 67613 ce654b0e6d69
parent 66453 cc19f7ca2ed6
child 68536 e14848001c4c
equal deleted inserted replaced
67610:4939494ed791 67613:ce654b0e6d69
   126 sledgehammer_params [isar_proofs, compress = 1]
   126 sledgehammer_params [isar_proofs, compress = 1]
   127 
   127 
   128 lemma bigo_alt_def: "O(f) = {h. \<exists>c. (0 < c \<and> (\<forall>x. \<bar>h x\<bar> <= c * \<bar>f x\<bar>))}"
   128 lemma bigo_alt_def: "O(f) = {h. \<exists>c. (0 < c \<and> (\<forall>x. \<bar>h x\<bar> <= c * \<bar>f x\<bar>))}"
   129 by (auto simp add: bigo_def bigo_pos_const)
   129 by (auto simp add: bigo_def bigo_pos_const)
   130 
   130 
   131 lemma bigo_elt_subset [intro]: "f : O(g) \<Longrightarrow> O(f) \<le> O(g)"
   131 lemma bigo_elt_subset [intro]: "f \<in> O(g) \<Longrightarrow> O(f) \<le> O(g)"
   132 apply (auto simp add: bigo_alt_def)
   132 apply (auto simp add: bigo_alt_def)
   133 apply (rule_tac x = "ca * c" in exI)
   133 apply (rule_tac x = "ca * c" in exI)
   134 apply (metis algebra_simps mult_le_cancel_left_pos order_trans mult_pos_pos)
   134 apply (metis algebra_simps mult_le_cancel_left_pos order_trans mult_pos_pos)
   135 done
   135 done
   136 
   136 
   137 lemma bigo_refl [intro]: "f : O(f)"
   137 lemma bigo_refl [intro]: "f \<in> O(f)"
   138 unfolding bigo_def mem_Collect_eq
   138 unfolding bigo_def mem_Collect_eq
   139 by (metis mult_1 order_refl)
   139 by (metis mult_1 order_refl)
   140 
   140 
   141 lemma bigo_zero: "0 : O(g)"
   141 lemma bigo_zero: "0 \<in> O(g)"
   142 apply (auto simp add: bigo_def func_zero)
   142 apply (auto simp add: bigo_def func_zero)
   143 by (metis mult_zero_left order_refl)
   143 by (metis mult_zero_left order_refl)
   144 
   144 
   145 lemma bigo_zero2: "O(\<lambda>x. 0) = {\<lambda>x. 0}"
   145 lemma bigo_zero2: "O(\<lambda>x. 0) = {\<lambda>x. 0}"
   146 by (auto simp add: bigo_def)
   146 by (auto simp add: bigo_def)
   208  apply (metis add_nonneg_nonneg)
   208  apply (metis add_nonneg_nonneg)
   209 apply (rule add_mono)
   209 apply (rule add_mono)
   210  apply (metis max.cobounded2 linorder_linear max.absorb1 mult_right_mono xt1(6))
   210  apply (metis max.cobounded2 linorder_linear max.absorb1 mult_right_mono xt1(6))
   211 by (metis max.cobounded2 linorder_not_le mult_le_cancel_right order_trans)
   211 by (metis max.cobounded2 linorder_not_le mult_le_cancel_right order_trans)
   212 
   212 
   213 lemma bigo_bounded_alt: "\<forall>x. 0 <= f x \<Longrightarrow> \<forall>x. f x <= c * g x \<Longrightarrow> f : O(g)"
   213 lemma bigo_bounded_alt: "\<forall>x. 0 \<le> f x \<Longrightarrow> \<forall>x. f x \<le> c * g x \<Longrightarrow> f \<in> O(g)"
   214 apply (auto simp add: bigo_def)
   214 apply (auto simp add: bigo_def)
   215 (* Version 1: one-line proof *)
   215 (* Version 1: one-line proof *)
   216 by (metis abs_le_D1 linorder_class.not_less order_less_le Orderings.xt1(12) abs_mult)
   216 by (metis abs_le_D1 linorder_class.not_less order_less_le Orderings.xt1(12) abs_mult)
   217 
   217 
   218 lemma "\<forall>x. 0 <= f x \<Longrightarrow> \<forall>x. f x <= c * g x \<Longrightarrow> f : O(g)"
   218 lemma "\<forall>x. 0 \<le> f x \<Longrightarrow> \<forall>x. f x \<le> c * g x \<Longrightarrow> f \<in> O(g)"
   219 apply (auto simp add: bigo_def)
   219 apply (auto simp add: bigo_def)
   220 (* Version 2: structured proof *)
   220 (* Version 2: structured proof *)
   221 proof -
   221 proof -
   222   assume "\<forall>x. f x \<le> c * g x"
