src/HOL/ex/Quickcheck.thy
changeset 29809 df25a6b1a475
parent 29805 a5da150bd0ab
parent 29808 b8b9d529663b
child 29810 fa4ec7a7215c
child 29814 15344c0899e1
equal deleted inserted replaced
29805:a5da150bd0ab 29809:df25a6b1a475
     1 (* Author: Florian Haftmann, TU Muenchen *)
       
     2 
       
     3 header {* A simple counterexample generator *}
       
     4 
       
     5 theory Quickcheck
       
     6 imports Random Code_Eval Map
       
     7 begin
       
     8 
       
     9 subsection {* The @{text random} class *}
       
    10 
       
    11 class random = typerep +
       
    12   fixes random :: "index \<Rightarrow> seed \<Rightarrow> ('a \<times> (unit \<Rightarrow> term)) \<times> seed"
       
    13 
       
    14 text {* Type @{typ "'a itself"} *}
       
    15 
       
    16 instantiation itself :: ("{type, typerep}") random
       
    17 begin
       
    18 
       
    19 definition
       
    20   "random _ = return (TYPE('a), \<lambda>u. Code_Eval.Const (STR ''TYPE'') TYPEREP('a))"
       
    21 
       
    22 instance ..
       
    23 
       
    24 end
       
    25 
       
    26 text {* Type @{typ "'a \<Rightarrow> 'b"} *}
       
    27 
       
    28 ML {*
       
    29 structure Random_Engine =
       
    30 struct
       
    31 
       
    32 open Random_Engine;
       
    33 
       
    34 fun random_fun (T1 : typ) (T2 : typ) (eq : 'a -> 'a -> bool) (term_of : 'a -> term)
       
    35     (random : Random_Engine.seed -> ('b * (unit -> term)) * Random_Engine.seed)
       
    36     (random_split : Random_Engine.seed -> Random_Engine.seed * Random_Engine.seed)
       
    37     (seed : Random_Engine.seed) =
       
    38   let
       
    39     val (seed', seed'') = random_split seed;
       
    40     val state = ref (seed', [], Const (@{const_name undefined}, T1 --> T2));
       
    41     val fun_upd = Const (@{const_name fun_upd},
       
    42       (T1 --> T2) --> T1 --> T2 --> T1 --> T2);
       
    43     fun random_fun' x =
       
    44       let
       
    45         val (seed, fun_map, f_t) = ! state;
       
    46       in case AList.lookup (uncurry eq) fun_map x
       
    47        of SOME y => y
       
    48         | NONE => let
       
    49               val t1 = term_of x;
       
    50               val ((y, t2), seed') = random seed;
       
    51               val fun_map' = (x, y) :: fun_map;
       
    52               val f_t' = fun_upd $ f_t $ t1 $ t2 ();
       
    53               val _ = state := (seed', fun_map', f_t');
       
    54             in y end
       
    55       end;
       
    56     fun term_fun' () = #3 (! state);
       
    57   in ((random_fun', term_fun'), seed'') end;
       
    58 
       
    59 end
       
    60 *}
       
    61 
       
    62 axiomatization
       
    63   random_fun_aux :: "typerep \<Rightarrow> typerep \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> term)
       
    64     \<Rightarrow> (seed \<Rightarrow> ('b \<times> (unit \<Rightarrow> term)) \<times> seed) \<Rightarrow> (seed \<Rightarrow> seed \<times> seed)
       
    65     \<Rightarrow> seed \<Rightarrow> (('a \<Rightarrow> 'b) \<times> (unit \<Rightarrow> term)) \<times> seed"
       
    66 
       
    67 code_const random_fun_aux (SML "Random'_Engine.random'_fun")
       
    68 
       
    69 instantiation "fun" :: ("{eq, term_of}", "{type, random}") random
       
    70 begin
       
    71 
       
    72 definition random_fun :: "index \<Rightarrow> seed \<Rightarrow> (('a \<Rightarrow> 'b) \<times> (unit \<Rightarrow> term)) \<times> seed" where
       
    73   "random n = random_fun_aux TYPEREP('a) TYPEREP('b) (op =) Code_Eval.term_of (random n) split_seed"
       
    74 
       
    75 instance ..
       
