doc-src/TutorialI/Protocol/Event.thy
changeset 23925 ee98c2528a8f
parent 16417 9bc16273c2d4
child 27154 026f3db3f5c6
equal deleted inserted replaced
23924:883359757a56 23925:ee98c2528a8f
     1 (*  Title:      HOL/Auth/Event
     1 (*  Title:      HOL/Auth/Event
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1996  University of Cambridge
     4     Copyright   1996  University of Cambridge
     5 
     5 
     6 Theory of events for security protocols
       
     7 
       
     8 Datatype of events; function "spies"; freshness
     6 Datatype of events; function "spies"; freshness
     9 
     7 
    10 "bad" agents have been broken by the Spy; their private keys and internal
     8 "bad" agents have been broken by the Spy; their private keys and internal
    11     stores are visible to him
     9     stores are visible to him
    12 *)
    10 *)(*<*)
    13 
    11 
    14 theory Event imports Message
    12 header{*Theory of Events for Security Protocols*}
    15 uses ("Event_lemmas.ML") begin
    13 
       
    14 theory Event imports Message begin
    16 
    15 
    17 consts  (*Initial states of agents -- parameter of the construction*)
    16 consts  (*Initial states of agents -- parameter of the construction*)
    18   initState :: "agent => msg set"
    17   initState :: "agent => msg set"
    19 
    18 
    20 datatype
    19 datatype
    25 consts 
    24 consts 
    26   bad    :: "agent set"				(*compromised agents*)
    25   bad    :: "agent set"				(*compromised agents*)
    27   knows  :: "agent => event list => msg set"
    26   knows  :: "agent => event list => msg set"
    28 
    27 
    29 
    28 
    30 (*"spies" is retained for compatibility's sake*)
    29 text{*The constant "spies" is retained for compatibility's sake*}
    31 syntax
    30 
    32   spies  :: "event list => msg set"
    31 abbreviation (input)
    33 
    32   spies  :: "event list => msg set" where
    34 translations
    33   "spies == knows Spy"
    35   "spies"   => "knows Spy"
    34 
    36 
    35 text{*Spy has access to his own key for spoof messages, but Server is secure*}
    37 
    36 specification (bad)
    38 axioms
    37   Spy_in_bad     [iff]: "Spy \<in> bad"
    39   (*Spy has access to his own key for spoof messages, but Server is secure*)
    38   Server_not_bad [iff]: "Server \<notin> bad"
    40   Spy_in_bad     [iff] :    "Spy \<in> bad"
    39     by (rule exI [of _ "{Spy}"], simp)
    41   Server_not_bad [iff] : "Server \<notin> bad"
       
    42 
    40 
    43 primrec
    41 primrec
    44   knows_Nil:   "knows A [] = initState A"
    42   knows_Nil:   "knows A [] = initState A"
    45   knows_Cons:
    43   knows_Cons:
    46     "knows A (ev # evs) =
    44     "knows A (ev # evs) =
    72 
    70 
    73 primrec
    71 primrec
    74   used_Nil:   "used []         = (UN B. parts (initState B))"
    72   used_Nil:   "used []         = (UN B. parts (initState B))"
    75   used_Cons:  "used (ev # evs) =
    73   used_Cons:  "used (ev # evs) =
    76 		     (case ev of
    74 		     (case ev of
    77 			Says A B X => parts {X} Un (used evs)
    75 			Says A B X => parts {X} \<union> used evs
    78 		      | Gets A X   => used evs
    76 		      | Gets A X   => used evs
    79 		      | Notes A X  => parts {X} Un (used evs))"
    77 		      | Notes A X  => parts {X} \<union> used evs)"
    80 
    78     --{*The case for @{term Gets} seems anomalous, but @{term Gets} always
    81 
    79         follows @{term Says} in real protocols.  Seems difficult to change.
    82 use "Event_lemmas.ML"
    80         See @{text Gets_correct} in theory @{text "Guard/Extensions.thy"}. *}
       
    81 
       
    82 lemma Notes_imp_used [rule_format]: "Notes A X \<in> set evs --> X \<in> used evs"
       
    83 apply (induct_tac evs)
       
    84 apply (auto split: event.split) 
       
    85 done
       
    86 
       
    87 lemma Says_imp_used [rule_format]: "Says A B X \<in> set evs --> X \<in> used evs"
       
    88 apply (induct_tac evs)
       
    89 apply (auto split: event.split) 
       
    90 done
       
    91 
       
    92 
       
    93 subsection{*Function @{term knows}*}
       
    94 
       
    95 (*Simplifying   
       
    96  parts(insert X (knows Spy evs)) = parts{X} \<union> parts(knows Spy evs).
       
