src/HOL/Library/Code_Index.thy
changeset 31188 e5d01f8a916d
parent 31187 7893975cc527
parent 31186 b458b4ac570f
child 31189 7d43c7d3a15c
equal deleted inserted replaced
31187:7893975cc527 31188:e5d01f8a916d
     1 (* Author: Florian Haftmann, TU Muenchen *)
       
     2 
       
     3 header {* Type of indices *}
       
     4 
       
     5 theory Code_Index
       
     6 imports Main
       
     7 begin
       
     8 
       
     9 text {*
       
    10   Indices are isomorphic to HOL @{typ nat} but
       
    11   mapped to target-language builtin integers.
       
    12 *}
       
    13 
       
    14 subsection {* Datatype of indices *}
       
    15 
       
    16 typedef (open) index = "UNIV \<Colon> nat set"
       
    17   morphisms nat_of of_nat by rule
       
    18 
       
    19 lemma of_nat_nat_of [simp]:
       
    20   "of_nat (nat_of k) = k"
       
    21   by (rule nat_of_inverse)
       
    22 
       
    23 lemma nat_of_of_nat [simp]:
       
    24   "nat_of (of_nat n) = n"
       
    25   by (rule of_nat_inverse) (rule UNIV_I)
       
    26 
       
    27 lemma [measure_function]:
       
    28   "is_measure nat_of" by (rule is_measure_trivial)
       
    29 
       
    30 lemma index:
       
    31   "(\<And>n\<Colon>index. PROP P n) \<equiv> (\<And>n\<Colon>nat. PROP P (of_nat n))"
       
    32 proof
       
    33   fix n :: nat
       
    34   assume "\<And>n\<Colon>index. PROP P n"
       
    35   then show "PROP P (of_nat n)" .
       
    36 next
       
    37   fix n :: index
       
    38   assume "\<And>n\<Colon>nat. PROP P (of_nat n)"
       
    39   then have "PROP P (of_nat (nat_of n))" .
       
    40   then show "PROP P n" by simp
       
    41 qed
       
    42 
       
    43 lemma index_case:
       
    44   assumes "\<And>n. k = of_nat n \<Longrightarrow> P"
       
    45   shows P
       
    46   by (rule assms [of "nat_of k"]) simp
       
    47 
       
    48 lemma index_induct_raw:
       
    49   assumes "\<And>n. P (of_nat n)"
       
    50   shows "P k"
       
    51 proof -
       
    52   from assms have "P (of_nat (nat_of k))" .
       
    53   then show ?thesis by simp
       
    54 qed
       
    55 
       
    56 lemma nat_of_inject [simp]:
       
    57   "nat_of k = nat_of l \<longleftrightarrow> k = l"
       
    58   by (rule nat_of_inject)
       
    59 
       
    60 lemma of_nat_inject [simp]:
       
    61   "of_nat n = of_nat m \<longleftrightarrow> n = m"
       
    62   by (rule of_nat_inject) (rule UNIV_I)+
       
    63 
       
    64 instantiation index :: zero
       
    65 begin
       
    66 
       
    67 definition [simp, code del]:
       
    68   "0 = of_nat 0"
       
    69 
       
    70 instance ..
       
    71 
       
    72 end
       
    73 
       
    74 definition [simp]:
       
    75   "Suc_index k = of_nat (Suc (nat_of k))"
       
    76 
       
    77 rep_datatype "0 \<Colon> index" Suc_index
       
    78 proof -
       
    79   fix P :: "index \<Rightarrow> bool"
       
    80   fix k :: index
       
    81   assume "P 0" then have init: "P (of_nat 0)" by simp
       
    82   assume "\<And>k. P k \<Longrightarrow> P (Suc_index k)"
       
    83     then have "\<And>n. P (of_nat n) \<Longrightarrow> P (Suc_index (of_nat n))" .
       