    76 
       
    77 end
       
    78 
       
    79 code_reserved SML Random_Engine
       
    80 
       
    81 text {* Datatypes *}
       
    82 
       
    83 definition
       
    84   collapse :: "('a \<Rightarrow> ('a \<Rightarrow> 'b \<times> 'a) \<times> 'a) \<Rightarrow> 'a \<Rightarrow> 'b \<times> 'a" where
       
    85   "collapse f = (do g \<leftarrow> f; g done)"
       
    86 
       
    87 ML {*
       
    88 structure StateMonad =
       
    89 struct
       
    90 
       
    91 fun liftT T sT = sT --> HOLogic.mk_prodT (T, sT);
       
    92 fun liftT' sT = sT --> sT;
       
    93 
       
    94 fun return T sT x = Const (@{const_name return}, T --> liftT T sT) $ x;
       
    95 
       
    96 fun scomp T1 T2 sT f g = Const (@{const_name scomp},
       
    97   liftT T1 sT --> (T1 --> liftT T2 sT) --> liftT T2 sT) $ f $ g;
       
    98 
       
    99 end;
       
   100 *}
       
   101 
       
   102 lemma random'_if:
       
   103   fixes random' :: "index \<Rightarrow> index \<Rightarrow> seed \<Rightarrow> ('a \<times> (unit \<Rightarrow> term)) \<times> seed"
       
   104   assumes "random' 0 j = (\<lambda>s. undefined)"
       
   105     and "\<And>i. random' (Suc_index i) j = rhs2 i"
       
   106   shows "random' i j s = (if i = 0 then undefined else rhs2 (i - 1) s)"
       
   107   by (cases i rule: index.exhaust) (insert assms, simp_all)
       
   108 
       
   109 setup {*
       
   110 let
       
   111   exception REC of string;
       
   112   exception TYP of string;
       
   113   fun mk_collapse thy ty = Sign.mk_const thy
       
   114     (@{const_name collapse}, [@{typ seed}, ty]);
       
   115   fun term_ty ty = HOLogic.mk_prodT (ty, @{typ "unit \<Rightarrow> term"});
       
   116   fun mk_split thy ty ty' = Sign.mk_const thy
       
   117     (@{const_name split}, [ty, @{typ "unit \<Rightarrow> term"}, StateMonad.liftT (term_ty ty') @{typ seed}]);
       
   118   fun mk_scomp_split thy ty ty' t t' =
       
   119     StateMonad.scomp (term_ty ty) (term_ty ty') @{typ seed} t
       
   120       (mk_split thy ty ty' $ Abs ("", ty, Abs ("", @{typ "unit \<Rightarrow> term"}, t')))
       
   121   fun mk_cons thy this_ty (c, args) =
       
   122     let
       
   123       val tys = map (fst o fst) args;
       
   124       val c_ty = tys ---> this_ty;
       
   125       val c = Const (c, tys ---> this_ty);
       
   126       val t_indices = map (curry ( op * ) 2) (length tys - 1 downto 0);
       
   127       val c_indices = map (curry ( op + ) 1) t_indices;
       
   128       val c_t = list_comb (c, map Bound c_indices);
       
   129       val t_t = Abs ("", @{typ unit}, Eval.mk_term Free Typerep.typerep
       
   130         (list_comb (c, map (fn k => Bound (k + 1)) t_indices))
       
   131         |> map_aterms (fn t as Bound _ => t $ @{term "()"} | t => t));
       
   132       val return = StateMonad.return (term_ty this_ty) @{typ seed}
       
   133         (HOLogic.mk_prod (c_t, t_t));
       
   134       val t = fold_rev (fn ((ty, _), random) =>
       
   135         mk_scomp_split thy ty this_ty random)
       
   136           args return;
       
   137       val is_rec = exists (snd o fst) args;
       
   138     in (is_rec, t) end;
       
