src/HOL/Fun.thy
changeset 13585 db4005b40cc6
parent 12460 624a8cd51b4e
child 13637 02aa63636ab8
equal deleted inserted replaced
13584:3736cf381e15 13585:db4005b40cc6
     4     Copyright   1994  University of Cambridge
     4     Copyright   1994  University of Cambridge
     5 
     5 
     6 Notions about functions.
     6 Notions about functions.
     7 *)
     7 *)
     8 
     8 
     9 Fun = Typedef +
     9 theory Fun = Typedef:
    10 
    10 
    11 instance set :: (type) order
    11 instance set :: (type) order
    12                        (subset_refl,subset_trans,subset_antisym,psubset_eq)
    12   by (intro_classes,
    13 consts
    13       (assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+)
    14   fun_upd  :: "('a => 'b) => 'a => 'b => ('a => 'b)"
    14 
       
    15 constdefs
       
    16   fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
       
    17    "fun_upd f a b == % x. if x=a then b else f x"
    15 
    18 
    16 nonterminals
    19 nonterminals
    17   updbinds updbind
    20   updbinds updbind
    18 syntax
    21 syntax
    19   "_updbind"       :: ['a, 'a] => updbind             ("(2_ :=/ _)")
    22   "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
    20   ""               :: updbind => updbinds             ("_")
    23   ""         :: "updbind => updbinds"             ("_")
    21   "_updbinds"      :: [updbind, updbinds] => updbinds ("_,/ _")
    24   "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
    22   "_Update"        :: ['a, updbinds] => 'a            ("_/'((_)')" [1000,0] 900)
    25   "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
    23 
    26 
    24 translations
    27 translations
    25   "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
    28   "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
    26   "f(x:=y)"                     == "fun_upd f x y"
    29   "f(x:=y)"                     == "fun_upd f x y"
    27 
       
    28 defs
       
    29   fun_upd_def "f(a:=b) == % x. if x=a then b else f x"
       
    30 
    30 
    31 (* Hint: to define the sum of two functions (or maps), use sum_case.
    31 (* Hint: to define the sum of two functions (or maps), use sum_case.
    32          A nice infix syntax could be defined (in Datatype.thy or below) by
    32          A nice infix syntax could be defined (in Datatype.thy or below) by
    33 consts
    33 consts
    34   fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
    34   fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
    35 translations
    35 translations
    36  "fun_sum" == "sum_case"
    36  "fun_sum" == sum_case
    37 *)
    37 *)
    38 
    38 
    39 constdefs
    39 constdefs
    40   id ::  'a => 'a
    40   id :: "'a => 'a"
    41     "id == %x. x"
    41     "id == %x. x"
    42 
    42 
    43   o  :: ['b => 'c, 'a => 'b, 'a] => 'c   (infixl 55)
    43   comp :: "['b => 'c, 'a => 'b, 'a] => 'c"   (infixl "o" 55)
    44     "f o g == %x. f(g(x))"
    44     "f o g == %x. f(g(x))"
    45 
    45 
    46   inj_on :: ['a => 'b, 'a set] => bool
    46 text{*compatibility*}
       
    47 lemmas o_def = comp_def
       
    48 
       
    49 syntax (xsymbols)
       
    50   comp :: "['b => 'c, 'a => 'b, 'a] => 'c"        (infixl "\<circ>" 55)
       
    51 
       
    52 
       
    53 constdefs
       
    54   inj_on :: "['a => 'b, 'a set] => bool"         (*injective*)
    47     "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
    55     "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
    48 
    56 
    49 syntax (xsymbols)
    57 text{*A common special case: functions injective over the entire domain type.*}
    50   "op o"        :: "['b => 'c, 'a => 'b, 'a] => 'c"      (infixl "\\<circ>" 55)
    58 syntax inj   :: "('a => 'b) => bool"
    51 
       
    52 syntax
       
    53   inj   :: ('a => 'b) => bool                   (*injective*)
       