   222   assume "\<forall>x. f x \<le> c * g x"
   223   thus "\<exists>c. \<forall>x. f x \<le> c * \<bar>g x\<bar>" by (metis abs_mult abs_ge_self order_trans)
   223   thus "\<exists>c. \<forall>x. f x \<le> c * \<bar>g x\<bar>" by (metis abs_mult abs_ge_self order_trans)
   224 qed
   224 qed
   225 
   225 
   226 lemma bigo_bounded: "\<forall>x. 0 <= f x \<Longrightarrow> \<forall>x. f x <= g x \<Longrightarrow> f : O(g)"
   226 lemma bigo_bounded: "\<forall>x. 0 \<le> f x \<Longrightarrow> \<forall>x. f x \<le> g x \<Longrightarrow> f \<in> O(g)"
   227 apply (erule bigo_bounded_alt [of f 1 g])
   227 apply (erule bigo_bounded_alt [of f 1 g])
   228 by (metis mult_1)
   228 by (metis mult_1)
   229 
   229 
   230 lemma bigo_bounded2: "\<forall>x. lb x <= f x \<Longrightarrow> \<forall>x. f x <= lb x + g x \<Longrightarrow> f : lb +o O(g)"
   230 lemma bigo_bounded2: "\<forall>x. lb x \<le> f x \<Longrightarrow> \<forall>x. f x \<le> lb x + g x \<Longrightarrow> f \<in> lb +o O(g)"
   231 apply (rule set_minus_imp_plus)
   231 apply (rule set_minus_imp_plus)
   232 apply (rule bigo_bounded)
   232 apply (rule bigo_bounded)
   233  apply (metis add_le_cancel_left diff_add_cancel diff_self minus_apply
   233  apply (metis add_le_cancel_left diff_add_cancel diff_self minus_apply
   234               algebra_simps)
   234               algebra_simps)
   235 by (metis add_le_cancel_left diff_add_cancel func_plus le_fun_def
   235 by (metis add_le_cancel_left diff_add_cancel func_plus le_fun_def
   256 lemma bigo_abs4: "f =o g +o O(h) \<Longrightarrow> (\<lambda>x. \<bar>f x\<bar>) =o (\<lambda>x. \<bar>g x\<bar>) +o O(h)"
   256 lemma bigo_abs4: "f =o g +o O(h) \<Longrightarrow> (\<lambda>x. \<bar>f x\<bar>) =o (\<lambda>x. \<bar>g x\<bar>) +o O(h)"
   257   apply (drule set_plus_imp_minus)
   257   apply (drule set_plus_imp_minus)
   258   apply (rule set_minus_imp_plus)
   258   apply (rule set_minus_imp_plus)
   259   apply (subst fun_diff_def)
   259   apply (subst fun_diff_def)
   260 proof -
   260 proof -
   261   assume a: "f - g : O(h)"
   261   assume a: "f - g \<in> O(h)"
   262   have "(\<lambda>x. \<bar>f x\<bar> - \<bar>g x\<bar>) =o O(\<lambda>x. \<bar>\<bar>f x\<bar> - \<bar>g x\<bar>\<bar>)"
   262   have "(\<lambda>x. \<bar>f x\<bar> - \<bar>g x\<bar>) =o O(\<lambda>x. \<bar>\<bar>f x\<bar> - \<bar>g x\<bar>\<bar>)"
   263     by (rule bigo_abs2)
   263     by (rule bigo_abs2)
   264   also have "... <= O(\<lambda>x. \<bar>f x - g x\<bar>)"
   264   also have "\<dots> <= O(\<lambda>x. \<bar>f x - g x\<bar>)"
   265     apply (rule bigo_elt_subset)
   265     apply (rule bigo_elt_subset)
   266     apply (rule bigo_bounded)
   266     apply (rule bigo_bounded)
   267      apply (metis abs_ge_zero)
   267      apply (metis abs_ge_zero)
   268     by (metis abs_triangle_ineq3)
   268     by (metis abs_triangle_ineq3)
   269   also have "... <= O(f - g)"
   269   also have "\<dots> <= O(f - g)"
   270     apply (rule bigo_elt_subset)
   270     apply (rule bigo_elt_subset)
   271     apply (subst fun_diff_def)
   271     apply (subst fun_diff_def)
   272     apply (rule bigo_abs)
   272     apply (rule bigo_abs)
   273     done
   273     done
   274   also have "... <= O(h)"
   274   also have "\<dots> <= O(h)"
   275     using a by (rule bigo_elt_subset)
   275     using a by (rule bigo_elt_subset)
   276   finally show "(\<lambda>x. \<bar>f x\<bar> - \<bar>g x\<bar>) : O(h)" .