   139   fun mk_conss thy ty [] = NONE
       
   140     | mk_conss thy ty [(_, t)] = SOME t
       
   141     | mk_conss thy ty ts = SOME (mk_collapse thy (term_ty ty) $
       
   142           (Sign.mk_const thy (@{const_name select}, [StateMonad.liftT (term_ty ty) @{typ seed}]) $
       
   143             HOLogic.mk_list (StateMonad.liftT (term_ty ty) @{typ seed}) (map snd ts)));
       
   144   fun mk_clauses thy ty (tyco, (ts_rec, ts_atom)) = 
       
   145     let
       
   146       val SOME t_atom = mk_conss thy ty ts_atom;
       
   147     in case mk_conss thy ty ts_rec
       
   148      of SOME t_rec => mk_collapse thy (term_ty ty) $
       
   149           (Sign.mk_const thy (@{const_name select_default}, [StateMonad.liftT (term_ty ty) @{typ seed}]) $
       
   150              @{term "i\<Colon>index"} $ t_rec $ t_atom)
       
   151       | NONE => t_atom
       
   152     end;
       
   153   fun mk_random_eqs thy vs tycos =
       
   154     let
       
   155       val this_ty = Type (hd tycos, map TFree vs);
       
   156       val this_ty' = StateMonad.liftT (term_ty this_ty) @{typ seed};
       
   157       val random_name = NameSpace.base @{const_name random};
       
   158       val random'_name = random_name ^ "_" ^ Class.type_name (hd tycos) ^ "'";
       
   159       fun random ty = Sign.mk_const thy (@{const_name random}, [ty]);
       
   160       val random' = Free (random'_name,
       
   161         @{typ index} --> @{typ index} --> this_ty');
       
   162       fun atom ty = if Sign.of_sort thy (ty, @{sort random})
       
   163         then ((ty, false), random ty $ @{term "j\<Colon>index"})
       
   164         else raise TYP
       
   165           ("Will not generate random elements for type(s) " ^ quote (hd tycos));
       
   166       fun dtyp tyco = ((this_ty, true), random' $ @{term "i\<Colon>index"} $ @{term "j\<Colon>index"});
       
   167       fun rtyp tyco tys = raise REC
       
   168         ("Will not generate random elements for mutual recursive type " ^ quote (hd tycos));
       
   169       val rhss = DatatypePackage.construction_interpretation thy
       
   170             { atom = atom, dtyp = dtyp, rtyp = rtyp } vs tycos
       
   171         |> (map o apsnd o map) (mk_cons thy this_ty) 
       
   172         |> (map o apsnd) (List.partition fst)
       
   173         |> map (mk_clauses thy this_ty)
       
   174       val eqss = map ((apsnd o map) (HOLogic.mk_Trueprop o HOLogic.mk_eq) o (fn rhs => ((this_ty, random'), [
       
   175           (random' $ @{term "0\<Colon>index"} $ @{term "j\<Colon>index"}, Abs ("s", @{typ seed},
       
   176             Const (@{const_name undefined}, HOLogic.mk_prodT (term_ty this_ty, @{typ seed})))),
       
   177           (random' $ @{term "Suc_index i"} $ @{term "j\<Colon>index"}, rhs)
       
   178         ]))) rhss;
       
   179     in eqss end;
       
   180   fun random_inst [tyco] thy =
       
   181         let
       
   182           val (raw_vs, _) = DatatypePackage.the_datatype_spec thy tyco;
       
   183           val vs = (map o apsnd)
       
   184             (curry (Sorts.inter_sort (Sign.classes_of thy)) @{sort random}) raw_vs;
       
   185           val ((this_ty, random'), eqs') = singleton (mk_random_eqs thy vs) tyco;
       
   186           val eq = (HOLogic.mk_Trueprop o HOLogic.mk_eq)
       
   187             (Sign.mk_const thy (@{const_name random}, [this_ty]) $ @{term "i\<Colon>index"},
       
   188                random' $ @{term "i\<Colon>index"} $ @{term "i\<Colon>index"})
       
