src/HOL/Word/WordDefinition.thy
changeset 24333 e77ea0ea7f2c
child 24350 4d74f37c6367
equal deleted inserted replaced
24332:e3a2b75b1cf9 24333:e77ea0ea7f2c
       
     1 (* 
       
     2   ID:     $Id$
       
     3   Author: Jeremy Dawson and Gerwin Klein, NICTA
       
     4   
       
     5   Basic definition of word type and basic theorems following from 
       
     6   the definition of the word type 
       
     7 *) 
       
     8 
       
     9 
       
    10 theory WordDefinition imports Size BitSyntax BinBoolList begin 
       
    11 
       
    12 typedef (open word) 'a word
       
    13   = "{(0::int) ..< 2^len_of TYPE('a::len0)}" by auto
       
    14 
       
    15 instance word :: (len0) number ..
       
    16 instance word :: (type) minus ..
       
    17 instance word :: (type) plus ..
       
    18 instance word :: (type) one ..
       
    19 instance word :: (type) zero ..
       
    20 instance word :: (type) times ..
       
    21 instance word :: (type) Divides.div ..
       
    22 instance word :: (type) power ..
       
    23 instance word :: (type) ord ..
       
    24 instance word :: (type) size ..
       
    25 instance word :: (type) inverse ..
       
    26 instance word :: (type) bit ..
       
    27 
       
    28 
       
    29 section "Type conversions and casting"
       
    30 
       
    31 constdefs
       
    32   -- {* representation of words using unsigned or signed bins, 
       
    33         only difference in these is the type class *}
       
    34   word_of_int :: "int => 'a :: len0 word"
       
    35   "word_of_int w == Abs_word (bintrunc (len_of TYPE ('a)) w)" 
       
    36 
       
    37   -- {* uint and sint cast a word to an integer,
       
    38         uint treats the word as unsigned,
       
    39         sint treats the most-significant-bit as a sign bit *}
       
    40   uint :: "'a :: len0 word => int"
       
    41   "uint w == Rep_word w"
       
    42   sint :: "'a :: len word => int"
       
    43   sint_uint: "sint w == sbintrunc (len_of TYPE ('a) - 1) (uint w)"
       
    44   unat :: "'a :: len0 word => nat"
       
    45   "unat w == nat (uint w)"
       
    46 
       
    47   -- "the sets of integers representing the words"
       
    48   uints :: "nat => int set"
       
    49   "uints n == range (bintrunc n)"
       
    50   sints :: "nat => int set"
       
    51   "sints n == range (sbintrunc (n - 1))"
       
    52   unats :: "nat => nat set"
       
    53   "unats n == {i. i < 2 ^ n}"
       
    54   norm_sint :: "nat => int => int"
       
    55   "norm_sint n w == (w + 2 ^ (n - 1)) mod 2 ^ n - 2 ^ (n - 1)"
       
    56 
       
    57   -- "cast a word to a different length"
       
    58   scast :: "'a :: len word => 'b :: len word"
       
    59   "scast w == word_of_int (sint w)"
       
    60   ucast :: "'a :: len0 word => 'b :: len0 word"
       
    61   "ucast w == word_of_int (uint w)"
       
    62 
       
    63   -- "whether a cast (or other) function is to a longer or shorter length"
       
    64   source_size :: "('a :: len0 word => 'b) => nat"
       
    65   "source_size c == let arb = arbitrary ; x = c arb in size arb"  
       
    66   target_size :: "('a => 'b :: len0 word) => nat"
       
    67   "target_size c == size (c arbitrary)"
       
    68   is_up :: "('a :: len0 word => 'b :: len0 word) => bool"
       
    69   "is_up c == source_size c <= target_size c"
       
    70   is_down :: "('a :: len0 word => 'b :: len0 word) => bool"
       
    71   "is_down c == target_size c <= source_size c"
       
    72 
       
    73 constdefs
       
    74   of_bl :: "bool list => 'a :: len0 word" 
       
    75   "of_bl bl == word_of_int (bl_to_bin bl)"
       
    76   to_bl :: "'a :: len0 word => bool list"
       
    77   "to_bl w == 
       
    78   bin_to_bl (len_of TYPE ('a)) (uint w)"
       
    79 
       
    80   word_reverse :: "'a :: len0 word => 'a word"
       
    81   "word_reverse w == of_bl (rev (to_bl w))"
       
    82 
       
    83 defs (overloaded)
       
    84   word_size: "size (w :: 'a :: len0 word) == len_of TYPE('a)"
       
    85   word_number_of_def: "number_of w == word_of_int w"
       
    86 
       
    87 constdefs
       
    88   word_int_case :: "(int => 'b) => ('a :: len0 word) => 'b"
       
    89   "word_int_case f w == f (uint w)"
       
    90 
       
    91 syntax
       
    92   of_int :: "int => 'a"
       
    93 translations
       
    94   "case x of of_int y => b" == "word_int_case (%y. b) x"
       
    95 
       
    96 
       
    97 section  "Arithmetic operations"
       
    98 
       
    99 defs (overloaded)
       
   100   word_1_wi: "(1 :: ('a :: len0) word) == word_of_int 1"
       
   101   word_0_wi: "(0 :: ('a :: len0) word) == word_of_int 0"
       
   102 
       
   103   word_le_def: "a <= b == uint a <= uint b"
       
   104   word_less_def: "x < y == x <= y & x ~= (y :: 'a :: len0 word)"
       
   105 
       
   106 constdefs
       
   107   word_succ :: "'a :: len0 word => 'a word"
       
   108   "word_succ a == word_of_int (Numeral.succ (uint a))"
       
   109 
       
   110   word_pred :: "'a :: len0 word => 'a word"
       
   111   "word_pred a == word_of_int (Numeral.pred (uint a))"
       
   112 
       
   113   udvd :: "'a::len word => 'a::len word => bool" (infixl "udvd" 50)
       
   114   "a udvd b == EX n>=0. uint b = n * uint a"
       
   115 
       
   116   word_sle :: "'a :: len word => 'a word => bool" ("(_/ <=s _)" [50, 51] 50)
       
   117   "a <=s b == sint a <= sint b"
       
   118 
       
   119   word_sless :: "'a :: len word => 'a word => bool" ("(_/ <s _)" [50, 51] 50)
       