   276   finally show "(\<lambda>x. \<bar>f x\<bar> - \<bar>g x\<bar>) \<in> O(h)" .
   277 qed
   277 qed
   278 
   278 
   279 lemma bigo_abs5: "f =o O(g) \<Longrightarrow> (\<lambda>x. \<bar>f x\<bar>) =o O(g)"
   279 lemma bigo_abs5: "f =o O(g) \<Longrightarrow> (\<lambda>x. \<bar>f x\<bar>) =o O(g)"
   280 by (unfold bigo_def, auto)
   280 by (unfold bigo_def, auto)
   281 
   281 
   282 lemma bigo_elt_subset2 [intro]: "f : g +o O(h) \<Longrightarrow> O(f) <= O(g) + O(h)"
   282 lemma bigo_elt_subset2 [intro]: "f \<in> g +o O(h) \<Longrightarrow> O(f) \<le> O(g) + O(h)"
   283 proof -
   283 proof -
   284   assume "f : g +o O(h)"
   284   assume "f \<in> g +o O(h)"
   285   also have "... <= O(g) + O(h)"
   285   also have "\<dots> \<le> O(g) + O(h)"
   286     by (auto del: subsetI)
   286     by (auto del: subsetI)
   287   also have "... = O(\<lambda>x. \<bar>g x\<bar>) + O(\<lambda>x. \<bar>h x\<bar>)"
   287   also have "\<dots> = O(\<lambda>x. \<bar>g x\<bar>) + O(\<lambda>x. \<bar>h x\<bar>)"
   288     by (metis bigo_abs3)
   288     by (metis bigo_abs3)
   289   also have "... = O((\<lambda>x. \<bar>g x\<bar>) + (\<lambda>x. \<bar>h x\<bar>))"
   289   also have "... = O((\<lambda>x. \<bar>g x\<bar>) + (\<lambda>x. \<bar>h x\<bar>))"
   290     by (rule bigo_plus_eq [symmetric], auto)
   290     by (rule bigo_plus_eq [symmetric], auto)
   291   finally have "f : ...".
   291   finally have "f \<in> \<dots>".
   292   then have "O(f) <= ..."