   189           val del_func = Attrib.internal (fn _ => Thm.declaration_attribute
       
   190             (fn thm => Context.mapping (Code.del_eqn thm) I));
       
   191           fun add_code simps lthy =
       
   192             let
       
   193               val thy = ProofContext.theory_of lthy;
       
   194               val thm = @{thm random'_if}
       
   195                 |> Drule.instantiate' [SOME (Thm.ctyp_of thy this_ty)] [SOME (Thm.cterm_of thy random')]
       
   196                 |> (fn thm => thm OF simps)
       
   197                 |> singleton (ProofContext.export lthy (ProofContext.init thy));
       
   198               val c = (fst o dest_Const o fst o strip_comb o fst
       
   199                 o HOLogic.dest_eq o HOLogic.dest_Trueprop o Thm.prop_of) thm;
       
   200             in
       
   201               lthy
       
   202               |> LocalTheory.theory (Code.del_eqns c
       
   203                    #> PureThy.add_thm ((Binding.name (fst (dest_Free random') ^ "_code"), thm), [Thm.kind_internal])
       
   204                    #-> Code.add_eqn)
       
   205             end;
       
   206         in
       
   207           thy
       
   208           |> TheoryTarget.instantiation ([tyco], vs, @{sort random})
       
   209           |> PrimrecPackage.add_primrec
       
   210                [(Binding.name (fst (dest_Free random')), SOME (snd (dest_Free random')), NoSyn)]
       
   211                  (map (fn eq => ((Binding.empty, [del_func]), eq)) eqs')
       
   212           |-> add_code
       
   213           |> `(fn lthy => Syntax.check_term lthy eq)
       
   214           |-> (fn eq => Specification.definition (NONE, (Attrib.empty_binding, eq)))
       
   215           |> snd
       
   216           |> Class.prove_instantiation_instance (K (Class.intro_classes_tac []))
       
   217           |> LocalTheory.exit_global
       
   218         end
       
   219     | random_inst tycos thy = raise REC
       
   220         ("Will not generate random elements for mutual recursive type(s) " ^ commas (map quote tycos));
       
   221   fun add_random_inst tycos thy = random_inst tycos thy
       
   222      handle REC msg => (warning msg; thy)
       
   223           | TYP msg => (warning msg; thy)
       
   224 in DatatypePackage.interpretation add_random_inst end
       
   225 *}
       
   226 
       
   227 text {* Type @{typ int} *}
       
   228 
       
   229 instantiation int :: random
       
   230 begin
       
   231 
       
   232 definition
       
   233   "random n = (do
       
   234      (b, _) \<leftarrow> random n;
       
   235      (m, t) \<leftarrow> random n;
       
   236      return (if b then (int m, \<lambda>u. Code_Eval.App (Code_Eval.Const (STR ''Int.int'') TYPEREP(nat \<Rightarrow> int)) (t ()))
       
   237        else (- int m, \<lambda>u. Code_Eval.App (Code_Eval.Const (STR ''HOL.uminus_class.uminus'') TYPEREP(int \<Rightarrow> int))
       
   238          (Code_Eval.App (Code_Eval.Const (STR ''Int.int'') TYPEREP(nat \<Rightarrow> int)) (t ()))))
       
   239    done)"
       
   240 
       
   241 instance ..
       
   242 
       
   243 end
       
   244 
       
   245 
       
   246 subsection {* Quickcheck generator *}
       
   247 
       
   248 ML {*
       
   249 structure Quickcheck =
       
   250 struct
       
   251 
       
   252 open Quickcheck;
       
   253 
       
   254 val eval_ref : (unit -> int -> int * int -> term list option * (int * int)) option ref = ref NONE;
       
   255 
       
   256 fun mk_generator_expr thy prop tys =
       
   257   let
       
   258     val bound_max = length tys - 1;
       
   259     val bounds = map_index (fn (i, ty) =>
       
   260       (2 * (bound_max - i) + 1, 2 * (bound_max - i), 2 * i, ty)) tys;
       
   261     val result = list_comb (prop, map (fn (i, _, _, _) => Bound i) bounds);
       
