src/HOL/Library/Well_Order_Extension.thy
changeset 52199 d25fc4c0ff62
parent 52197 20071aef2a3b
child 52200 6324f30e23b6
equal deleted inserted replaced
52197:20071aef2a3b 52199:d25fc4c0ff62
     1 (*  Title:      HOL/Library/Well_Order_Extension.thy
       
     2     Author:     Christian Sternagel, JAIST
       
     3 *)
       
     4 
       
     5 header {*Extending Well-founded Relations to Well-Orders.*}
       
     6 
       
     7 theory Well_Order_Extension
       
     8 imports Zorn Order_Union
       
     9 begin
       
    10 
       
    11 text {*A \emph{downset} (also lower set, decreasing set, initial segment, or
       
    12 downward closed set) is closed w.r.t.\ smaller elements.*}
       
    13 definition downset_on where
       
    14   "downset_on A r = (\<forall>x y. (x, y) \<in> r \<and> y \<in> A \<longrightarrow> x \<in> A)"
       
    15 
       
    16 (*
       
    17 text {*Connection to order filters of the @{theory Cardinals} theory.*}
       
    18 lemma (in wo_rel) ofilter_downset_on_conv:
       
    19   "ofilter A \<longleftrightarrow> downset_on A r \<and> A \<subseteq> Field r"
       
    20   by (auto simp: downset_on_def ofilter_def under_def)
       
    21 *)
       
    22 
       
    23 lemma downset_onI:
       
    24   "(\<And>x y. (x, y) \<in> r \<Longrightarrow> y \<in> A \<Longrightarrow> x \<in> A) \<Longrightarrow> downset_on A r"
       
    25   by (auto simp: downset_on_def)
       
    26 
       
    27 lemma downset_onD:
       
    28   "downset_on A r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> y \<in> A \<Longrightarrow> x \<in> A"
       
    29   by (auto simp: downset_on_def)
       
    30 
       
    31 text {*Extensions of relations w.r.t.\ a given set.*}
       
    32 definition extension_on where
       
    33   "extension_on A r s = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y) \<in> s \<longrightarrow> (x, y) \<in> r)"
       
    34 
       
    35 lemma extension_onI:
       
    36   "(\<And>x y. \<lbrakk>x \<in> A; y \<in> A; (x, y) \<in> s\<rbrakk> \<Longrightarrow> (x, y) \<in> r) \<Longrightarrow> extension_on A r s"
       
    37   by (auto simp: extension_on_def)
       
    38 
       
    39 lemma extension_onD:
       
    40   "extension_on A r s \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> (x, y) \<in> s \<Longrightarrow> (x, y) \<in> r"
       
    41   by (auto simp: extension_on_def)
       
    42 
       
    43 lemma downset_on_Union:
       
    44   assumes "\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p"
       
    45   shows "downset_on (Field (\<Union>R)) p"
       
    46   using assms by (auto intro: downset_onI dest: downset_onD)
       
    47 
       
    48 lemma chain_subset_extension_on_Union:
       
    49   assumes "chain\<^sub>\<subseteq> R" and "\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p"
       
    50   shows "extension_on (Field (\<Union>R)) (\<Union>R) p"
       
    51   using assms
       
    52   by (simp add: chain_subset_def extension_on_def)
       
    53      (metis Field_def mono_Field set_mp)
       
    54 
       
    55 lemma downset_on_empty [simp]: "downset_on {} p"
       
    56   by (auto simp: downset_on_def)
       
    57 
       
    58 lemma extension_on_empty [simp]: "extension_on {} p q"
       
    59   by (auto simp: extension_on_def)
       
    60 
       
    61 text {*Every well-founded relation can be extended to a well-order.*}
       
    62 theorem well_order_extension:
       
    63   assumes "wf p"
       
    64   shows "\<exists>w. p \<subseteq> w \<and> Well_order w"
       
    65 proof -
       
    66   let ?K = "{r. Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p}"
       
    67   def I \<equiv> "init_seg_of \<inter> ?K \<times> ?K"
       
    68   have I_init: "I \<subseteq> init_seg_of" by (simp add: I_def)
       
    69   then have subch: "\<And>R. R \<in> Chains I \<Longrightarrow> chain\<^sub>\<subseteq> R"
       
    70     by (auto simp: init_seg_of_def chain_subset_def Chains_def)
       
    71   have Chains_wo: "\<And>R r. R \<in> Chains I \<Longrightarrow> r \<in> R \<Longrightarrow>
       
    72       Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p"
       
    73     by (simp add: Chains_def I_def) blast
       
    74   have FI: "Field I = ?K" by (auto simp: I_def init_seg_of_def Field_def)
       
    75   then have 0: "Partial_order I"
       
    76     by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def
       
    77       trans_def I_def elim: trans_init_seg_of)
       
    78   { fix R assume "R \<in> Chains I"
       
    79     then have Ris: "R \<in> Chains init_seg_of" using mono_Chains [OF I_init] by blast
       