   292   then have "O(f) \<le> \<dots>"
   293     by (elim bigo_elt_subset)
   293     by (elim bigo_elt_subset)
   294   also have "... = O(\<lambda>x. \<bar>g x\<bar>) + O(\<lambda>x. \<bar>h x\<bar>)"
   294   also have "\<dots> = O(\<lambda>x. \<bar>g x\<bar>) + O(\<lambda>x. \<bar>h x\<bar>)"
   295     by (rule bigo_plus_eq, auto)
   295     by (rule bigo_plus_eq, auto)
   296   finally show ?thesis
   296   finally show ?thesis
   297     by (simp add: bigo_abs3 [symmetric])
   297     by (simp add: bigo_abs3 [symmetric])
   298 qed
   298 qed
   299 
   299 
   311 by (metis mult.assoc mult.left_commute abs_of_pos mult.left_commute abs_mult)
   311 by (metis mult.assoc mult.left_commute abs_of_pos mult.left_commute abs_mult)
   312 
   312 
   313 lemma bigo_mult2 [intro]: "f *o O(g) <= O(f * g)"
   313 lemma bigo_mult2 [intro]: "f *o O(g) <= O(f * g)"
   314 by (metis bigo_mult bigo_refl set_times_mono3 subset_trans)
   314 by (metis bigo_mult bigo_refl set_times_mono3 subset_trans)
   315 
   315 
   316 lemma bigo_mult3: "f : O(h) \<Longrightarrow> g : O(j) \<Longrightarrow> f * g : O(h * j)"
   316 lemma bigo_mult3: "f \<in> O(h) \<Longrightarrow> g \<in> O(j) \<Longrightarrow> f * g \<in> O(h * j)"
   317 by (metis bigo_mult set_rev_mp set_times_intro)
   317 by (metis bigo_mult set_rev_mp set_times_intro)
   318 
   318 
   319 lemma bigo_mult4 [intro]:"f : k +o O(h) \<Longrightarrow> g * f : (g * k) +o O(g * h)"
   319 lemma bigo_mult4 [intro]:"f \<in> k +o O(h) \<Longrightarrow> g * f \<in> (g * k) +o O(g * h)"
   320 by (metis bigo_mult2 set_plus_mono_b set_times_intro2 set_times_plus_distrib)
   320 by (metis bigo_mult2 set_plus_mono_b set_times_intro2 set_times_plus_distrib)
   321 
   321 
   322 lemma bigo_mult5: "\<forall>x. f x ~= 0 \<Longrightarrow>
   322 lemma bigo_mult5: "\<forall>x. f x ~= 0 \<Longrightarrow>
   323     O(f * g) <= (f::'a => ('b::linordered_field)) *o O(g)"
   323     O(f * g) <= (f::'a => ('b::linordered_field)) *o O(g)"
   324 proof -
   324 proof -
   325   assume a: "\<forall>x. f x ~= 0"
   325   assume a: "\<forall>x. f x \<noteq> 0"
   326   show "O(f * g) <= f *o O(g)"
   326   show "O(f * g) <= f *o O(g)"
   327   proof
   327   proof
   328     fix h
   328     fix h
   329     assume h: "h : O(f * g)"
   329     assume h: "h \<in> O(f * g)"
   330     then have "(\<lambda>x. 1 / (f x)) * h : (\<lambda>x. 1 / f x) *o O(f * g)"
   330     then have "(\<lambda>x. 1 / (f x)) * h \<in> (\<lambda>x. 1 / f x) *o O(f * g)"
   331       by auto
   331       by auto
   332     also have "... <= O((\<lambda>x. 1 / f x) * (f * g))"
   332     also have "... <= O((\<lambda>x. 1 / f x) * (f * g))"
   333       by (rule bigo_mult2)
   333       by (rule bigo_mult2)
   334     also have "(\<lambda>x. 1 / f x) * (f * g) = g"
   334     also have "(\<lambda>x. 1 / f x) * (f * g) = g"
   335       by (simp add: fun_eq_iff a)
   335       by (simp add: fun_eq_iff a)
   336     finally have "(\<lambda>x. (1::'b) / f x) * h : O(g)".
   336     finally have "(\<lambda>x. (1::'b) / f x) * h \<in> O(g)".
   337     then have "f * ((\<lambda>x. (1::'b) / f x) * h) : f *o O(g)"
   337     then have "f * ((\<lambda>x. (1::'b) / f x) * h) \<in> f *o O(g)"
   338       by auto
   338       by auto
   339     also have "f * ((\<lambda>x. (1::'b) / f x) * h) = h"
   339     also have "f * ((\<lambda>x. (1::'b) / f x) * h) = h"
   340       by (simp add: func_times fun_eq_iff a)
   340       by (simp add: func_times fun_eq_iff a)
   341     finally show "h : f *o O(g)".
   341     finally show "h \<in> f *o O(g)".