    54 
       
    55 translations
    59 translations
    56   "inj f" == "inj_on f UNIV"
    60   "inj f" == "inj_on f UNIV"
    57 
    61 
    58 constdefs
    62 constdefs
    59   surj :: ('a => 'b) => bool                   (*surjective*)
    63   surj :: "('a => 'b) => bool"                   (*surjective*)
    60     "surj f == ! y. ? x. y=f(x)"
    64     "surj f == ! y. ? x. y=f(x)"
    61 
    65 
    62   bij :: ('a => 'b) => bool                    (*bijective*)
    66   bij :: "('a => 'b) => bool"                    (*bijective*)
    63     "bij f == inj f & surj f"
    67     "bij f == inj f & surj f"
    64 
    68 
    65 
    69 
    66 (*The Pi-operator, by Florian Kammueller*)
    70 
    67 
    71 text{*As a simplification rule, it replaces all function equalities by
    68 constdefs
    72   first-order equalities.*}
    69   Pi      :: "['a set, 'a => 'b set] => ('a => 'b) set"
    73 lemma expand_fun_eq: "(f = g) = (! x. f(x)=g(x))"
    70     "Pi A B == {f. ! x. if x:A then f(x) : B(x) else f(x) = arbitrary}"
    74 apply (rule iffI)
    71 
    75 apply (simp (no_asm_simp))
    72   restrict :: "['a => 'b, 'a set] => ('a => 'b)"
    76 apply (rule ext, simp (no_asm_simp))
    73     "restrict f A == (%x. if x : A then f x else arbitrary)"
    77 done
    74 
    78 
    75 syntax
    79 lemma apply_inverse:
    76   "@Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
    80     "[| f(x)=u;  !!x. P(x) ==> g(f(x)) = x;  P(x) |] ==> x=g(u)"
    77   funcset :: "['a set, 'b set] => ('a => 'b) set"      (infixr 60)
    81 by auto
    78   "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a => 'b)"  ("(3%_:_./ _)" [0, 0, 3] 3)
    82 
    79 syntax (xsymbols)
    83 
    80   "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a => 'b)"  ("(3\\<lambda>_\\<in>_./ _)" [0, 0, 3] 3)
    84 text{*The Identity Function: @{term id}*}
    81 
    85 lemma id_apply [simp]: "id x = x"
    82   (*Giving funcset an arrow syntax (-> or =>) clashes with many existing theories*)
    86 by (simp add: id_def)
    83 
    87 
    84 syntax (xsymbols)
    88 
    85   "@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\\<Pi> _\\<in>_./ _)"   10)
    89 subsection{*The Composition Operator: @{term "f \<circ> g"}*}
    86 
    90 
    87 translations
    91 lemma o_apply [simp]: "(f o g) x = f (g x)"
    88   "PI x:A. B" => "Pi A (%x. B)"
    92 by (simp add: comp_def)
    89   "A funcset B"    => "Pi A (_K B)"
    93 
    90   "%x:A. f"  == "restrict (%x. f) A"
    94 lemma o_assoc: "f o (g o h) = f o g o h"
    91 
    95 by (simp add: comp_def)
    92 constdefs
    96 
    93   compose :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)"
    97 lemma id_o [simp]: "id o g = g"
    94   "compose A g f == %x:A. g (f x)"
    98 by (simp add: comp_def)
       
    99 
       
   100 lemma o_id [simp]: "f o id = f"
       
   101 by (simp add: comp_def)
       
   102 
       
   103 lemma image_compose: "(f o g) ` r = f`(g`r)"
       
   104 by (simp add: comp_def, blast)
       
   105 
       
   106 lemma image_eq_UN: "f`A = (UN x:A. {f x})"
       
   107 by blast
       
   108 
       
   109 lemma UN_o: "UNION A (g o f) = UNION (f`A) g"
       
   110 by (unfold comp_def, blast)
       
   111 
       
   112 text{*Lemma for proving injectivity of representation functions for
       
   113 datatypes involving function types*}
       
   114 lemma inj_fun_lemma:
       
   115   "[| ! x y. g (f x) = g y --> f x = y; g o f = g o fa |] ==> f = fa"
       
   116 by (simp add: comp_def expand_fun_eq)
       
   117 
       
   118 
       
   119 subsection{*The Injectivity Predicate, @{term inj}*}
       
   120 
       
   121 text{*NB: @{term inj} now just translates to @{term inj_on}*}
       
   122 
       
   123 
       
   124 text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*}
       
   125 lemma datatype_injI:
       
   126     "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"
       
   127 by (simp add: inj_on_def)
       
   128 
       
   129 lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
       
   130 by (simp add: inj_on_def)
       
   131 
       
   132 (*Useful with the simplifier*)
       
   133 lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)"
       
   134 by (force simp add: inj_on_def)
       
   135 
       
   136 lemma inj_o: "[| inj f; f o g = f o h |] ==> g = h"
       
   137 by (simp add: comp_def inj_on_def expand_fun_eq)
       
   138 
       
   139 
       
   140 subsection{*The Predicate @{term inj_on}: Injectivity On A Restricted Domain*}
       