    97   This version won't loop with the simplifier.*)
       
    98 lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs", standard]
       
    99 
       
   100 lemma knows_Spy_Says [simp]:
       
   101      "knows Spy (Says A B X # evs) = insert X (knows Spy evs)"
       
   102 by simp
       
   103 
       
   104 text{*Letting the Spy see "bad" agents' notes avoids redundant case-splits
       
   105       on whether @{term "A=Spy"} and whether @{term "A\<in>bad"}*}
       
   106 lemma knows_Spy_Notes [simp]:
       
   107      "knows Spy (Notes A X # evs) =  
       
   108           (if A:bad then insert X (knows Spy evs) else knows Spy evs)"
       
   109 by simp
       
   110 
       
   111 lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
       
   112 by simp
       
   113 
       
   114 lemma knows_Spy_subset_knows_Spy_Says:
       
   115      "knows Spy evs \<subseteq> knows Spy (Says A B X # evs)"
       
   116 by (simp add: subset_insertI)
       
   117 
       
   118 lemma knows_Spy_subset_knows_Spy_Notes:
       
   119      "knows Spy evs \<subseteq> knows Spy (Notes A X # evs)"
       
   120 by force
       
   121 
       
   122 lemma knows_Spy_subset_knows_Spy_Gets:
       
   123      "knows Spy evs \<subseteq> knows Spy (Gets A X # evs)"
       
   124 by (simp add: subset_insertI)
       
   125 
       
   126 text{*Spy sees what is sent on the traffic*}
       
   127 lemma Says_imp_knows_Spy [rule_format]:
       
   128      "Says A B X \<in> set evs --> X \<in> knows Spy evs"
       
   129 apply (induct_tac "evs")
       
   130 apply (simp_all (no_asm_simp) split add: event.split)
       
   131 done
       
   132 
       
   133 lemma Notes_imp_knows_Spy [rule_format]:
       
   134      "Notes A X \<in> set evs --> A: bad --> X \<in> knows Spy evs"
       
   135 apply (induct_tac "evs")
       
   136 apply (simp_all (no_asm_simp) split add: event.split)
       
   137 done
       
   138 
       
   139 
       
   140 text{*Elimination rules: derive contradictions from old Says events containing
       
   141   items known to be fresh*}
       
   142 lemmas knows_Spy_partsEs =
       
   143      Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl, standard] 
       
   144      parts.Body [THEN revcut_rl, standard]
       
   145 
       
   146 lemmas Says_imp_analz_Spy = Says_imp_knows_Spy [THEN analz.Inj]
       
   147 
       
   148 text{*Compatibility for the old "spies" function*}
       
   149 lemmas spies_partsEs = knows_Spy_partsEs
       
   150 lemmas Says_imp_spies = Says_imp_knows_Spy
       
   151 lemmas parts_insert_spies = parts_insert_knows_A [of _ Spy]
       
   152 
       
   153 
       
   154 subsection{*Knowledge of Agents*}
       
   155 
       
   156 lemma knows_Says: "knows A (Says A B X # evs) = insert X (knows A evs)"
       
   157 by simp
       
   158 
       
   159 lemma knows_Notes: "knows A (Notes A X # evs) = insert X (knows A evs)"
       
   160 by simp
       
   161 
       
   162 lemma knows_Gets:
       
   163      "A \<noteq> Spy --> knows A (Gets A X # evs) = insert X (knows A evs)"
       
   164 by simp
       
   165 
       
   166 
       
   167 lemma knows_subset_knows_Says: "knows A evs \<subseteq> knows A (Says A' B X # evs)"
       
   168 by (simp add: subset_insertI)
       
   169 
       
   170 lemma knows_subset_knows_Notes: "knows A evs \<subseteq> knows A (Notes A' X # evs)"
       