   262     val terms = HOLogic.mk_list @{typ term} (map (fn (_, i, _, _) => Bound i $ @{term "()"}) bounds);
       
   263     val check = @{term "If \<Colon> bool \<Rightarrow> term list option \<Rightarrow> term list option \<Rightarrow> term list option"}
       
   264       $ result $ @{term "None \<Colon> term list option"} $ (@{term "Some \<Colon> term list \<Rightarrow> term list option "} $ terms);
       
   265     val return = @{term "Pair \<Colon> term list option \<Rightarrow> seed \<Rightarrow> term list option \<times> seed"};
       
   266     fun mk_termtyp ty = HOLogic.mk_prodT (ty, @{typ "unit \<Rightarrow> term"});
       
   267     fun mk_split ty = Sign.mk_const thy
       
   268       (@{const_name split}, [ty, @{typ "unit \<Rightarrow> term"}, StateMonad.liftT @{typ "term list option"} @{typ seed}]);
       
   269     fun mk_scomp_split ty t t' =
       
   270       StateMonad.scomp (mk_termtyp ty) @{typ "term list option"} @{typ seed} t (*FIXME*)
       
   271         (mk_split ty $ Abs ("", ty, Abs ("", @{typ "unit \<Rightarrow> term"}, t')));
       
   272     fun mk_bindclause (_, _, i, ty) = mk_scomp_split ty
       
   273       (Sign.mk_const thy (@{const_name random}, [ty]) $ Bound i)
       
   274     val t = fold_rev mk_bindclause bounds (return $ check);
       
   275   in Abs ("n", @{typ index}, t) end;
       
   276 
       
   277 fun compile_generator_expr thy t =
       
   278   let
       
   279     val tys = (map snd o fst o strip_abs) t;
       
   280     val t' = mk_generator_expr thy t tys;
       
   281     val f = Code_ML.eval_term ("Quickcheck.eval_ref", eval_ref) thy t' [];
       
   282   in f #> Random_Engine.run #> (Option.map o map) (Code.postprocess_term thy) end;
       
   283 
       
   284 end
       
   285 *}
       
   286 
       
   287 setup {*
       
   288   Quickcheck.add_generator ("code", Quickcheck.compile_generator_expr o ProofContext.theory_of)
       
   289 *}
       
   290 
       
   291 subsection {* Examples *}
       
   292 
       
   293 theorem "map g (map f xs) = map (g o f) xs"
       
   294   quickcheck [generator = code]
       
   295   by (induct xs) simp_all
       
   296 
       
   297 theorem "map g (map f xs) = map (f o g) xs"
       
   298   quickcheck [generator = code]
       
   299   oops
       
   300 
       
   301 theorem "rev (xs @ ys) = rev ys @ rev xs"
       
   302   quickcheck [generator = code]
       
   303   by simp
       
   304 
       
   305 theorem "rev (xs @ ys) = rev xs @ rev ys"
       
   306   quickcheck [generator = code]
       
   307   oops
       
   308 
       
   309 theorem "rev (rev xs) = xs"
       
   310   quickcheck [generator = code]
       
   311   by simp
       
   312 
       
   313 theorem "rev xs = xs"
       
   314   quickcheck [generator = code]
       
   315   oops
       
   316 
       
   317 primrec app :: "('a \<Rightarrow> 'a) list \<Rightarrow> 'a \<Rightarrow> 'a" where
       
   318   "app [] x = x"
       
   319   | "app (f # fs) x = app fs (f x)"
       
   320 
       
   321 lemma "app (fs @ gs) x = app gs (app fs x)"
       
   322   quickcheck [generator = code]
       
   323   by (induct fs arbitrary: x) simp_all
       
   324 
       
   325 lemma "app (fs @ gs) x = app fs (app gs x)"
       
   326   quickcheck [generator = code]
       
   327   oops
       
   328 
       
   329 primrec occurs :: "'a \<Rightarrow> 'a list \<Rightarrow> nat" where
       
   330   "occurs a [] = 0"
       