   120   "(x <s y) == (x <=s y & x ~= y)"
       
   121 
       
   122 consts
       
   123   word_power :: "'a :: len0 word => nat => 'a word"
       
   124 primrec
       
   125   "word_power a 0 = 1"
       
   126   "word_power a (Suc n) = a * word_power a n"
       
   127 
       
   128 defs (overloaded)
       
   129   word_pow: "power == word_power"
       
   130   word_add_def: "a + b == word_of_int (uint a + uint b)"
       
   131   word_sub_wi: "a - b == word_of_int (uint a - uint b)"
       
   132   word_minus_def: "- a == word_of_int (- uint a)"
       
   133   word_mult_def: "a * b == word_of_int (uint a * uint b)"
       
   134   word_div_def: "a div b == word_of_int (uint a div uint b)"
       
   135   word_mod_def: "a mod b == word_of_int (uint a mod uint b)"
       
   136 
       
   137 
       
   138 section "Bit-wise operations"
       
   139 
       
   140 defs (overloaded)
       
   141   word_and_def: 
       
   142   "(a::'a::len0 word) AND b == word_of_int (int_and (uint a) (uint b))"
       
   143 
       
   144   word_or_def:  
       
   145   "(a::'a::len0 word) OR b == word_of_int (int_or (uint a) (uint b))"
       
   146 
       
   147   word_xor_def: 
       
   148   "(a::'a::len0 word) XOR b == word_of_int (int_xor (uint a) (uint b))"
       
   149 
       
   150   word_not_def: 
       
   151   "NOT (a::'a::len0 word) == word_of_int (int_not (uint a))"
       
   152 
       
   153   word_test_bit_def: 
       
   154   "test_bit (a::'a::len0 word) == bin_nth (uint a)"
       
   155 
       
   156   word_set_bit_def: 
       
   157   "set_bit (a::'a::len0 word) n x == 
       
   158    word_of_int (bin_sc n (If x bit.B1 bit.B0) (uint a))"
       
   159 
       
   160   word_set_bits_def:  
       
   161   "(BITS n. f n)::'a::len0 word == of_bl (bl_of_nth (len_of TYPE ('a)) f)"
       
   162 
       
   163   word_lsb_def: 
       
   164   "lsb (a::'a::len0 word) == bin_last (uint a) = bit.B1"
       
   165 
       
   166   word_msb_def: 
       
   167   "msb (a::'a::len word) == bin_sign (sint a) = Numeral.Min"
       
   168 
       
   169 
       
   170 constdefs
       
   171   setBit :: "'a :: len0 word => nat => 'a word" 
       
   172   "setBit w n == set_bit w n True"
       
   173 
       
   174   clearBit :: "'a :: len0 word => nat => 'a word" 
       
   175   "clearBit w n == set_bit w n False"
       
   176 
       
   177 
       
   178 section "Shift operations"
       
   179 
       
   180 constdefs
       
   181   shiftl1 :: "'a :: len0 word => 'a word"
       
   182   "shiftl1 w == word_of_int (uint w BIT bit.B0)"
       
   183 
       
   184   -- "shift right as unsigned or as signed, ie logical or arithmetic"
       
   185   shiftr1 :: "'a :: len0 word => 'a word"
       
   186   "shiftr1 w == word_of_int (bin_rest (uint w))"
       
   187 
       
   188   sshiftr1 :: "'a :: len word => 'a word" 
       
   189   "sshiftr1 w == word_of_int (bin_rest (sint w))"
       
   190 
       
   191   bshiftr1 :: "bool => 'a :: len word => 'a word"
       
   192   "bshiftr1 b w == of_bl (b # butlast (to_bl w))"
       
   193 
       
   194   sshiftr :: "'a :: len word => nat => 'a word" (infixl ">>>" 55)
       
   195   "w >>> n == (sshiftr1 ^ n) w"
       
   196 
       
   197   mask :: "nat => 'a::len word"
       
   198   "mask n == (1 << n) - 1"
       
   199 
       
   200   revcast :: "'a :: len0 word => 'b :: len0 word"
       
   201   "revcast w ==  of_bl (takefill False (len_of TYPE('b)) (to_bl w))"
       
   202 
       
   203   slice1 :: "nat => 'a :: len0 word => 'b :: len0 word"
       
   204   "slice1 n w == of_bl (takefill False n (to_bl w))"
       
   205 
       
   206   slice :: "nat => 'a :: len0 word => 'b :: len0 word"
       
   207   "slice n w == slice1 (size w - n) w"
       
   208 
       
   209 
       
   210 defs (overloaded)
       
   211   shiftl_def: "(w::'a::len0 word) << n == (shiftl1 ^ n) w"
       
   212   shiftr_def: "(w::'a::len0 word) >> n == (shiftr1 ^ n) w"
       
   213 
       
   214 
       
   215 section "Rotation"
       
   216 
       
   217 constdefs
       
   218   rotater1 :: "'a list => 'a list"
       
   219   "rotater1 ys == 
       
   220     case ys of [] => [] | x # xs => last ys # butlast ys"
       
   221 
       
   222   rotater :: "nat => 'a list => 'a list"
       
   223   "rotater n == rotater1 ^ n"
       
   224 
       
   225   word_rotr :: "nat => 'a :: len0 word => 'a :: len0 word"
       
   226   "word_rotr n w == of_bl (rotater n (to_bl w))"
       
   227 
       
   228   word_rotl :: "nat => 'a :: len0 word => 'a :: len0 word"
       
   229   "word_rotl n w == of_bl (rotate n (to_bl w))"
       
   230 
       
   231   word_roti :: "int => 'a :: len0 word => 'a :: len0 word"
       
   232   "word_roti i w == if i >= 0 then word_rotr (nat i) w
       
   233                     else word_rotl (nat (- i)) w"
       
   234 
       
   235 
       
   236 section "Split and cat operations"
       
   237 
       
   238 constdefs
       
   239   word_cat :: "'a :: len0 word => 'b :: len0 word => 'c :: len0 word"
       
   240   "word_cat a b == word_of_int (bin_cat (uint a) (len_of TYPE ('b)) (uint b))"
       
   241 
       
   242   word_split :: "'a :: len0 word => ('b :: len0 word) * ('c :: len0 word)"
       
   243   "word_split a == 
       
   244    case bin_split (len_of TYPE ('c)) (uint a) of 
       
   245      (u, v) => (word_of_int u, word_of_int v)"
       
   246 
       
   247   word_rcat :: "'a :: len0 word list => 'b :: len0 word"
       
   248   "word_rcat ws == 
       
   249   word_of_int (bin_rcat (len_of TYPE ('a)) (map uint ws))"
       
   250 
       
   251   word_rsplit :: "'a :: len0 word => 'b :: len word list"
       
   252   "word_rsplit w == 
       
   253   map word_of_int (bin_rsplit (len_of TYPE ('b)) (len_of TYPE ('a), uint w))"
       
   254 
       
   255 constdefs
       
   256   -- "Largest representable machine integer."
       