   171 by (simp add: subset_insertI)
       
   172 
       
   173 lemma knows_subset_knows_Gets: "knows A evs \<subseteq> knows A (Gets A' X # evs)"
       
   174 by (simp add: subset_insertI)
       
   175 
       
   176 text{*Agents know what they say*}
       
   177 lemma Says_imp_knows [rule_format]: "Says A B X \<in> set evs --> X \<in> knows A evs"
       
   178 apply (induct_tac "evs")
       
   179 apply (simp_all (no_asm_simp) split add: event.split)
       
   180 apply blast
       
   181 done
       
   182 
       
   183 text{*Agents know what they note*}
       
   184 lemma Notes_imp_knows [rule_format]: "Notes A X \<in> set evs --> X \<in> knows A evs"
       
   185 apply (induct_tac "evs")
       
   186 apply (simp_all (no_asm_simp) split add: event.split)
       
   187 apply blast
       
   188 done
       
   189 
       
   190 text{*Agents know what they receive*}
       
   191 lemma Gets_imp_knows_agents [rule_format]:
       
   192      "A \<noteq> Spy --> Gets A X \<in> set evs --> X \<in> knows A evs"
       
   193 apply (induct_tac "evs")
       
   194 apply (simp_all (no_asm_simp) split add: event.split)
       
   195 done
       
   196 
       
   197 
       
   198 text{*What agents DIFFERENT FROM Spy know 
       
   199   was either said, or noted, or got, or known initially*}
       
   200 lemma knows_imp_Says_Gets_Notes_initState [rule_format]:
       
   201      "[| X \<in> knows A evs; A \<noteq> Spy |] ==> EX B.  
       
   202   Says A B X \<in> set evs | Gets A X \<in> set evs | Notes A X \<in> set evs | X \<in> initState A"
       
   203 apply (erule rev_mp)
       
   204 apply (induct_tac "evs")
       
   205 apply (simp_all (no_asm_simp) split add: event.split)
       
   206 apply blast
       
   207 done
       
   208 
       
   209 text{*What the Spy knows -- for the time being --
       
   210   was either said or noted, or known initially*}
       
   211 lemma knows_Spy_imp_Says_Notes_initState [rule_format]:
       
   212      "[| X \<in> knows Spy evs |] ==> EX A B.  
       
   213   Says A B X \<in> set evs | Notes A X \<in> set evs | X \<in> initState Spy"
       
   214 apply (erule rev_mp)
       
   215 apply (induct_tac "evs")
       
   216 apply (simp_all (no_asm_simp) split add: event.split)
       
   217 apply blast
       
   218 done
       
   219 
       
   220 lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) \<subseteq> used evs"
       
   221 apply (induct_tac "evs", force)  
       
   222 apply (simp add: parts_insert_knows_A knows_Cons add: event.split, blast) 
       
   223 done
       
   224 
       
   225 lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]
       
   226 
       
   227 lemma initState_into_used: "X \<in> parts (initState B) ==> X \<in> used evs"
       
   228 apply (induct_tac "evs")
       
   229 apply (simp_all add: parts_insert_knows_A split add: event.split, blast)
       
   230 done
       
   231 
       
   232 lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} \<union> used evs"
       
   233 by simp
       
   234 
       
   235 lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} \<union> used evs"
       
   236 by simp
       
   237 
       
   238 lemma used_Gets [simp]: "used (Gets A X # evs) = used evs"
       
   239 by simp
       
   240 
       
   241 lemma used_nil_subset: "used [] \<subseteq> used evs"
       
   242 apply simp
       
   243 apply (blast intro: initState_into_used)
       
   244 done
       
   245 
       
   246 text{*NOTE REMOVAL--laws above are cleaner, as they don't involve "case"*}
       
   247 declare knows_Cons [simp del]
       
   248         used_Nil [simp del] used_Cons [simp del]
       
   249 
       
   250 
       
   251 text{*For proving theorems of the form @{term "X \<notin> analz (knows Spy evs) --> P"}
       
   252   New events added by induction to "evs" are discarded.  Provided 
       
   253   this information isn't needed, the proof will be much shorter, since
       
   254   it will omit complicated reasoning about @{term analz}.*}
       
   255 
       
   256 lemmas analz_mono_contra =
       
   257        knows_Spy_subset_knows_Spy_Says [THEN analz_mono, THEN contra_subsetD]
       
