src/HOL/UNITY/Detects.thy
changeset 13785 e2fcd88be55d
parent 8334 7896bcbd8641
child 13798 4c1a53627500
equal deleted inserted replaced
13784:b9f6154427a4 13785:e2fcd88be55d
     4     Copyright   2000  University of Cambridge
     4     Copyright   2000  University of Cambridge
     5 
     5 
     6 Detects definition (Section 3.8 of Chandy & Misra) using LeadsTo
     6 Detects definition (Section 3.8 of Chandy & Misra) using LeadsTo
     7 *)
     7 *)
     8 
     8 
     9 Detects = WFair + Reach + 
     9 theory Detects = FP + SubstAx:
    10 
       
    11 
    10 
    12 consts
    11 consts
    13    op_Detects  :: "['a set, 'a set] => 'a program set"  (infixl "Detects" 60)
    12    op_Detects  :: "['a set, 'a set] => 'a program set"  (infixl "Detects" 60)
    14    op_Equality :: "['a set, 'a set] => 'a set"          (infixl "<==>" 60)
    13    op_Equality :: "['a set, 'a set] => 'a set"          (infixl "<==>" 60)
    15    
    14    
    16 defs
    15 defs
    17   Detects_def "A Detects B == (Always (-A Un B)) Int (B LeadsTo A)"
    16   Detects_def:  "A Detects B == (Always (-A Un B)) Int (B LeadsTo A)"
    18   Equality_def "A <==> B == (-A Un B) Int (A Un -B)"
    17   Equality_def: "A <==> B == (-A Un B) Int (A Un -B)"
       
    18 
       
    19 
       
    20 (* Corollary from Sectiom 3.6.4 *)
       
    21 
       
    22 lemma Always_at_FP: "F: A LeadsTo B ==> F : Always (-((FP F) Int A Int -B))"
       
    23 apply (rule LeadsTo_empty)
       
    24 apply (subgoal_tac "F : (FP F Int A Int - B) LeadsTo (B Int (FP F Int -B))")
       
    25 apply (subgoal_tac [2] " (FP F Int A Int - B) = (A Int (FP F Int -B))")
       
    26 apply (subgoal_tac "(B Int (FP F Int -B)) = {}")
       
    27 apply auto
       
    28 apply (blast intro: PSP_Stable stable_imp_Stable stable_FP_Int)
       
    29 done
       
    30 
       
    31 
       
    32 lemma Detects_Trans: 
       
    33      "[| F : A Detects B; F : B Detects C |] ==> F : A Detects C"
       
    34 apply (unfold Detects_def Int_def)
       
    35 apply (simp (no_asm))
       
    36 apply safe
       
    37 apply (rule_tac [2] LeadsTo_Trans)
       
    38 apply auto
       
    39 apply (subgoal_tac "F : Always ((-A Un B) Int (-B Un C))")
       
    40  apply (blast intro: Always_weaken)
       
    41 apply (simp add: Always_Int_distrib)
       
    42 done
       
    43 
       
    44 lemma Detects_refl: "F : A Detects A"
       
    45 apply (unfold Detects_def)
       
    46 apply (simp (no_asm) add: Un_commute Compl_partition subset_imp_LeadsTo)
       
    47 done
       
    48 
       
    49 lemma Detects_eq_Un: "(A<==>B) = (A Int B) Un (-A Int -B)"
       
    50 apply (unfold Equality_def)
       
    51 apply blast
       
    52 done
       
    53 
       
    54 (*Not quite antisymmetry: sets A and B agree in all reachable states *)
       
    55 lemma Detects_antisym: 
       
    56      "[| F : A Detects B;  F : B Detects A|] ==> F : Always (A <==> B)"
       
    57 apply (unfold Detects_def Equality_def)
       
    58 apply (simp add: Always_Int_I Un_commute)
       
    59 done
       
    60 
       
    61 
       
    62 (* Theorem from Section 3.8 *)
       
    63 
       
    64 lemma Detects_Always: 
       
    65      "F : A Detects B ==> F : Always ((-(FP F)) Un (A <==> B))"
       
    66 apply (unfold Detects_def Equality_def)
       
    67 apply (simp (no_asm) add: Un_Int_distrib Always_Int_distrib)
       
    68 apply (blast dest: Always_at_FP intro: Always_weaken)
       
    69 done
       
    70 
       
    71 (* Theorem from exercise 11.1 Section 11.3.1 *)
       
    72 
       
    73 lemma Detects_Imp_LeadstoEQ: 
       
    74      "F : A Detects B ==> F : UNIV LeadsTo (A <==> B)"
       
    75 apply (unfold Detects_def Equality_def)
       
    76 apply (rule_tac B = "B" in LeadsTo_Diff)
       
    77 prefer 2 apply (blast intro: Always_LeadsTo_weaken)
       
    78 apply (blast intro: Always_LeadsToI subset_imp_LeadsTo)
       
    79 done
       
    80 
    19 
    81 
    20 end
    82 end
    21 
    83