   257   max_word :: "'a::len word"
       
   258   "max_word \<equiv> word_of_int (2^len_of TYPE('a) - 1)"
       
   259 
       
   260 consts 
       
   261   of_bool :: "bool \<Rightarrow> 'a::len word"
       
   262 primrec
       
   263   "of_bool False = 0"
       
   264   "of_bool True = 1"
       
   265 
       
   266 
       
   267 
       
   268 lemmas of_nth_def = word_set_bits_def
       
   269 
       
   270 lemmas word_size_gt_0 [iff] = 
       
   271   xtr1 [OF word_size [THEN meta_eq_to_obj_eq] len_gt_0, standard]
       
   272 lemmas lens_gt_0 = word_size_gt_0 len_gt_0
       
   273 lemmas lens_not_0 [iff] = lens_gt_0 [THEN gr_implies_not0, standard]
       
   274 
       
   275 lemma uints_num: "uints n = {i. 0 \<le> i \<and> i < 2 ^ n}"
       
   276   by (simp add: uints_def range_bintrunc)
       
   277 
       
   278 lemma sints_num: "sints n = {i. - (2 ^ (n - 1)) \<le> i \<and> i < 2 ^ (n - 1)}"
       
   279   by (simp add: sints_def range_sbintrunc)
       
   280 
       
   281 lemmas atLeastLessThan_alt = atLeastLessThan_def [unfolded 
       
   282   atLeast_def lessThan_def Collect_conj_eq [symmetric]]
       
   283   
       
   284 lemma mod_in_reps: "m > 0 ==> y mod m : {0::int ..< m}"
       
   285   unfolding atLeastLessThan_alt by auto
       
   286 
       
   287 lemma 
       
   288   Rep_word_0:"0 <= Rep_word x" and 
       
   289   Rep_word_lt: "Rep_word (x::'a::len0 word) < 2 ^ len_of TYPE('a)"
       
   290   by (auto simp: Rep_word [simplified])
       
   291 
       
   292 lemma Rep_word_mod_same:
       
   293   "Rep_word x mod 2 ^ len_of TYPE('a) = Rep_word (x::'a::len0 word)"
       
   294   by (simp add: int_mod_eq Rep_word_lt Rep_word_0)
       
   295 
       
   296 lemma td_ext_uint: 
       
   297   "td_ext (uint :: 'a word => int) word_of_int (uints (len_of TYPE('a::len0))) 
       
   298     (%w::int. w mod 2 ^ len_of TYPE('a))"
       
   299   apply (unfold td_ext_def')
       
   300   apply (simp add: uints_num uint_def word_of_int_def bintrunc_mod2p)
       
   301   apply (simp add: Rep_word_mod_same Rep_word_0 Rep_word_lt
       
   302                    word.Rep_word_inverse word.Abs_word_inverse int_mod_lem)
       
   303   done
       
   304 
       
   305 lemmas int_word_uint = td_ext_uint [THEN td_ext.eq_norm, standard]
       
   306 
       
   307 interpretation word_uint: 
       
   308   td_ext ["uint::'a::len0 word \<Rightarrow> int" 
       
   309           word_of_int 
       
   310           "uints (len_of TYPE('a::len0))"
       
   311           "\<lambda>w. w mod 2 ^ len_of TYPE('a::len0)"]
       
   312   by (rule td_ext_uint)
       
   313   
       
   314 lemmas td_uint = word_uint.td_thm
       
   315 
       
   316 lemmas td_ext_ubin = td_ext_uint 
       
   317   [simplified len_gt_0 no_bintr_alt1 [symmetric]]
       
   318 
       
   319 interpretation word_ubin:
       
   320   td_ext ["uint::'a::len0 word \<Rightarrow> int" 
       
   321           word_of_int 
       
   322           "uints (len_of TYPE('a::len0))"
       
   323           "bintrunc (len_of TYPE('a::len0))"]
       
   324   by (rule td_ext_ubin)
       
   325 
       
   326 lemma sint_sbintrunc': 
       
   327   "sint (word_of_int bin :: 'a word) = 
       
   328     (sbintrunc (len_of TYPE ('a :: len) - 1) bin)"
       
   329   unfolding sint_uint 
       
   330   by (auto simp: word_ubin.eq_norm sbintrunc_bintrunc_lt)
       
   331 
       
   332 lemma uint_sint: 
       
   333   "uint w = bintrunc (len_of TYPE('a)) (sint (w :: 'a :: len word))"
       
   334   unfolding sint_uint by (auto simp: bintrunc_sbintrunc_le)
       
   335 
       
   336 lemma bintr_uint': 
       
   337   "n >= size w ==> bintrunc n (uint w) = uint w"
       
   338   apply (unfold word_size)
       
   339   apply (subst word_ubin.norm_Rep [symmetric]) 
       
   340   apply (simp only: bintrunc_bintrunc_min word_size min_def)
       
   341   apply simp
       
   342   done
       
   343 
       
   344 lemma wi_bintr': 
       
   345   "wb = word_of_int bin ==> n >= size wb ==> 
       
   346     word_of_int (bintrunc n bin) = wb"
       
   347   unfolding word_size
       
   348   by (clarsimp simp add : word_ubin.norm_eq_iff [symmetric] min_def)
       
   349 
       
   350 lemmas bintr_uint = bintr_uint' [unfolded word_size]
       