   331   | "occurs a (x#xs) = (if (x=a) then Suc(occurs a xs) else occurs a xs)"
       
   332 
       
   333 primrec del1 :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
       
   334   "del1 a [] = []"
       
   335   | "del1 a (x#xs) = (if (x=a) then xs else (x#del1 a xs))"
       
   336 
       
   337 lemma "Suc (occurs a (del1 a xs)) = occurs a xs"
       
   338   -- {* Wrong. Precondition needed.*}
       
   339   quickcheck [generator = code]
       
   340   oops
       
   341 
       
   342 lemma "xs ~= [] \<longrightarrow> Suc (occurs a (del1 a xs)) = occurs a xs"
       
   343   quickcheck [generator = code]
       
   344     -- {* Also wrong.*}
       
   345   oops
       
   346 
       
   347 lemma "0 < occurs a xs \<longrightarrow> Suc (occurs a (del1 a xs)) = occurs a xs"
       
   348   quickcheck [generator = code]
       
   349   by (induct xs) auto
       
   350 
       
   351 primrec replace :: "'a \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
       
   352   "replace a b [] = []"
       
   353   | "replace a b (x#xs) = (if (x=a) then (b#(replace a b xs)) 
       
   354                             else (x#(replace a b xs)))"
       
   355 
       
   356 lemma "occurs a xs = occurs b (replace a b xs)"
       
   357   quickcheck [generator = code]
       
   358   -- {* Wrong. Precondition needed.*}
       
   359   oops
       
   360 
       
   361 lemma "occurs b xs = 0 \<or> a=b \<longrightarrow> occurs a xs = occurs b (replace a b xs)"
       
   362   quickcheck [generator = code]
       
   363   by (induct xs) simp_all
       
   364 
       
   365 
       
   366 subsection {* Trees *}
       
   367 
       
   368 datatype 'a tree = Twig |  Leaf 'a | Branch "'a tree" "'a tree"
       
   369 
       
   370 primrec leaves :: "'a tree \<Rightarrow> 'a list" where
       
   371   "leaves Twig = []"
       
   372   | "leaves (Leaf a) = [a]"
       
   373   | "leaves (Branch l r) = (leaves l) @ (leaves r)"
       
   374 
       
   375 primrec plant :: "'a list \<Rightarrow> 'a tree" where
       
   376   "plant [] = Twig "
       
   377   | "plant (x#xs) = Branch (Leaf x) (plant xs)"
       
   378 
       
   379 primrec mirror :: "'a tree \<Rightarrow> 'a tree" where
       
   380   "mirror (Twig) = Twig "
       
   381   | "mirror (Leaf a) = Leaf a "
       
   382   | "mirror (Branch l r) = Branch (mirror r) (mirror l)"
       
   383 
       
   384 theorem "plant (rev (leaves xt)) = mirror xt"
       
   385   quickcheck [generator = code]
       
   386     --{* Wrong! *} 
       
   387   oops
       
   388 
       
   389 theorem "plant (leaves xt @ leaves yt) = Branch xt yt"
       
   390   quickcheck [generator = code]
       
   391     --{* Wrong! *} 
       
   392   oops
       
   393 
       
   394 datatype 'a ntree = Tip "'a" | Node "'a" "'a ntree" "'a ntree"
       
   395 
       
   396 primrec inOrder :: "'a ntree \<Rightarrow> 'a list" where
       
   397   "inOrder (Tip a)= [a]"
       
   398   | "inOrder (Node f x y) = (inOrder x)@[f]@(inOrder y)"
       
   399 
       
   400 primrec root :: "'a ntree \<Rightarrow> 'a" where
       
   401   "root (Tip a) = a"
       
   402   | "root (Node f x y) = f"
       
   403 
       
   404 theorem "hd (inOrder xt) = root xt"
       
   405   quickcheck [generator = code]
       
   406     --{* Wrong! *} 
       
   407   oops
       
   408 
       
   409 lemma "int (f k) = k"
       
   410   quickcheck [generator = code]
       
   411   oops
       
   412 
       
   413 end