    80     have subch: "chain\<^sub>\<subseteq> R" using `R \<in> Chains I` I_init
       
    81       by (auto simp: init_seg_of_def chain_subset_def Chains_def)
       
    82     have "\<forall>r\<in>R. Refl r" and "\<forall>r\<in>R. trans r" and "\<forall>r\<in>R. antisym r" and
       
    83       "\<forall>r\<in>R. Total r" and "\<forall>r\<in>R. wf (r - Id)" and
       
    84       "\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p" and
       
    85       "\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p"
       
    86       using Chains_wo [OF `R \<in> Chains I`] by (simp_all add: order_on_defs)
       
    87     have "Refl (\<Union>R)" using `\<forall>r\<in>R. Refl r` by (auto simp: refl_on_def)
       
    88     moreover have "trans (\<Union>R)"
       
    89       by (rule chain_subset_trans_Union [OF subch `\<forall>r\<in>R. trans r`])
       
    90     moreover have "antisym (\<Union>R)"
       
    91       by (rule chain_subset_antisym_Union [OF subch `\<forall>r\<in>R. antisym r`])
       
    92     moreover have "Total (\<Union>R)"
       
    93       by (rule chain_subset_Total_Union [OF subch `\<forall>r\<in>R. Total r`])
       
    94     moreover have "wf ((\<Union>R) - Id)"
       
    95     proof -
       
    96       have "(\<Union>R) - Id = \<Union>{r - Id | r. r \<in> R}" by blast
       
    97       with `\<forall>r\<in>R. wf (r - Id)` wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]]
       
    98       show ?thesis by (simp (no_asm_simp)) blast
       
    99     qed
       
   100     ultimately have "Well_order (\<Union>R)" by (simp add: order_on_defs)
       
   101     moreover have "\<forall>r\<in>R. r initial_segment_of \<Union>R" using Ris
       
   102       by (simp add: Chains_init_seg_of_Union)
       
   103     moreover have "downset_on (Field (\<Union>R)) p"
       
   104       by (rule downset_on_Union [OF `\<And>r. r \<in> R \<Longrightarrow> downset_on (Field r) p`])
       
   105     moreover have "extension_on (Field (\<Union>R)) (\<Union>R) p"
       
   106       by (rule chain_subset_extension_on_Union [OF subch `\<And>r. r \<in> R \<Longrightarrow> extension_on (Field r) r p`])
       
   107     ultimately have "\<Union>R \<in> ?K \<and> (\<forall>r\<in>R. (r,\<Union>R) \<in> I)"
       
   108       using mono_Chains [OF I_init] and `R \<in> Chains I`
       
   109       by (simp (no_asm) add: I_def del: Field_Union) (metis Chains_wo)
       
   110   }
       
   111   then have 1: "\<forall>R\<in>Chains I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r, u) \<in> I" by (subst FI) blast
       
   112   txt {*Zorn's Lemma yields a maximal well-order m.*}
       
   113   from Zorns_po_lemma [OF 0 1] obtain m :: "('a \<times> 'a) set"
       
   114     where "Well_order m" and "downset_on (Field m) p" and "extension_on (Field m) m p" and
       
   115     max: "\<forall>r. Well_order r \<and> downset_on (Field r) p \<and> extension_on (Field r) r p \<and>
       
   116       (m, r) \<in> I \<longrightarrow> r = m"
       
   117     by (auto simp: FI)
       
   118   have "Field p \<subseteq> Field m"
       
   119   proof (rule ccontr)
       
   120     let ?Q = "Field p - Field m"
       
   121     assume "\<not> (Field p \<subseteq> Field m)"
       
   122     with assms [unfolded wf_eq_minimal, THEN spec, of ?Q]
       
   123       obtain x where "x \<in> Field p" and "x \<notin> Field m" and
       
   124       min: "\<forall>y. (y, x) \<in> p \<longrightarrow> y \<notin> ?Q" by blast
       
   125     txt {*Add @{term x} as topmost element to @{term m}.*}
       
   126     let ?s = "{(y, x) | y. y \<in> Field m}"
       
   127     let ?m = "insert (x, x) m \<union> ?s"
       
   128     have Fm: "Field ?m = insert x (Field m)" by (auto simp: Field_def)
       
   129     have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)"
       
   130       using `Well_order m` by (simp_all add: order_on_defs)
       
   131     txt {*We show that the extension is a well-order.*}
       
   132     have "Refl ?m" using `Refl m` Fm by (auto simp: refl_on_def)
       
   133     moreover have "trans ?m" using `trans m` `x \<notin> Field m`
       
   134       unfolding trans_def Field_def Domain_unfold Domain_converse [symmetric] by blast
       
   135     moreover have "antisym ?m" using `antisym m` `x \<notin> Field m`
       
   136       unfolding antisym_def Field_def Domain_unfold Domain_converse [symmetric] by blast
       
   137     moreover have "Total ?m" using `Total m` Fm by (auto simp: Relation.total_on_def)
       