    84     then have step: "\<And>n. P (of_nat n) \<Longrightarrow> P (of_nat (Suc n))" by simp
       
    85   from init step have "P (of_nat (nat_of k))"
       
    86     by (induct "nat_of k") simp_all
       
    87   then show "P k" by simp
       
    88 qed simp_all
       
    89 
       
    90 declare index_case [case_names nat, cases type: index]
       
    91 declare index.induct [case_names nat, induct type: index]
       
    92 
       
    93 lemma index_decr [termination_simp]:
       
    94   "k \<noteq> Code_Index.of_nat 0 \<Longrightarrow> Code_Index.nat_of k - Suc 0 < Code_Index.nat_of k"
       
    95   by (cases k) simp
       
    96 
       
    97 lemma [simp, code]:
       
    98   "index_size = nat_of"
       
    99 proof (rule ext)
       
   100   fix k
       
   101   have "index_size k = nat_size (nat_of k)"
       
   102     by (induct k rule: index.induct) (simp_all del: zero_index_def Suc_index_def, simp_all)
       
   103   also have "nat_size (nat_of k) = nat_of k" by (induct "nat_of k") simp_all
       
   104   finally show "index_size k = nat_of k" .
       
   105 qed
       
   106 
       
   107 lemma [simp, code]:
       
   108   "size = nat_of"
       
   109 proof (rule ext)
       
   110   fix k
       
   111   show "size k = nat_of k"
       
   112   by (induct k) (simp_all del: zero_index_def Suc_index_def, simp_all)
       
   113 qed
       
   114 
       
   115 lemmas [code del] = index.recs index.cases
       
   116 
       
   117 lemma [code]:
       
   118   "eq_class.eq k l \<longleftrightarrow> eq_class.eq (nat_of k) (nat_of l)"
       
   119   by (cases k, cases l) (simp add: eq)
       
   120 
       
   121 lemma [code nbe]:
       
   122   "eq_class.eq (k::index) k \<longleftrightarrow> True"
       
   123   by (rule HOL.eq_refl)
       
   124 
       
   125 
       
   126 subsection {* Indices as datatype of ints *}
       
   127 
       
   128 instantiation index :: number
       
   129 begin
       
   130 
       
   131 definition
       
   132   "number_of = of_nat o nat"
       
   133 
       
   134 instance ..
       
   135 
       
   136 end
       
   137 
       
   138 lemma nat_of_number [simp]:
       
   139   "nat_of (number_of k) = number_of k"
       
   140   by (simp add: number_of_index_def nat_number_of_def number_of_is_id)
       
   141 
       
   142 code_datatype "number_of \<Colon> int \<Rightarrow> index"
       
   143 
       
   144 
       
   145 subsection {* Basic arithmetic *}
       
   146 
       
   147 instantiation index :: "{minus, ordered_semidom, semiring_div, linorder}"
       
   148 begin
       
   149 
       
   150 definition [simp, code del]:
       
   151   "(1\<Colon>index) = of_nat 1"
       
   152 
       
   153 definition [simp, code del]:
       
   154   "n + m = of_nat (nat_of n + nat_of m)"
       
   155 
       
   156 definition [simp, code del]:
       
   157   "n - m = of_nat (nat_of n - nat_of m)"
       
   158 
       
   159 definition [simp, code del]:
       
   160   "n * m = of_nat (nat_of n * nat_of m)"
       
   161 
       
   162 definition [simp, code del]:
       
   163   "n div m = of_nat (nat_of n div nat_of m)"
       
   164 
       
   165 definition [simp, code del]:
       
   166   "n mod m = of_nat (nat_of n mod nat_of m)"
       
   167 
       
   168 definition [simp, code del]:
       
   169   "n \<le> m \<longleftrightarrow> nat_of n \<le> nat_of m"
       
   170 
       
   171 definition [simp, code del]:
       
   172   "n < m \<longleftrightarrow> nat_of n < nat_of m"
       
   173 
       
   174 instance proof
       
   175 qed (auto simp add: index left_distrib div_mult_self1)
       
   176 
       
   177 end
       
   178 
       
   179 lemma zero_index_code [code inline, code]:
       
   180   "(0\<Colon>index) = Numeral0"
       
   181   by (simp add: number_of_index_def Pls_def)
       
   182 lemma [code post]: "Numeral0 = (0\<Colon>index)"
       
   183   using zero_index_code ..
       