   351 lemmas wi_bintr = wi_bintr' [unfolded word_size]
       
   352 
       
   353 lemma td_ext_sbin: 
       
   354   "td_ext (sint :: 'a word => int) word_of_int (sints (len_of TYPE('a::len))) 
       
   355     (sbintrunc (len_of TYPE('a) - 1))"
       
   356   apply (unfold td_ext_def' sint_uint)
       
   357   apply (simp add : word_ubin.eq_norm)
       
   358   apply (cases "len_of TYPE('a)")
       
   359    apply (auto simp add : sints_def)
       
   360   apply (rule sym [THEN trans])
       
   361   apply (rule word_ubin.Abs_norm)
       
   362   apply (simp only: bintrunc_sbintrunc)
       
   363   apply (drule sym)
       
   364   apply simp
       
   365   done
       
   366 
       
   367 lemmas td_ext_sint = td_ext_sbin 
       
   368   [simplified len_gt_0 no_sbintr_alt2 Suc_pred' [symmetric]]
       
   369 
       
   370 (* We do sint before sbin, before sint is the user version
       
   371    and interpretations do not produce thm duplicates. I.e. 
       
   372    we get the name word_sint.Rep_eqD, but not word_sbin.Req_eqD,
       
   373    because the latter is the same thm as the former *)
       
   374 interpretation word_sint:
       
   375   td_ext ["sint ::'a::len word => int" 
       
   376           word_of_int 
       
   377           "sints (len_of TYPE('a::len))"
       
   378           "%w. (w + 2^(len_of TYPE('a::len) - 1)) mod 2^len_of TYPE('a::len) -
       
   379                2 ^ (len_of TYPE('a::len) - 1)"]
       
   380   by (rule td_ext_sint)
       
   381 
       
   382 interpretation word_sbin:
       
   383   td_ext ["sint ::'a::len word => int" 
       
   384           word_of_int 
       
   385           "sints (len_of TYPE('a::len))"
       
   386           "sbintrunc (len_of TYPE('a::len) - 1)"]
       
   387   by (rule td_ext_sbin)
       
   388 
       
   389 lemmas int_word_sint = td_ext_sint [THEN td_ext.eq_norm, standard]
       
   390 
       
   391 lemmas td_sint = word_sint.td
       
   392 
       
   393 lemma word_number_of_alt: "number_of b == word_of_int (number_of b)"
       
   394   unfolding word_number_of_def by (simp add: number_of_eq)
       
   395 
       
   396 lemma word_no_wi: "number_of = word_of_int"
       
   397   by (auto simp: word_number_of_def intro: ext)
       
   398 
       
   399 lemma to_bl_def': 
       
   400   "(to_bl :: 'a :: len0 word => bool list) =
       
   401     bin_to_bl (len_of TYPE('a)) o uint"
       
   402   by (auto simp: to_bl_def intro: ext)
       
   403 
       
   404 lemmas word_reverse_no_def [simp] = word_reverse_def [of "number_of ?w"]
       
   405 
       
   406 lemmas uints_mod = uints_def [unfolded no_bintr_alt1]
       
   407 
       
   408 lemma uint_bintrunc: "uint (number_of bin :: 'a word) = 
       
   409     number_of (bintrunc (len_of TYPE ('a :: len0)) bin)"
       
   410   unfolding word_number_of_def number_of_eq
       
   411   by (auto intro: word_ubin.eq_norm) 
       
   412 
       
   413 lemma sint_sbintrunc: "sint (number_of bin :: 'a word) = 
       
   414     number_of (sbintrunc (len_of TYPE ('a :: len) - 1) bin)" 
       
   415   unfolding word_number_of_def number_of_eq
       
   416   by (auto intro!: word_sbin.eq_norm simp del: one_is_Suc_zero)
       
   417 
       
   418 lemma unat_bintrunc: 
       
   419   "unat (number_of bin :: 'a :: len0 word) =
       
   420     number_of (bintrunc (len_of TYPE('a)) bin)"
       
   421   unfolding unat_def nat_number_of_def 
       
   422   by (simp only: uint_bintrunc)
       
   423 
       
   424 (* WARNING - these may not always be helpful *)
       
   425 declare 
       
   426   uint_bintrunc [simp] 
       
   427   sint_sbintrunc [simp] 
       
   428   unat_bintrunc [simp]
       
   429 
       
   430 lemma size_0_eq: "size (w :: 'a :: len0 word) = 0 ==> v = w"
       
   431   apply (unfold word_size)
       
   432   apply (rule word_uint.Rep_eqD)
       
   433   apply (rule box_equals)
       
   434     defer
       
   435     apply (rule word_ubin.norm_Rep)+
       
   436   apply simp
       
   437   done
       
   438 
       
   439 lemmas uint_lem = word_uint.Rep [unfolded uints_num mem_Collect_eq]
       
   440 lemmas sint_lem = word_sint.Rep [unfolded sints_num mem_Collect_eq]
       
   441 lemmas uint_ge_0 [iff] = uint_lem [THEN conjunct1, standard]
       
   442 lemmas uint_lt2p [iff] = uint_lem [THEN conjunct2, standard]
       
   443 lemmas sint_ge = sint_lem [THEN conjunct1, standard]
       
   444 lemmas sint_lt = sint_lem [THEN conjunct2, standard]
       
   445 
       
   446 lemma sign_uint_Pls [simp]: 
       
   447   "bin_sign (uint x) = Numeral.Pls"
       
   448   by (simp add: sign_Pls_ge_0 number_of_eq)
       
   449 
       
   450 lemmas uint_m2p_neg = iffD2 [OF diff_less_0_iff_less uint_lt2p, standard]
       
   451 lemmas uint_m2p_not_non_neg = 
       
   452   iffD2 [OF linorder_not_le uint_m2p_neg, standard]
       
   453 
       
   454 lemma lt2p_lem:
       
   455   "len_of TYPE('a) <= n ==> uint (w :: 'a :: len0 word) < 2 ^ n"
       
   456   by (rule xtr8 [OF _ uint_lt2p]) simp
       
   457 
       
   458 lemmas uint_le_0_iff [simp] = 
       
   459   uint_ge_0 [THEN leD, THEN linorder_antisym_conv1, standard]
       
