doc-src/TutorialI/Inductive/document/Star.tex
changeset 14379 ea10a8c3e9cf
parent 13778 61272514e3b5
child 15481 fc075ae929e4
equal deleted inserted replaced
14378:69c4d5997669 14379:ea10a8c3e9cf
    61 
    61 
    62 To prove transitivity, we need rule induction, i.e.\ theorem
    62 To prove transitivity, we need rule induction, i.e.\ theorem
    63 \isa{rtc{\isachardot}induct}:
    63 \isa{rtc{\isachardot}induct}:
    64 \begin{isabelle}%
    64 \begin{isabelle}%
    65 \ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}{\isacharquery}xb{\isacharcomma}\ {\isacharquery}xa{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ {\isacharquery}P\ x\ x{\isacharsemicolon}\isanewline
    65 \ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}{\isacharquery}xb{\isacharcomma}\ {\isacharquery}xa{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ {\isacharquery}P\ x\ x{\isacharsemicolon}\isanewline
    66 \isaindent{\ \ \ \ \ \ \ \ }{\isasymAnd}x\ y\ z{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isacharquery}P\ y\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharquery}P\ x\ z{\isasymrbrakk}\isanewline
    66 \isaindent{\ \ \ \ \ \ }{\isasymAnd}x\ y\ z{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}{\isacharsemicolon}\ {\isacharquery}P\ y\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharquery}P\ x\ z{\isasymrbrakk}\isanewline
    67 \isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ {\isacharquery}P\ {\isacharquery}xb\ {\isacharquery}xa%
    67 \isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ {\isacharquery}P\ {\isacharquery}xb\ {\isacharquery}xa%
    68 \end{isabelle}
    68 \end{isabelle}
    69 It says that \isa{{\isacharquery}P} holds for an arbitrary pair \isa{{\isacharparenleft}{\isacharquery}xb{\isacharcomma}{\isacharquery}xa{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}} if \isa{{\isacharquery}P} is preserved by all rules of the inductive definition,
    69 It says that \isa{{\isacharquery}P} holds for an arbitrary pair \isa{{\isacharparenleft}{\isacharquery}xb{\isacharcomma}{\isacharquery}xa{\isacharparenright}\ {\isasymin}\ {\isacharquery}r{\isacharasterisk}} if \isa{{\isacharquery}P} is preserved by all rules of the inductive definition,
    70 i.e.\ if \isa{{\isacharquery}P} holds for the conclusion provided it holds for the
    70 i.e.\ if \isa{{\isacharquery}P} holds for the conclusion provided it holds for the
    71 premises. In general, rule induction for an $n$-ary inductive relation $R$
    71 premises. In general, rule induction for an $n$-ary inductive relation $R$