   184 
       
   185 lemma one_index_code [code inline, code]:
       
   186   "(1\<Colon>index) = Numeral1"
       
   187   by (simp add: number_of_index_def Pls_def Bit1_def)
       
   188 lemma [code post]: "Numeral1 = (1\<Colon>index)"
       
   189   using one_index_code ..
       
   190 
       
   191 lemma plus_index_code [code nbe]:
       
   192   "of_nat n + of_nat m = of_nat (n + m)"
       
   193   by simp
       
   194 
       
   195 definition subtract_index :: "index \<Rightarrow> index \<Rightarrow> index" where
       
   196   [simp, code del]: "subtract_index = op -"
       
   197 
       
   198 lemma subtract_index_code [code nbe]:
       
   199   "subtract_index (of_nat n) (of_nat m) = of_nat (n - m)"
       
   200   by simp
       
   201 
       
   202 lemma minus_index_code [code]:
       
   203   "n - m = subtract_index n m"
       
   204   by simp
       
   205 
       
   206 lemma times_index_code [code nbe]:
       
   207   "of_nat n * of_nat m = of_nat (n * m)"
       
   208   by simp
       
   209 
       
   210 lemma less_eq_index_code [code nbe]:
       
   211   "of_nat n \<le> of_nat m \<longleftrightarrow> n \<le> m"
       
   212   by simp
       
   213 
       
   214 lemma less_index_code [code nbe]:
       
   215   "of_nat n < of_nat m \<longleftrightarrow> n < m"
       
   216   by simp
       
   217 
       
   218 lemma Suc_index_minus_one: "Suc_index n - 1 = n" by simp
       
   219 
       
   220 lemma of_nat_code [code]:
       
   221   "of_nat = Nat.of_nat"
       
   222 proof
       
   223   fix n :: nat
       
   224   have "Nat.of_nat n = of_nat n"
       
   225     by (induct n) simp_all
       
   226   then show "of_nat n = Nat.of_nat n"
       
   227     by (rule sym)
       
   228 qed
       
   229 
       
   230 lemma index_not_eq_zero: "i \<noteq> of_nat 0 \<longleftrightarrow> i \<ge> 1"
       
   231   by (cases i) auto
       
   232 
       
   233 definition nat_of_aux :: "index \<Rightarrow> nat \<Rightarrow> nat" where
       
   234   "nat_of_aux i n = nat_of i + n"
       
   235 
       
   236 lemma nat_of_aux_code [code]:
       
   237   "nat_of_aux i n = (if i = 0 then n else nat_of_aux (i - 1) (Suc n))"
       
   238   by (auto simp add: nat_of_aux_def index_not_eq_zero)
       
   239 
       
   240 lemma nat_of_code [code]:
       
   241   "nat_of i = nat_of_aux i 0"
       
   242   by (simp add: nat_of_aux_def)
       
   243 
       
   244 definition div_mod_index ::  "index \<Rightarrow> index \<Rightarrow> index \<times> index" where
       
   245   [code del]: "div_mod_index n m = (n div m, n mod m)"
       
   246 
       
   247 lemma [code]:
       
   248   "div_mod_index n m = (if m = 0 then (0, n) else (n div m, n mod m))"
       
   249   unfolding div_mod_index_def by auto
       
   250 
       
   251 lemma [code]:
       
   252   "n div m = fst (div_mod_index n m)"
       
   253   unfolding div_mod_index_def by simp
       
   254 
       
   255 lemma [code]:
       