   460 
       
   461 lemma uint_nat: "uint w == int (unat w)"
       
   462   unfolding unat_def by auto
       
   463 
       
   464 lemma uint_number_of:
       
   465   "uint (number_of b :: 'a :: len0 word) = number_of b mod 2 ^ len_of TYPE('a)"
       
   466   unfolding word_number_of_alt
       
   467   by (simp only: int_word_uint)
       
   468 
       
   469 lemma unat_number_of: 
       
   470   "bin_sign b = Numeral.Pls ==> 
       
   471   unat (number_of b::'a::len0 word) = number_of b mod 2 ^ len_of TYPE ('a)"
       
   472   apply (unfold unat_def)
       
   473   apply (clarsimp simp only: uint_number_of)
       
   474   apply (rule nat_mod_distrib [THEN trans])
       
   475     apply (erule sign_Pls_ge_0 [THEN iffD1])
       
   476    apply (simp_all add: nat_power_eq)
       
   477   done
       
   478 
       
   479 lemma sint_number_of: "sint (number_of b :: 'a :: len word) = (number_of b + 
       
   480     2 ^ (len_of TYPE('a) - 1)) mod 2 ^ len_of TYPE('a) -
       
   481     2 ^ (len_of TYPE('a) - 1)"
       
   482   unfolding word_number_of_alt by (rule int_word_sint)
       
   483 
       
   484 lemma word_of_int_bin [simp] : 
       
   485   "(word_of_int (number_of bin) :: 'a :: len0 word) = (number_of bin)"
       
   486   unfolding word_number_of_alt by auto
       
   487 
       
   488 lemma word_int_case_wi: 
       
   489   "word_int_case f (word_of_int i :: 'b word) = 
       
   490     f (i mod 2 ^ len_of TYPE('b::len0))"
       
   491   unfolding word_int_case_def by (simp add: word_uint.eq_norm)
       
   492 
       
   493 lemma word_int_split: 
       
   494   "P (word_int_case f x) = 
       
   495     (ALL i. x = (word_of_int i :: 'b :: len0 word) & 
       
   496       0 <= i & i < 2 ^ len_of TYPE('b) --> P (f i))"
       
   497   unfolding word_int_case_def
       
   498   by (auto simp: word_uint.eq_norm int_mod_eq')
       
   499 
       
   500 lemma word_int_split_asm: 
       
   501   "P (word_int_case f x) = 
       
   502     (~ (EX n. x = (word_of_int n :: 'b::len0 word) &
       
   503       0 <= n & n < 2 ^ len_of TYPE('b::len0) & ~ P (f n)))"
       
   504   unfolding word_int_case_def
       
   505   by (auto simp: word_uint.eq_norm int_mod_eq')
       
   506   
       
   507 lemmas uint_range' =
       
   508   word_uint.Rep [unfolded uints_num mem_Collect_eq, standard]
       
   509 lemmas sint_range' = word_sint.Rep [unfolded One_nat_def
       
   510   sints_num mem_Collect_eq, standard]
       
   511 
       
   512 lemma uint_range_size: "0 <= uint w & uint w < 2 ^ size w"
       
   513   unfolding word_size by (rule uint_range')
       
   514 
       
   515 lemma sint_range_size:
       
   516   "- (2 ^ (size w - Suc 0)) <= sint w & sint w < 2 ^ (size w - Suc 0)"
       
   517   unfolding word_size by (rule sint_range')
       
   518 
       
   519 lemmas sint_above_size = sint_range_size
       
   520   [THEN conjunct2, THEN [2] xtr8, folded One_nat_def, standard]
       
   521 
       
   522 lemmas sint_below_size = sint_range_size
       
   523   [THEN conjunct1, THEN [2] order_trans, folded One_nat_def, standard]
       
   524 
       
   525 lemma test_bit_eq_iff: "(test_bit (u::'a::len0 word) = test_bit v) = (u = v)"
       
   526   unfolding word_test_bit_def by (simp add: bin_nth_eq_iff)
       
   527 
       
   528 lemma test_bit_size [rule_format] : "(w::'a::len0 word) !! n --> n < size w"
       
   529   apply (unfold word_test_bit_def)
       
   530   apply (subst word_ubin.norm_Rep [symmetric])
       
   531   apply (simp only: nth_bintr word_size)
       
   532   apply fast
       
   533   done
       
   534 
       
   535 lemma word_eqI [rule_format] : 
       
   536   fixes u :: "'a::len0 word"
       
   537   shows "(ALL n. n < size u --> u !! n = v !! n) ==> u = v"
       
   538   apply (rule test_bit_eq_iff [THEN iffD1])
       
   539   apply (rule ext)
       
   540   apply (erule allE)
       
   541   apply (erule impCE)
       
   542    prefer 2
       
   543    apply assumption
       
   544   apply (auto dest!: test_bit_size simp add: word_size)
       
   545   done
       
   546 
       
   547 lemmas word_eqD = test_bit_eq_iff [THEN iffD2, THEN fun_cong, standard]
       
   548 
       
   549 lemma test_bit_bin': "w !! n = (n < size w & bin_nth (uint w) n)"
       
   550   unfolding word_test_bit_def word_size
       
   551   by (simp add: nth_bintr [symmetric])
       
   552 
       
   553 lemmas test_bit_bin = test_bit_bin' [unfolded word_size]
       
   554 
       
   555 lemma bin_nth_uint_imp': "bin_nth (uint w) n --> n < size w"
       
   556   apply (unfold word_size)
       
   557   apply (rule impI)
       
   558   apply (rule nth_bintr [THEN iffD1, THEN conjunct1])
       
   559   apply (subst word_ubin.norm_Rep)
       
   560   apply assumption
       
   561   done
       
   562 
       
   563 lemma bin_nth_sint': 
       
   564   "n >= size w --> bin_nth (sint w) n = bin_nth (sint w) (size w - 1)"
       
   565   apply (rule impI)
       
   566   apply (subst word_sbin.norm_Rep [symmetric])
       
   567   apply (simp add : nth_sbintr word_size)
       
   568   apply auto
       
   569   done
       
   570 
       
   571 lemmas bin_nth_uint_imp = bin_nth_uint_imp' [rule_format, unfolded word_size]
       