   342   qed
   342   qed
   343 qed
   343 qed
   344 
   344 
   345 lemma bigo_mult6:
   345 lemma bigo_mult6:
   346 "\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) = (f::'a \<Rightarrow> ('b::linordered_field)) *o O(g)"
   346 "\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) = (f::'a \<Rightarrow> ('b::linordered_field)) *o O(g)"
   358 
   358 
   359 lemma bigo_mult8:
   359 lemma bigo_mult8:
   360 "\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) = O(f::'a \<Rightarrow> ('b::linordered_field)) * O(g)"
   360 "\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) = O(f::'a \<Rightarrow> ('b::linordered_field)) * O(g)"
   361 by (metis bigo_mult bigo_mult7 order_antisym_conv)
   361 by (metis bigo_mult bigo_mult7 order_antisym_conv)
   362 
   362 
   363 lemma bigo_minus [intro]: "f : O(g) \<Longrightarrow> - f : O(g)"
   363 lemma bigo_minus [intro]: "f \<in> O(g) \<Longrightarrow> - f \<in> O(g)"
   364 by (auto simp add: bigo_def fun_Compl_def)
   364 by (auto simp add: bigo_def fun_Compl_def)
   365 
   365 
   366 lemma bigo_minus2: "f : g +o O(h) \<Longrightarrow> -f : -g +o O(h)"
   366 lemma bigo_minus2: "f \<in> g +o O(h) \<Longrightarrow> -f \<in> -g +o O(h)"
   367 by (metis (no_types, lifting) bigo_minus diff_minus_eq_add minus_add_distrib
   367 by (metis (no_types, lifting) bigo_minus diff_minus_eq_add minus_add_distrib
   368     minus_minus set_minus_imp_plus set_plus_imp_minus)
   368     minus_minus set_minus_imp_plus set_plus_imp_minus)
   369 
   369 
   370 lemma bigo_minus3: "O(-f) = O(f)"
   370 lemma bigo_minus3: "O(-f) = O(f)"
   371 by (metis bigo_elt_subset bigo_minus bigo_refl equalityI minus_minus)
   371 by (metis bigo_elt_subset bigo_minus bigo_refl equalityI minus_minus)
   372 
   372 
   373 lemma bigo_plus_absorb_lemma1: "f : O(g) \<Longrightarrow> f +o O(g) \<le> O(g)"
   373 lemma bigo_plus_absorb_lemma1: "f \<in> O(g) \<Longrightarrow> f +o O(g) \<le> O(g)"
   374 by (metis bigo_plus_idemp set_plus_mono3)
   374 by (metis bigo_plus_idemp set_plus_mono3)
   375 
   375 
   376 lemma bigo_plus_absorb_lemma2: "f : O(g) \<Longrightarrow> O(g) \<le> f +o O(g)"
   376 lemma bigo_plus_absorb_lemma2: "f \<in> O(g) \<Longrightarrow> O(g) \<le> f +o O(g)"
   377 by (metis (no_types) bigo_minus bigo_plus_absorb_lemma1 right_minus
   377 by (metis (no_types) bigo_minus bigo_plus_absorb_lemma1 right_minus
   378           set_plus_mono set_plus_rearrange2 set_zero_plus subsetD subset_refl
   378           set_plus_mono set_plus_rearrange2 set_zero_plus subsetD subset_refl
   379           subset_trans)
   379           subset_trans)
   380 
   380 
   381 lemma bigo_plus_absorb [simp]: "f : O(g) \<Longrightarrow> f +o O(g) = O(g)"
   381 lemma bigo_plus_absorb [simp]: "f \<in> O(g) \<Longrightarrow> f +o O(g) = O(g)"
   382 by (metis bigo_plus_absorb_lemma1 bigo_plus_absorb_lemma2 order_eq_iff)
   382 by (metis bigo_plus_absorb_lemma1 bigo_plus_absorb_lemma2 order_eq_iff)
   383 
   383 