   258        knows_Spy_subset_knows_Spy_Notes [THEN analz_mono, THEN contra_subsetD]
       
   259        knows_Spy_subset_knows_Spy_Gets [THEN analz_mono, THEN contra_subsetD]
       
   260 
       
   261 ML
       
   262 {*
       
   263 val analz_mono_contra_tac = 
       
   264   let val analz_impI = inst "P" "?Y \<notin> analz (knows Spy ?evs)" impI
       
   265   in
       
   266     rtac analz_impI THEN' 
       
   267     REPEAT1 o 
       
   268       (dresolve_tac (thms"analz_mono_contra"))
       
   269     THEN' mp_tac
       
   270   end
       
   271 *}
       
   272 
       
   273 
       
   274 lemma knows_subset_knows_Cons: "knows A evs \<subseteq> knows A (e # evs)"
       
   275 by (induct e, auto simp: knows_Cons)
       
   276 
       
   277 lemma initState_subset_knows: "initState A \<subseteq> knows A evs"
       
   278 apply (induct_tac evs, simp) 
       
   279 apply (blast intro: knows_subset_knows_Cons [THEN subsetD])
       
   280 done
       
   281 
       
   282 
       
   283 text{*For proving @{text new_keys_not_used}*}
       
   284 lemma keysFor_parts_insert:
       
   285      "[| K \<in> keysFor (parts (insert X G));  X \<in> synth (analz H) |] 
       
   286       ==> K \<in> keysFor (parts (G \<union> H)) | Key (invKey K) \<in> parts H"; 
       
   287 by (force 
       
   288     dest!: parts_insert_subset_Un [THEN keysFor_mono, THEN [2] rev_subsetD]
       
   289            analz_subset_parts [THEN keysFor_mono, THEN [2] rev_subsetD]
       
   290     intro: analz_subset_parts [THEN subsetD] parts_mono [THEN [2] rev_subsetD])
    83 
   291 
    84 method_setup analz_mono_contra = {*
   292 method_setup analz_mono_contra = {*
    85     Method.no_args
   293     Method.no_args (Method.SIMPLE_METHOD (REPEAT_FIRST analz_mono_contra_tac)) *}
    86       (Method.METHOD (fn facts => REPEAT_FIRST analz_mono_contra_tac)) *}
       
    87     "for proving theorems of the form X \<notin> analz (knows Spy evs) --> P"
   294     "for proving theorems of the form X \<notin> analz (knows Spy evs) --> P"
    88 
   295 
       
   296 subsubsection{*Useful for case analysis on whether a hash is a spoof or not*}
       
   297 
       
   298 ML
       
   299 {*
       
   300 val knows_Cons     = thm "knows_Cons"
       
   301 val used_Nil       = thm "used_Nil"
       
   302 val used_Cons      = thm "used_Cons"
       
   303 
       
   304 val Notes_imp_used = thm "Notes_imp_used";
       
   305 val Says_imp_used = thm "Says_imp_used";
       
   306 val Says_imp_knows_Spy = thm "Says_imp_knows_Spy";
       
   307 val Notes_imp_knows_Spy = thm "Notes_imp_knows_Spy";
       
   308 val knows_Spy_partsEs = thms "knows_Spy_partsEs";
       
   309 val spies_partsEs = thms "spies_partsEs";
       
   310 val Says_imp_spies = thm "Says_imp_spies";
       
   311 val parts_insert_spies = thm "parts_insert_spies";
       
   312 val Says_imp_knows = thm "Says_imp_knows";
       
   313 val Notes_imp_knows = thm "Notes_imp_knows";
       
   314 val Gets_imp_knows_agents = thm "Gets_imp_knows_agents";
       
   315 val knows_imp_Says_Gets_Notes_initState = thm "knows_imp_Says_Gets_Notes_initState";
       
   316 val knows_Spy_imp_Says_Notes_initState = thm "knows_Spy_imp_Says_Notes_initState";
       
   317 val usedI = thm "usedI";
       
   318 val initState_into_used = thm "initState_into_used";
       
   319 val used_Says = thm "used_Says";
       