   572 lemmas bin_nth_sint = bin_nth_sint' [rule_format, unfolded word_size]
       
   573 
       
   574 (* type definitions theorem for in terms of equivalent bool list *)
       
   575 lemma td_bl: 
       
   576   "type_definition (to_bl :: 'a::len0 word => bool list) 
       
   577                    of_bl  
       
   578                    {bl. length bl = len_of TYPE('a)}"
       
   579   apply (unfold type_definition_def of_bl_def to_bl_def)
       
   580   apply (simp add: word_ubin.eq_norm)
       
   581   apply safe
       
   582   apply (drule sym)
       
   583   apply simp
       
   584   done
       
   585 
       
   586 interpretation word_bl:
       
   587   type_definition ["to_bl :: 'a::len0 word => bool list"
       
   588                    of_bl  
       
   589                    "{bl. length bl = len_of TYPE('a::len0)}"]
       
   590   by (rule td_bl)
       
   591 
       
   592 lemma word_size_bl: "size w == size (to_bl w)"
       
   593   unfolding word_size by auto
       
   594 
       
   595 lemma to_bl_use_of_bl:
       
   596   "(to_bl w = bl) = (w = of_bl bl \<and> length bl = length (to_bl w))"
       
   597   by (fastsimp elim!: word_bl.Abs_inverse [simplified])
       
   598 
       
   599 lemma to_bl_word_rev: "to_bl (word_reverse w) = rev (to_bl w)"
       
   600   unfolding word_reverse_def by (simp add: word_bl.Abs_inverse)
       
   601 
       
   602 lemma word_rev_rev [simp] : "word_reverse (word_reverse w) = w"
       
   603   unfolding word_reverse_def by (simp add : word_bl.Abs_inverse)
       
   604 
       
   605 lemma word_rev_gal: "word_reverse w = u ==> word_reverse u = w"
       
   606   by auto
       
   607 
       
   608 lemmas word_rev_gal' = sym [THEN word_rev_gal, symmetric, standard]
       
   609 
       
   610 lemmas length_bl_gt_0 [iff] = xtr1 [OF word_bl.Rep' len_gt_0, standard]
       
   611 lemmas bl_not_Nil [iff] = 
       
   612   length_bl_gt_0 [THEN length_greater_0_conv [THEN iffD1], standard]
       
   613 lemmas length_bl_neq_0 [iff] = length_bl_gt_0 [THEN gr_implies_not0]
       
   614 
       
   615 lemma hd_bl_sign_sint: "hd (to_bl w) = (bin_sign (sint w) = Numeral.Min)"
       
   616   apply (unfold to_bl_def sint_uint)
       
   617   apply (rule trans [OF _ bl_sbin_sign])
       
   618   apply simp
       
   619   done
       
   620 
       
   621 lemma of_bl_drop': 
       
   622   "lend = length bl - len_of TYPE ('a :: len0) ==> 
       
   623     of_bl (drop lend bl) = (of_bl bl :: 'a word)"
       
   624   apply (unfold of_bl_def)
       
   625   apply (clarsimp simp add : trunc_bl2bin [symmetric])
       
   626   done
       
   627 
       
   628 lemmas of_bl_no = of_bl_def [folded word_number_of_def]
       
   629 
       
   630 lemma test_bit_of_bl:  
       
   631   "(of_bl bl::'a::len0 word) !! n = (rev bl ! n \<and> n < len_of TYPE('a) \<and> n < length bl)"
       
   632   apply (unfold of_bl_def word_test_bit_def)
       
   633   apply (auto simp add: word_size word_ubin.eq_norm nth_bintr bin_nth_of_bl)
       
   634   done
       
   635 
       
   636 lemma no_of_bl: 
       
   637   "(number_of bin ::'a::len0 word) = of_bl (bin_to_bl (len_of TYPE ('a)) bin)"
       
   638   unfolding word_size of_bl_no by (simp add : word_number_of_def)
       
   639 
       
   640 lemma uint_bl: "to_bl w == bin_to_bl (size w) (uint w)"
       
   641   unfolding word_size to_bl_def by auto
       
   642 
       
   643 lemma to_bl_bin: "bl_to_bin (to_bl w) = uint w"
       
   644   unfolding uint_bl by (simp add : word_size)
       
   645 
       
   646 lemma to_bl_of_bin: 
       
   647   "to_bl (word_of_int bin::'a::len0 word) = bin_to_bl (len_of TYPE('a)) bin"
       
   648   unfolding uint_bl by (clarsimp simp add: word_ubin.eq_norm word_size)
       
   649 
       
   650 lemmas to_bl_no_bin [simp] = to_bl_of_bin [folded word_number_of_def]
       
   651 
       
   652 lemma to_bl_to_bin [simp] : "bl_to_bin (to_bl w) = uint w"
       
   653   unfolding uint_bl by (simp add : word_size)
       
   654   
       
   655 lemmas uint_bl_bin [simp] = trans [OF bin_bl_bin word_ubin.norm_Rep, standard]
       
   656 
       
   657 lemmas num_AB_u [simp] = word_uint.Rep_inverse 
       
   658   [unfolded o_def word_number_of_def [symmetric], standard]
       
   659 lemmas num_AB_s [simp] = word_sint.Rep_inverse 
       
   660   [unfolded o_def word_number_of_def [symmetric], standard]
       
   661 
       
   662 (* naturals *)
       
   663 lemma uints_unats: "uints n = int ` unats n"
       
   664   apply (unfold unats_def uints_num)
       
   665   apply safe
       
   666   apply (rule_tac image_eqI)
       
   667   apply (erule_tac nat_0_le [symmetric])
       
   668   apply auto
       
   669   apply (erule_tac nat_less_iff [THEN iffD2])
       
   670   apply (rule_tac [2] zless_nat_eq_int_zless [THEN iffD1])
       
   671   apply (auto simp add : nat_power_eq int_power)
       
   672   done
       
   673 
       
   674 lemma unats_uints: "unats n = nat ` uints n"
       
   675   apply (auto simp add : uints_unats image_iff)
       
   676   done
       
   677 
       
   678 lemmas bintr_num = word_ubin.norm_eq_iff 
       
   679   [symmetric, folded word_number_of_def, standard]
       