   138     moreover have "wf (?m - Id)"
       
   139     proof -
       
   140       have "wf ?s" using `x \<notin> Field m`
       
   141         by (simp add: wf_eq_minimal Field_def Domain_unfold Domain_converse [symmetric]) metis
       
   142       thus ?thesis using `wf (m - Id)` `x \<notin> Field m`
       
   143         wf_subset [OF `wf ?s` Diff_subset]
       
   144         by (fastforce intro!: wf_Un simp add: Un_Diff Field_def)
       
   145     qed
       
   146     ultimately have "Well_order ?m" by (simp add: order_on_defs)
       
   147     moreover have "extension_on (Field ?m) ?m p"
       
   148       using `extension_on (Field m) m p` `downset_on (Field m) p`
       
   149       by (subst Fm) (auto simp: extension_on_def dest: downset_onD)
       
   150     moreover have "downset_on (Field ?m) p"
       
   151       using `downset_on (Field m) p` and min
       
   152       by (subst Fm, simp add: downset_on_def Field_def) (metis Domain_iff)
       
   153     moreover have "(m, ?m) \<in> I"
       
   154       using `Well_order m` and `Well_order ?m` and
       
   155       `downset_on (Field m) p` and `downset_on (Field ?m) p` and
       
   156       `extension_on (Field m) m p` and `extension_on (Field ?m) ?m p` and
       
   157       `Refl m` and `x \<notin> Field m`
       
   158       by (auto simp: I_def init_seg_of_def refl_on_def)
       
   159     ultimately
       
   160     --{*This contradicts maximality of m:*}
       
   161     show False using max and `x \<notin> Field m` unfolding Field_def by blast
       
   162   qed
       
   163   have "p \<subseteq> m"
       
   164     using `Field p \<subseteq> Field m` and `extension_on (Field m) m p`
       
   165     by (force simp: Field_def extension_on_def)
       
   166   with `Well_order m` show ?thesis by blast
       
   167 qed
       
   168 
       
   169 text {*Every well-founded relation can be extended to a total well-order.*}
       
   170 corollary total_well_order_extension:
       
   171   assumes "wf p"
       
   172   shows "\<exists>w. p \<subseteq> w \<and> Well_order w \<and> Field w = UNIV"
       
   173 proof -
       
   174   from well_order_extension [OF assms] obtain w
       
   175     where "p \<subseteq> w" and wo: "Well_order w" by blast
       
   176   let ?A = "UNIV - Field w"
       
   177   from well_order_on [of ?A] obtain w' where wo': "well_order_on ?A w'" ..
       
   178   have [simp]: "Field w' = ?A" using rel.well_order_on_Well_order [OF wo'] by simp
       
   179   have *: "Field w \<inter> Field w' = {}" by simp
       
   180   let ?w = "w \<union>o w'"
       
   181   have "p \<subseteq> ?w" using `p \<subseteq> w` by (auto simp: Osum_def)
       
   182   moreover have "Well_order ?w" using Osum_Well_order [OF * wo] and wo' by simp
       
   183   moreover have "Field ?w = UNIV" by (simp add: Field_Osum)
       
   184   ultimately show ?thesis by blast
       
   185 qed
       
   186 
       
   187 corollary well_order_on_extension:
       
   188   assumes "wf p" and "Field p \<subseteq> A"
       
   189   shows "\<exists>w. p \<subseteq> w \<and> well_order_on A w"
       
   190 proof -
       
   191   from total_well_order_extension [OF `wf p`] obtain r
       
   192     where "p \<subseteq> r" and wo: "Well_order r" and univ: "Field r = UNIV" by blast
       
   193   let ?r = "{(x, y). x \<in> A \<and> y \<in> A \<and> (x, y) \<in> r}"
       
   194   from `p \<subseteq> r` have "p \<subseteq> ?r" using `Field p \<subseteq> A` by (auto simp: Field_def)
       
   195   have 1: "Field ?r = A" using wo univ
       
   196     by (fastforce simp: Field_def order_on_defs refl_on_def)
       
   197   have "Refl r" "trans r" "antisym r" "Total r" "wf (r - Id)"
       
   198     using `Well_order r` by (simp_all add: order_on_defs)
       
   199   have "refl_on A ?r" using `Refl r` by (auto simp: refl_on_def univ)
       
   200   moreover have "trans ?r" using `trans r`
       
   201     unfolding trans_def by blast
       
   202   moreover have "antisym ?r" using `antisym r`
       
   203     unfolding antisym_def by blast
       
   204   moreover have "total_on A ?r" using `Total r` by (simp add: total_on_def univ)
       
   205   moreover have "wf (?r - Id)" by (rule wf_subset [OF `wf(r - Id)`]) blast
       
   206   ultimately have "well_order_on A ?r" by (simp add: order_on_defs)
       
   207   with `p \<subseteq> ?r` show ?thesis by blast
       
   208 qed
       
   209 
       
   210 end
       
   211