   256   "n mod m = snd (div_mod_index n m)"
       
   257   unfolding div_mod_index_def by simp
       
   258 
       
   259 hide (open) const of_nat nat_of
       
   260 
       
   261 subsection {* ML interface *}
       
   262 
       
   263 ML {*
       
   264 structure Index =
       
   265 struct
       
   266 
       
   267 fun mk k = HOLogic.mk_number @{typ index} k;
       
   268 
       
   269 end;
       
   270 *}
       
   271 
       
   272 
       
   273 subsection {* Code generator setup *}
       
   274 
       
   275 text {* Implementation of indices by bounded integers *}
       
   276 
       
   277 code_type index
       
   278   (SML "int")
       
   279   (OCaml "int")
       
   280   (Haskell "Int")
       
   281 
       
   282 code_instance index :: eq
       
   283   (Haskell -)
       
   284 
       
   285 setup {*
       
   286   fold (Numeral.add_code @{const_name number_index_inst.number_of_index}
       
   287     false false) ["SML", "OCaml", "Haskell"]
       
   288 *}
       
   289 
       
   290 code_reserved SML Int int
       
   291 code_reserved OCaml Pervasives int
       
   292 
       
   293 code_const "op + \<Colon> index \<Rightarrow> index \<Rightarrow> index"
       
   294   (SML "Int.+/ ((_),/ (_))")
       
   295   (OCaml "Pervasives.( + )")
       
   296   (Haskell infixl 6 "+")
       
   297 
       
   298 code_const "subtract_index \<Colon> index \<Rightarrow> index \<Rightarrow> index"
       
   299   (SML "Int.max/ (_/ -/ _,/ 0 : int)")
       
   300   (OCaml "Pervasives.max/ (_/ -/ _)/ (0 : int) ")
       
   301   (Haskell "max/ (_/ -/ _)/ (0 :: Int)")
       
   302 
       
   303 code_const "op * \<Colon> index \<Rightarrow> index \<Rightarrow> index"
       
   304   (SML "Int.*/ ((_),/ (_))")
       
   305   (OCaml "Pervasives.( * )")
       
   306   (Haskell infixl 7 "*")
       
   307 
       
   308 code_const div_mod_index
       
   309   (SML "(fn n => fn m =>/ if m = 0/ then (0, n) else/ (n div m, n mod m))")
       
   310   (OCaml "(fun n -> fun m ->/ if m = 0/ then (0, n) else/ (n '/ m, n mod m))")
       
   311   (Haskell "divMod")
       
   312 
       
   313 code_const "eq_class.eq \<Colon> index \<Rightarrow> index \<Rightarrow> bool"
       
   314   (SML "!((_ : Int.int) = _)")
       
   315   (OCaml "!((_ : int) = _)")
       
   316   (Haskell infixl 4 "==")
       
   317 
       
   318 code_const "op \<le> \<Colon> index \<Rightarrow> index \<Rightarrow> bool"
       
   319   (SML "Int.<=/ ((_),/ (_))")
       
   320   (OCaml "!((_ : int) <= _)")
       
   321   (Haskell infix 4 "<=")
       
   322 
       
   323 code_const "op < \<Colon> index \<Rightarrow> index \<Rightarrow> bool"
       
   324   (SML "Int.</ ((_),/ (_))")
       
   325   (OCaml "!((_ : int) < _)")
       
   326   (Haskell infix 4 "<")
       
   327 
       
   328 text {* Evaluation *}
       
   329 
       
   330 lemma [code, code del]:
       
   331   "(Code_Eval.term_of \<Colon> index \<Rightarrow> term) = Code_Eval.term_of" ..
       
   332 
       
   333 code_const "Code_Eval.term_of \<Colon> index \<Rightarrow> term"
       
   334   (SML "HOLogic.mk'_number/ HOLogic.indexT/ (IntInf.fromInt/ _)")
       
   335 
       
   336 end