   141 
       
   142 lemma inj_onI:
       
   143     "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
       
   144 by (simp add: inj_on_def)
       
   145 
       
   146 lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
       
   147 by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
       
   148 
       
   149 lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
       
   150 by (unfold inj_on_def, blast)
       
   151 
       
   152 lemma inj_on_iff: "[| inj_on f A;  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)"
       
   153 by (blast dest!: inj_onD)
       
   154 
       
   155 lemma comp_inj_on:
       
   156      "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
       
   157 by (simp add: comp_def inj_on_def)
       
   158 
       
   159 lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
       
   160 by (unfold inj_on_def, blast)
       
   161 
       
   162 lemma inj_singleton: "inj (%s. {s})"
       
   163 by (simp add: inj_on_def)
       
   164 
       
   165 lemma subset_inj_on: "[| A<=B; inj_on f B |] ==> inj_on f A"
       
   166 by (unfold inj_on_def, blast)
       
   167 
       
   168 
       
   169 subsection{*The Predicate @{term surj}: Surjectivity*}
       
   170 
       
   171 lemma surjI: "(!! x. g(f x) = x) ==> surj g"
       
   172 apply (simp add: surj_def)
       
   173 apply (blast intro: sym)
       
   174 done
       
   175 
       
   176 lemma surj_range: "surj f ==> range f = UNIV"
       
   177 by (auto simp add: surj_def)
       
   178 
       
   179 lemma surjD: "surj f ==> EX x. y = f x"
       
   180 by (simp add: surj_def)
       
   181 
       
   182 lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C"
       
   183 by (simp add: surj_def, blast)
       
   184 
       
   185 lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
       
   186 apply (simp add: comp_def surj_def, clarify)
       
   187 apply (drule_tac x = y in spec, clarify)
       
   188 apply (drule_tac x = x in spec, blast)
       
   189 done
       
   190 
       
   191 
       
   192 
       
   193 subsection{*The Predicate @{term bij}: Bijectivity*}
       
   194 
       
   195 lemma bijI: "[| inj f; surj f |] ==> bij f"
       
   196 by (simp add: bij_def)
       
   197 
       
   198 lemma bij_is_inj: "bij f ==> inj f"
       
   199 by (simp add: bij_def)
       
   200 
       
   201 lemma bij_is_surj: "bij f ==> surj f"
       
   202 by (simp add: bij_def)
       
   203 
       
   204 
       
   205 subsection{*Facts About the Identity Function*}
       
   206 
       
   207 text{*We seem to need both the @{term id} forms and the @{term "\<lambda>x. x"}
       
   208 forms. The latter can arise by rewriting, while @{term id} may be used
       
   209 explicitly.*}
       
   210 
       
   211 lemma image_ident [simp]: "(%x. x) ` Y = Y"
       
   212 by blast
       
   213 
       
   214 lemma image_id [simp]: "id ` Y = Y"
       
   215 by (simp add: id_def)
       
   216 
       
   217 lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
       
   218 by blast
       
   219 
       
   220 lemma vimage_id [simp]: "id -` A = A"
       
   221 by (simp add: id_def)
       
   222 
       
   223 lemma vimage_image_eq: "f -` (f ` A) = {y. EX x:A. f x = f y}"
       
   224 by (blast intro: sym)
       
   225 
       
   226 lemma image_vimage_subset: "f ` (f -` A) <= A"
       
   227 by blast
       
   228 
       
   229 lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f"
       
   230 by blast
       
   231 
       
   232 lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
       
   233 by (simp add: surj_range)
       
   234 
       
   235 lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
       
   236 by (simp add: inj_on_def, blast)
       
   237 
       
   238 lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
       
   239 apply (unfold surj_def)
       
   240 apply (blast intro: sym)
       
   241 done
       
   242 
       
   243 lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
       
   244 by (unfold inj_on_def, blast)
       
   245 
       
   246 lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
       
   247 apply (unfold bij_def)
       
   248 apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
       
   249 done
       
   250 
       
   251 lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B"
       
   252 by blast
       
   253 
       
   254 lemma image_diff_subset: "f`A - f`B <= f`(A - B)"
       
   255 by blast
       
   256 
       
   257 lemma inj_on_image_Int:
       
   258    "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
       
   259 apply (simp add: inj_on_def, blast)
       
   260 done
       
   261 
       
   262 lemma inj_on_image_set_diff:
       
   263    "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A-B) = f`A - f`B"
       
   264 apply (simp add: inj_on_def, blast)
       