   320 val used_Notes = thm "used_Notes";
       
   321 val used_Gets = thm "used_Gets";
       
   322 val used_nil_subset = thm "used_nil_subset";
       
   323 val analz_mono_contra = thms "analz_mono_contra";
       
   324 val knows_subset_knows_Cons = thm "knows_subset_knows_Cons";
       
   325 val initState_subset_knows = thm "initState_subset_knows";
       
   326 val keysFor_parts_insert = thm "keysFor_parts_insert";
       
   327 
       
   328 
       
   329 val synth_analz_mono = thm "synth_analz_mono";
       
   330 
       
   331 val knows_Spy_subset_knows_Spy_Says = thm "knows_Spy_subset_knows_Spy_Says";
       
   332 val knows_Spy_subset_knows_Spy_Notes = thm "knows_Spy_subset_knows_Spy_Notes";
       
   333 val knows_Spy_subset_knows_Spy_Gets = thm "knows_Spy_subset_knows_Spy_Gets";
       
   334 
       
   335 
       
   336 val synth_analz_mono_contra_tac = 
       
   337   let val syan_impI = inst "P" "?Y \<notin> synth (analz (knows Spy ?evs))" impI
       
   338   in
       
   339     rtac syan_impI THEN' 
       
   340     REPEAT1 o 
       
   341       (dresolve_tac 
       
   342        [knows_Spy_subset_knows_Spy_Says RS synth_analz_mono RS contra_subsetD,
       
   343         knows_Spy_subset_knows_Spy_Notes RS synth_analz_mono RS contra_subsetD,
       
   344 	knows_Spy_subset_knows_Spy_Gets RS synth_analz_mono RS contra_subsetD])
       
   345     THEN'
       
   346     mp_tac
       
   347   end;
       
   348 *}
       
   349 
       
   350 method_setup synth_analz_mono_contra = {*
       
   351     Method.no_args (Method.SIMPLE_METHOD (REPEAT_FIRST synth_analz_mono_contra_tac)) *}
       
   352     "for proving theorems of the form X \<notin> synth (analz (knows Spy evs)) --> P"
       
   353 (*>*)
       
   354 
       
   355 section{* Event Traces \label{sec:events} *}
       
   356 
       
   357 text {*
       
   358 The system's behaviour is formalized as a set of traces of
       
   359 \emph{events}.  The most important event, @{text "Says A B X"}, expresses
       
   360 $A\to B : X$, which is the attempt by~$A$ to send~$B$ the message~$X$.
       
   361 A trace is simply a list, constructed in reverse
       
   362 using~@{text "#"}.  Other event types include reception of messages (when
       
   363 we want to make it explicit) and an agent's storing a fact.
       
   364 
       
   365 Sometimes the protocol requires an agent to generate a new nonce. The
       
   366 probability that a 20-byte random number has appeared before is effectively
       
   367 zero.  To formalize this important property, the set @{term "used evs"}
       
   368 denotes the set of all items mentioned in the trace~@{text evs}.
       
   369 The function @{text used} has a straightforward
       
   370 recursive definition.  Here is the case for @{text Says} event:
       
   371 @{thm [display,indent=5] used_Says [no_vars]}
       
   372 
       
   373 The function @{text knows} formalizes an agent's knowledge.  Mostly we only
       
   374 care about the spy's knowledge, and @{term "knows Spy evs"} is the set of items
       
   375 available to the spy in the trace~@{text evs}.  Already in the empty trace,
       
   376 the spy starts with some secrets at his disposal, such as the private keys
       
   377 of compromised users.  After each @{text Says} event, the spy learns the
       
   378 message that was sent:
       
   379 @{thm [display,indent=5] knows_Spy_Says [no_vars]}
       
   380 Combinations of functions express other important
       
   381 sets of messages derived from~@{text evs}:
       
   382 \begin{itemize}
       
   383 \item @{term "analz (knows Spy evs)"} is everything that the spy could
       
   384 learn by decryption
       
   385 \item @{term "synth (analz (knows Spy evs))"} is everything that the spy
       
   386 could generate
       
   387 \end{itemize}
       
   388 *}
       
   389 
       
   390 (*<*)
    89 end
   391 end
       
   392 (*>*)