   384 lemma bigo_plus_absorb2 [intro]: "f : O(g) \<Longrightarrow> A <= O(g) \<Longrightarrow> f +o A \<le> O(g)"
   384 lemma bigo_plus_absorb2 [intro]: "f \<in> O(g) \<Longrightarrow> A \<subseteq> O(g) \<Longrightarrow> f +o A \<subseteq> O(g)"
   385 by (metis bigo_plus_absorb set_plus_mono)
   385 by (metis bigo_plus_absorb set_plus_mono)
   386 
   386 
   387 lemma bigo_add_commute_imp: "f : g +o O(h) \<Longrightarrow> g : f +o O(h)"
   387 lemma bigo_add_commute_imp: "f \<in> g +o O(h) \<Longrightarrow> g \<in> f +o O(h)"
   388 by (metis bigo_minus minus_diff_eq set_plus_imp_minus set_minus_plus)
   388 by (metis bigo_minus minus_diff_eq set_plus_imp_minus set_minus_plus)
   389 
   389 
   390 lemma bigo_add_commute: "(f : g +o O(h)) = (g : f +o O(h))"
   390 lemma bigo_add_commute: "(f \<in> g +o O(h)) = (g \<in> f +o O(h))"
   391 by (metis bigo_add_commute_imp)
   391 by (metis bigo_add_commute_imp)
   392 
   392 
   393 lemma bigo_const1: "(\<lambda>x. c) : O(\<lambda>x. 1)"
   393 lemma bigo_const1: "(\<lambda>x. c) \<in> O(\<lambda>x. 1)"
   394 by (auto simp add: bigo_def ac_simps)
   394 by (auto simp add: bigo_def ac_simps)
   395 
   395 
   396 lemma bigo_const2 [intro]: "O(\<lambda>x. c) \<le> O(\<lambda>x. 1)"
   396 lemma bigo_const2 [intro]: "O(\<lambda>x. c) \<le> O(\<lambda>x. 1)"
   397 by (metis bigo_const1 bigo_elt_subset)
   397 by (metis bigo_const1 bigo_elt_subset)
   398 
   398 
   399 lemma bigo_const3: "(c::'a::linordered_field) ~= 0 \<Longrightarrow> (\<lambda>x. 1) : O(\<lambda>x. c)"
   399 lemma bigo_const3: "(c::'a::linordered_field) \<noteq> 0 \<Longrightarrow> (\<lambda>x. 1) \<in> O(\<lambda>x. c)"
   400 apply (simp add: bigo_def)
   400 apply (simp add: bigo_def)
   401 by (metis abs_eq_0 left_inverse order_refl)
   401 by (metis abs_eq_0 left_inverse order_refl)
   402 
   402 
   403 lemma bigo_const4: "(c::'a::linordered_field) ~= 0 \<Longrightarrow> O(\<lambda>x. 1) <= O(\<lambda>x. c)"
   403 lemma bigo_const4: "(c::'a::linordered_field) \<noteq> 0 \<Longrightarrow> O(\<lambda>x. 1) \<subseteq> O(\<lambda>x. c)"
   404 by (metis bigo_elt_subset bigo_const3)
   404 by (metis bigo_elt_subset bigo_const3)
   405 
   405 
   406 lemma bigo_const [simp]: "(c::'a::linordered_field) ~= 0 \<Longrightarrow>
   406 lemma bigo_const [simp]: "(c::'a::linordered_field) ~= 0 \<Longrightarrow>
   407     O(\<lambda>x. c) = O(\<lambda>x. 1)"
   407     O(\<lambda>x. c) = O(\<lambda>x. 1)"
   408 by (metis bigo_const2 bigo_const4 equalityI)
   408 by (metis bigo_const2 bigo_const4 equalityI)
   409 
   409 
   410 lemma bigo_const_mult1: "(\<lambda>x. c * f x) : O(f)"
   410 lemma bigo_const_mult1: "(\<lambda>x. c * f x) \<in> O(f)"
   411 apply (simp add: bigo_def abs_mult)
   411 apply (simp add: bigo_def abs_mult)
   412 by (metis le_less)
   412 by (metis le_less)
   413 
   413 
   414 lemma bigo_const_mult2: "O(\<lambda>x. c * f x) \<le> O(f)"
   414 lemma bigo_const_mult2: "O(\<lambda>x. c * f x) \<le> O(f)"