   265 done
       
   266 
       
   267 lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
       
   268 by (simp add: inj_on_def, blast)
       
   269 
       
   270 lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
       
   271 by (simp add: inj_on_def, blast)
       
   272 
       
   273 lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"
       
   274 by (blast dest: injD)
       
   275 
       
   276 lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
       
   277 by (simp add: inj_on_def, blast)
       
   278 
       
   279 lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
       
   280 by (blast dest: injD)
       
   281 
       
   282 lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))"
       
   283 by blast
       
   284 
       
   285 (*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
       
   286 lemma image_INT:
       
   287    "[| inj_on f C;  ALL x:A. B x <= C;  j:A |]
       
   288     ==> f ` (INTER A B) = (INT x:A. f ` B x)"
       
   289 apply (simp add: inj_on_def, blast)
       
   290 done
       
   291 
       
   292 (*Compare with image_INT: no use of inj_on, and if f is surjective then
       
   293   it doesn't matter whether A is empty*)
       
   294 lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"
       
   295 apply (simp add: bij_def)
       
   296 apply (simp add: inj_on_def surj_def, blast)
       
   297 done
       
   298 
       
   299 lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
       
   300 by (auto simp add: surj_def)
       
   301 
       
   302 lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
       
   303 by (auto simp add: inj_on_def)
       
   304 
       
   305 lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
       
   306 apply (simp add: bij_def)
       
   307 apply (rule equalityI)
       
   308 apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
       
   309 done
       
   310 
       
   311 
       
   312 subsection{*Function Updating*}
       
   313 
       
   314 lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
       
   315 apply (simp add: fun_upd_def, safe)
       
   316 apply (erule subst)
       
   317 apply (rule_tac [2] ext, auto)
       
   318 done
       
   319 
       
   320 (* f x = y ==> f(x:=y) = f *)
       
   321 lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard]
       
   322 
       
   323 (* f(x := f x) = f *)
       
   324 declare refl [THEN fun_upd_idem, iff]
       
   325 
       
   326 lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
       
   327 apply (simp (no_asm) add: fun_upd_def)
       
   328 done
       
   329 
       
   330 (* fun_upd_apply supersedes these two,   but they are useful
       
   331    if fun_upd_apply is intentionally removed from the simpset *)
       
   332 lemma fun_upd_same: "(f(x:=y)) x = y"
       
   333 by simp
       
   334 
       
   335 lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
       
   336 by simp
       
   337 
       
   338 lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
       
   339 by (simp add: expand_fun_eq)
       
   340 
       
   341 lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
       
   342 by (rule ext, auto)
       
   343 
       
   344 text{*The ML section includes some compatibility bindings and a simproc
       
   345 for function updates, in addition to the usual ML-bindings of theorems.*}
       
   346 ML
       
   347 {*
       
   348 val id_def = thm "id_def";
       
   349 val inj_on_def = thm "inj_on_def";
       
   350 val surj_def = thm "surj_def";
       
   351 val bij_def = thm "bij_def";
       
   352 val fun_upd_def = thm "fun_upd_def";
       
   353 
       
   354 val o_def = thm "comp_def";
       
   355 val injI = thm "inj_onI";
       
   356 val inj_inverseI = thm "inj_on_inverseI";
       
   357 val set_cs = claset() delrules [equalityI];
       
   358 
       
   359 val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))];
       
   360 
       
   361 (* simplifies terms of the form f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *)
       
   362 local
       
   363   fun gen_fun_upd None T _ _ = None
       
   364     | gen_fun_upd (Some f) T x y = Some (Const ("Fun.fun_upd",T) $ f $ x $ y)
       
   365   fun dest_fun_T1 (Type (_, T :: Ts)) = T
       
   366   fun find_double (t as Const ("Fun.fun_upd",T) $ f $ x $ y) =
       
   367     let
       
   368       fun find (Const ("Fun.fun_upd",T) $ g $ v $ w) =
       
   369             if v aconv x then Some g else gen_fun_upd (find g) T v w
       
   370         | find t = None
       
   371     in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
       
   372 
       
   373   val ss = simpset ()
       
   374   val fun_upd_prover = K (rtac eq_reflection 1 THEN rtac ext 1 THEN simp_tac ss 1)
       
   375 in
       
   376   val fun_upd2_simproc =
       
   377     Simplifier.simproc (Theory.sign_of (the_context ()))
       
   378       "fun_upd2" ["f(v := w, x := y)"]
       