   680 lemmas sbintr_num = word_sbin.norm_eq_iff 
       
   681   [symmetric, folded word_number_of_def, standard]
       
   682 
       
   683 lemmas num_of_bintr = word_ubin.Abs_norm [folded word_number_of_def, standard]
       
   684 lemmas num_of_sbintr = word_sbin.Abs_norm [folded word_number_of_def, standard];
       
   685     
       
   686 (* don't add these to simpset, since may want bintrunc n w to be simplified;
       
   687   may want these in reverse, but loop as simp rules, so use following *)
       
   688 
       
   689 lemma num_of_bintr':
       
   690   "bintrunc (len_of TYPE('a :: len0)) a = b ==> 
       
   691     number_of a = (number_of b :: 'a word)"
       
   692   apply safe
       
   693   apply (rule_tac num_of_bintr [symmetric])
       
   694   done
       
   695 
       
   696 lemma num_of_sbintr':
       
   697   "sbintrunc (len_of TYPE('a :: len) - 1) a = b ==> 
       
   698     number_of a = (number_of b :: 'a word)"
       
   699   apply safe
       
   700   apply (rule_tac num_of_sbintr [symmetric])
       
   701   done
       
   702 
       
   703 lemmas num_abs_bintr = sym [THEN trans,
       
   704   OF num_of_bintr word_number_of_def [THEN meta_eq_to_obj_eq], standard]
       
   705 lemmas num_abs_sbintr = sym [THEN trans,
       
   706   OF num_of_sbintr word_number_of_def [THEN meta_eq_to_obj_eq], standard]
       
   707   
       
   708 (** cast - note, no arg for new length, as it's determined by type of result,
       
   709   thus in "cast w = w, the type means cast to length of w! **)
       
   710 
       
   711 lemma ucast_id: "ucast w = w"
       
   712   unfolding ucast_def by auto
       
   713 
       
   714 lemma scast_id: "scast w = w"
       
   715   unfolding scast_def by auto
       
   716 
       
   717 lemma ucast_bl: "ucast w == of_bl (to_bl w)"
       
   718   unfolding ucast_def of_bl_def uint_bl
       
   719   by (auto simp add : word_size)
       
   720 
       
   721 lemma nth_ucast: 
       
   722   "(ucast w::'a::len0 word) !! n = (w !! n & n < len_of TYPE('a))"
       
   723   apply (unfold ucast_def test_bit_bin)
       
   724   apply (simp add: word_ubin.eq_norm nth_bintr word_size) 
       
   725   apply (fast elim!: bin_nth_uint_imp)
       
   726   done
       
   727 
       
   728 (* for literal u(s)cast *)
       
   729 
       
   730 lemma ucast_bintr [simp]: 
       
   731   "ucast (number_of w ::'a::len0 word) = 
       
   732    number_of (bintrunc (len_of TYPE('a)) w)"
       
   733   unfolding ucast_def by simp
       
   734 
       
   735 lemma scast_sbintr [simp]: 
       
   736   "scast (number_of w ::'a::len word) = 
       
   737    number_of (sbintrunc (len_of TYPE('a) - Suc 0) w)"
       
   738   unfolding scast_def by simp
       
   739 
       
   740 lemmas source_size = source_size_def [unfolded Let_def word_size]
       
   741 lemmas target_size = target_size_def [unfolded Let_def word_size]
       
   742 lemmas is_down = is_down_def [unfolded source_size target_size]
       
   743 lemmas is_up = is_up_def [unfolded source_size target_size]
       
   744 
       
   745 lemmas is_up_down = 
       
   746   trans [OF is_up [THEN meta_eq_to_obj_eq] 
       
   747             is_down [THEN meta_eq_to_obj_eq, symmetric], 
       
   748          standard]
       
   749 
       
   750 lemma down_cast_same': "uc = ucast ==> is_down uc ==> uc = scast"
       
   751   apply (unfold is_down)
       
   752   apply safe
       
   753   apply (rule ext)
       
   754   apply (unfold ucast_def scast_def uint_sint)
       
   755   apply (rule word_ubin.norm_eq_iff [THEN iffD1])
       
   756   apply simp
       
   757   done
       
   758 
       
   759 lemma word_rev_tf': 
       
   760   "r = to_bl (of_bl bl) ==> r = rev (takefill False (length r) (rev bl))"
       
   761   unfolding of_bl_def uint_bl
       
   762   by (clarsimp simp add: bl_bin_bl_rtf word_ubin.eq_norm word_size)
       
   763 
       
   764 lemmas word_rev_tf = refl [THEN word_rev_tf', unfolded word_bl.Rep', standard]
       
   765 
       
   766 lemmas word_rep_drop = word_rev_tf [simplified takefill_alt,
       
   767   simplified, simplified rev_take, simplified]
       
   768 
       
   769 lemma to_bl_ucast: 
       
   770   "to_bl (ucast (w::'b::len0 word) ::'a::len0 word) = 
       
   771    replicate (len_of TYPE('a) - len_of TYPE('b)) False @
       
   772    drop (len_of TYPE('b) - len_of TYPE('a)) (to_bl w)"
       
   773   apply (unfold ucast_bl)
       
   774   apply (rule trans)
       
   775    apply (rule word_rep_drop)
       
   776   apply simp
       
   777   done
       
   778 
       
   779 lemma ucast_up_app': 
       
   780   "uc = ucast ==> source_size uc + n = target_size uc ==> 
       
   781     to_bl (uc w) = replicate n False @ (to_bl w)"
       
   782   apply (auto simp add : source_size target_size to_bl_ucast)
       
   783   apply (rule_tac f = "%n. replicate n False" in arg_cong)
       
   784   apply simp
       
   785   done
       
   786 
       
   787 lemma ucast_down_drop': 
       
   788   "uc = ucast ==> source_size uc = target_size uc + n ==> 
       
   789     to_bl (uc w) = drop n (to_bl w)"
       
   790   by (auto simp add : source_size target_size to_bl_ucast)
       
   791 
       
   792 lemma scast_down_drop': 
       
   793   "sc = scast ==> source_size sc = target_size sc + n ==> 
       
   794     to_bl (sc w) = drop n (to_bl w)"
       
   795   apply (subgoal_tac "sc = ucast")
       