   415 by (rule bigo_elt_subset, rule bigo_const_mult1)
   415 by (rule bigo_elt_subset, rule bigo_const_mult1)
   416 
   416 
   417 lemma bigo_const_mult3: "(c::'a::linordered_field) ~= 0 \<Longrightarrow> f : O(\<lambda>x. c * f x)"
   417 lemma bigo_const_mult3: "(c::'a::linordered_field) \<noteq> 0 \<Longrightarrow> f \<in> O(\<lambda>x. c * f x)"
   418 apply (simp add: bigo_def)
   418 apply (simp add: bigo_def)
   419 by (metis (no_types) abs_mult mult.assoc mult_1 order_refl left_inverse)
   419 by (metis (no_types) abs_mult mult.assoc mult_1 order_refl left_inverse)
   420 
   420 
   421 lemma bigo_const_mult4:
   421 lemma bigo_const_mult4:
   422 "(c::'a::linordered_field) \<noteq> 0 \<Longrightarrow> O(f) \<le> O(\<lambda>x. c * f x)"
   422 "(c::'a::linordered_field) \<noteq> 0 \<Longrightarrow> O(f) \<le> O(\<lambda>x. c * f x)"
   423 by (metis bigo_elt_subset bigo_const_mult3)
   423 by (metis bigo_elt_subset bigo_const_mult3)
   424 
   424 
   425 lemma bigo_const_mult [simp]: "(c::'a::linordered_field) ~= 0 \<Longrightarrow>
   425 lemma bigo_const_mult [simp]: "(c::'a::linordered_field) \<noteq> 0 \<Longrightarrow>
   426     O(\<lambda>x. c * f x) = O(f)"
   426     O(\<lambda>x. c * f x) = O(f)"
   427 by (metis equalityI bigo_const_mult2 bigo_const_mult4)
   427 by (metis equalityI bigo_const_mult2 bigo_const_mult4)
   428 
   428 
   429 lemma bigo_const_mult5 [simp]: "(c::'a::linordered_field) ~= 0 \<Longrightarrow>
   429 lemma bigo_const_mult5 [simp]: "(c::'a::linordered_field) \<noteq> 0 \<Longrightarrow>
   430     (\<lambda>x. c) *o O(f) = O(f)"
   430     (\<lambda>x. c) *o O(f) = O(f)"
   431   apply (auto del: subsetI)
   431   apply (auto del: subsetI)
   432   apply (rule order_trans)
   432   apply (rule order_trans)
   433   apply (rule bigo_mult2)
   433   apply (rule bigo_mult2)
   434   apply (simp add: func_times)
   434   apply (simp add: func_times)
   489 apply (simp add: fun_diff_def)
   489 apply (simp add: fun_diff_def)
   490 done
   490 done
   491 
   491 
   492 subsection \<open>Sum\<close>
   492 subsection \<open>Sum\<close>
   493 
   493 
   494 lemma bigo_sum_main: "\<forall>x. \<forall>y \<in> A x. 0 <= h x y \<Longrightarrow>
   494 lemma bigo_sum_main: "\<forall>x. \<forall>y \<in> A x. 0 \<le> h x y \<Longrightarrow>
   495     \<exists>c. \<forall>x. \<forall>y \<in> A x. \<bar>f x y\<bar> <= c * (h x y) \<Longrightarrow>
   495     \<exists>c. \<forall>x. \<forall>y \<in> A x. \<bar>f x y\<bar> <= c * (h x y) \<Longrightarrow>
   496       (\<lambda>x. \<Sum>y \<in> A x. f x y) =o O(\<lambda>x. \<Sum>y \<in> A x. h x y)"
   496       (\<lambda>x. \<Sum>y \<in> A x. f x y) =o O(\<lambda>x. \<Sum>y \<in> A x. h x y)"
   497 apply (auto simp add: bigo_def)
   497 apply (auto simp add: bigo_def)
   498 apply (rule_tac x = "\<bar>c\<bar>" in exI)
   498 apply (rule_tac x = "\<bar>c\<bar>" in exI)
   499 apply (subst abs_of_nonneg) back back
   499 apply (subst abs_of_nonneg) back back