   379       (fn sg => fn _ => fn t =>
       
   380         case find_double t of (T, None) => None
       
   381         | (T, Some rhs) => Some (Tactic.prove sg [] [] (Term.equals T $ t $ rhs) fun_upd_prover))
       
   382 end;
       
   383 Addsimprocs[fun_upd2_simproc];
       
   384 
       
   385 val expand_fun_eq = thm "expand_fun_eq";
       
   386 val apply_inverse = thm "apply_inverse";
       
   387 val id_apply = thm "id_apply";
       
   388 val o_apply = thm "o_apply";
       
   389 val o_assoc = thm "o_assoc";
       
   390 val id_o = thm "id_o";
       
   391 val o_id = thm "o_id";
       
   392 val image_compose = thm "image_compose";
       
   393 val image_eq_UN = thm "image_eq_UN";
       
   394 val UN_o = thm "UN_o";
       
   395 val inj_fun_lemma = thm "inj_fun_lemma";
       
   396 val datatype_injI = thm "datatype_injI";
       
   397 val injD = thm "injD";
       
   398 val inj_eq = thm "inj_eq";
       
   399 val inj_o = thm "inj_o";
       
   400 val inj_onI = thm "inj_onI";
       
   401 val inj_on_inverseI = thm "inj_on_inverseI";
       
   402 val inj_onD = thm "inj_onD";
       
   403 val inj_on_iff = thm "inj_on_iff";
       
   404 val comp_inj_on = thm "comp_inj_on";
       
   405 val inj_on_contraD = thm "inj_on_contraD";
       
   406 val inj_singleton = thm "inj_singleton";
       
   407 val subset_inj_on = thm "subset_inj_on";
       
   408 val surjI = thm "surjI";
       
   409 val surj_range = thm "surj_range";
       
   410 val surjD = thm "surjD";
       
   411 val surjE = thm "surjE";
       
   412 val comp_surj = thm "comp_surj";
       
   413 val bijI = thm "bijI";
       
   414 val bij_is_inj = thm "bij_is_inj";
       
   415 val bij_is_surj = thm "bij_is_surj";
       
   416 val image_ident = thm "image_ident";
       
   417 val image_id = thm "image_id";
       
   418 val vimage_ident = thm "vimage_ident";
       
   419 val vimage_id = thm "vimage_id";
       
   420 val vimage_image_eq = thm "vimage_image_eq";
       
   421 val image_vimage_subset = thm "image_vimage_subset";
       
   422 val image_vimage_eq = thm "image_vimage_eq";
       
   423 val surj_image_vimage_eq = thm "surj_image_vimage_eq";
       
   424 val inj_vimage_image_eq = thm "inj_vimage_image_eq";
       
   425 val vimage_subsetD = thm "vimage_subsetD";
       
   426 val vimage_subsetI = thm "vimage_subsetI";
       
   427 val vimage_subset_eq = thm "vimage_subset_eq";
       
   428 val image_Int_subset = thm "image_Int_subset";
       
   429 val image_diff_subset = thm "image_diff_subset";
       
   430 val inj_on_image_Int = thm "inj_on_image_Int";
       
   431 val inj_on_image_set_diff = thm "inj_on_image_set_diff";
       
   432 val image_Int = thm "image_Int";
       
   433 val image_set_diff = thm "image_set_diff";
       
   434 val inj_image_mem_iff = thm "inj_image_mem_iff";
       
   435 val inj_image_subset_iff = thm "inj_image_subset_iff";
       
   436 val inj_image_eq_iff = thm "inj_image_eq_iff";
       
   437 val image_UN = thm "image_UN";
       
   438 val image_INT = thm "image_INT";
       
   439 val bij_image_INT = thm "bij_image_INT";
       
   440 val surj_Compl_image_subset = thm "surj_Compl_image_subset";
       
   441 val inj_image_Compl_subset = thm "inj_image_Compl_subset";
       
   442 val bij_image_Compl_eq = thm "bij_image_Compl_eq";
       
   443 val fun_upd_idem_iff = thm "fun_upd_idem_iff";
       
   444 val fun_upd_idem = thm "fun_upd_idem";
       
   445 val fun_upd_apply = thm "fun_upd_apply";
       
   446 val fun_upd_same = thm "fun_upd_same";
       
   447 val fun_upd_other = thm "fun_upd_other";
       
   448 val fun_upd_upd = thm "fun_upd_upd";
       
   449 val fun_upd_twist = thm "fun_upd_twist";
       
   450 *}
    95 
   451 
    96 end
   452 end
    97 
       
    98 ML
       
    99 val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))];