   796    apply safe
       
   797    apply simp
       
   798    apply (erule refl [THEN ucast_down_drop'])
       
   799   apply (rule refl [THEN down_cast_same', symmetric])
       
   800   apply (simp add : source_size target_size is_down)
       
   801   done
       
   802 
       
   803 lemma sint_up_scast': 
       
   804   "sc = scast ==> is_up sc ==> sint (sc w) = sint w"
       
   805   apply (unfold is_up)
       
   806   apply safe
       
   807   apply (simp add: scast_def word_sbin.eq_norm)
       
   808   apply (rule box_equals)
       
   809     prefer 3
       
   810     apply (rule word_sbin.norm_Rep)
       
   811    apply (rule sbintrunc_sbintrunc_l)
       
   812    defer
       
   813    apply (subst word_sbin.norm_Rep)
       
   814    apply (rule refl)
       
   815   apply simp
       
   816   done
       
   817 
       
   818 lemma uint_up_ucast':
       
   819   "uc = ucast ==> is_up uc ==> uint (uc w) = uint w"
       
   820   apply (unfold is_up)
       
   821   apply safe
       
   822   apply (rule bin_eqI)
       
   823   apply (fold word_test_bit_def)
       
   824   apply (auto simp add: nth_ucast)
       
   825   apply (auto simp add: test_bit_bin)
       
   826   done
       
   827     
       
   828 lemmas down_cast_same = refl [THEN down_cast_same']
       
   829 lemmas ucast_up_app = refl [THEN ucast_up_app']
       
   830 lemmas ucast_down_drop = refl [THEN ucast_down_drop']
       
   831 lemmas scast_down_drop = refl [THEN scast_down_drop']
       
   832 lemmas uint_up_ucast = refl [THEN uint_up_ucast']
       
   833 lemmas sint_up_scast = refl [THEN sint_up_scast']
       
   834 
       
   835 lemma ucast_up_ucast': "uc = ucast ==> is_up uc ==> ucast (uc w) = ucast w"
       
   836   apply (simp (no_asm) add: ucast_def)
       
   837   apply (clarsimp simp add: uint_up_ucast)
       
   838   done
       
   839     
       
   840 lemma scast_up_scast': "sc = scast ==> is_up sc ==> scast (sc w) = scast w"
       
   841   apply (simp (no_asm) add: scast_def)
       
   842   apply (clarsimp simp add: sint_up_scast)
       
   843   done
       
   844     
       
   845 lemma ucast_of_bl_up': 
       
   846   "w = of_bl bl ==> size bl <= size w ==> ucast w = of_bl bl"
       
   847   by (auto simp add : nth_ucast word_size test_bit_of_bl intro!: word_eqI)
       
   848 
       
   849 lemmas ucast_up_ucast = refl [THEN ucast_up_ucast']
       
   850 lemmas scast_up_scast = refl [THEN scast_up_scast']
       
   851 lemmas ucast_of_bl_up = refl [THEN ucast_of_bl_up']
       
   852 
       
   853 lemmas ucast_up_ucast_id = trans [OF ucast_up_ucast ucast_id]
       
   854 lemmas scast_up_scast_id = trans [OF scast_up_scast scast_id]
       
   855 
       
   856 lemmas isduu = is_up_down [where c = "ucast", THEN iffD2]
       
   857 lemmas isdus = is_up_down [where c = "scast", THEN iffD2]
       
   858 lemmas ucast_down_ucast_id = isduu [THEN ucast_up_ucast_id]
       
   859 lemmas scast_down_scast_id = isdus [THEN ucast_up_ucast_id]
       
   860 
       
   861 lemma up_ucast_surj:
       
   862   "is_up (ucast :: 'b::len0 word => 'a::len0 word) ==> 
       
   863    surj (ucast :: 'a word => 'b word)"
       
   864   by (rule surjI, erule ucast_up_ucast_id)
       
   865 
       
   866 lemma up_scast_surj:
       
   867   "is_up (scast :: 'b::len word => 'a::len word) ==> 
       
   868    surj (scast :: 'a word => 'b word)"
       
   869   by (rule surjI, erule scast_up_scast_id)
       
   870 
       
   871 lemma down_scast_inj:
       
   872   "is_down (scast :: 'b::len word => 'a::len word) ==> 
       
   873    inj_on (ucast :: 'a word => 'b word) A"
       
   874   by (rule inj_on_inverseI, erule scast_down_scast_id)
       
   875 
       
   876 lemma down_ucast_inj:
       
   877   "is_down (ucast :: 'b::len0 word => 'a::len0 word) ==> 
       
   878    inj_on (ucast :: 'a word => 'b word) A"
       
   879   by (rule inj_on_inverseI, erule ucast_down_ucast_id)
       
   880 
       
   881 lemma of_bl_append_same: "of_bl (X @ to_bl w) = w"
       
   882   by (rule word_bl.Rep_eqD) (simp add: word_rep_drop)
       
   883   
       
   884 lemma ucast_down_no': 
       
   885   "uc = ucast ==> is_down uc ==> uc (number_of bin) = number_of bin"
       
   886   apply (unfold word_number_of_def is_down)
       
   887   apply (clarsimp simp add: ucast_def word_ubin.eq_norm)
       
   888   apply (rule word_ubin.norm_eq_iff [THEN iffD1])
       
   889   apply (erule bintrunc_bintrunc_ge)
       
   890   done
       
   891     
       
   892 lemmas ucast_down_no = ucast_down_no' [OF refl]
       
   893 
       
   894 lemma ucast_down_bl': "uc = ucast ==> is_down uc ==> uc (of_bl bl) = of_bl bl"
       
   895   unfolding of_bl_no by clarify (erule ucast_down_no)
       
   896     
       
   897 lemmas ucast_down_bl = ucast_down_bl' [OF refl]
       
   898 
       
   899 lemmas slice_def' = slice_def [unfolded word_size]
       
   900 lemmas test_bit_def' = word_test_bit_def [THEN meta_eq_to_obj_eq, THEN fun_cong]
       
   901 
       
   902 lemmas word_log_defs = word_and_def word_or_def word_xor_def word_not_def
       
   903 lemmas word_log_bin_defs = word_log_defs
       
   904 
       
   905 end