src/HOL/Library/Kleene_Algebra.thy
changeset 57114 f00a299fa522
parent 57113 7e95523302e6
parent 57112 70395c65c0e3
child 57115 ae61587eb44a
equal deleted inserted replaced
57113:7e95523302e6 57114:f00a299fa522
     1 (*  Title:      HOL/Library/Kleene_Algebra.thy
       
     2     Author:     Alexander Krauss, TU Muenchen
       
     3     Author:     Tjark Weber, University of Cambridge
       
     4 *)
       
     5 
       
     6 header {* Kleene Algebras *}
       
     7 
       
     8 theory Kleene_Algebra
       
     9 imports Main 
       
    10 begin
       
    11 
       
    12 text {* WARNING: This is work in progress. Expect changes in the future. *}
       
    13 
       
    14 text {* Various lemmas correspond to entries in a database of theorems
       
    15   about Kleene algebras and related structures maintained by Peter
       
    16   H\"ofner: see
       
    17   @{url "http://www.informatik.uni-augsburg.de/~hoefnepe/kleene_db/lemmas/index.html"}. *}
       
    18 
       
    19 subsection {* Preliminaries *}
       
    20 
       
    21 text {* A class where addition is idempotent. *}
       
    22 
       
    23 class idem_add = plus +
       
    24   assumes add_idem [simp]: "x + x = x"
       
    25 
       
    26 text {* A class of idempotent abelian semigroups (written additively). *}
       
    27 
       
    28 class idem_ab_semigroup_add = ab_semigroup_add + idem_add
       
    29 begin
       
    30 
       
    31 lemma add_idem2 [simp]: "x + (x + y) = x + y"
       
    32 unfolding add_assoc[symmetric] by simp
       
    33 
       
    34 lemma add_idem3 [simp]: "x + (y + x) = x + y"
       
    35 by (simp add: add_commute)
       
    36 
       
    37 end
       
    38 
       
    39 text {* A class where order is defined in terms of addition. *}
       
    40 
       
    41 class order_by_add = plus + ord +
       
    42   assumes order_def: "x \<le> y \<longleftrightarrow> x + y = y"
       
    43   assumes strict_order_def: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
       
    44 begin
       
    45 
       
    46 lemma ord_simp [simp]: "x \<le> y \<Longrightarrow> x + y = y"
       
    47   unfolding order_def .
       
    48 
       
    49 lemma ord_intro: "x + y = y \<Longrightarrow> x \<le> y"
       
    50   unfolding order_def .
       
    51 
       
    52 end
       
    53 
       
    54 text {* A class of idempotent abelian semigroups (written additively)
       
    55   where order is defined in terms of addition. *}
       
    56 
       
    57 class ordered_idem_ab_semigroup_add = idem_ab_semigroup_add + order_by_add
       
    58 begin
       
    59 
       
    60 lemma ord_simp2 [simp]: "x \<le> y \<Longrightarrow> y + x = y"
       
    61   unfolding order_def add_commute .
       
    62 
       
    63 subclass order proof
       
    64   fix x y z :: 'a
       
    65   show "x \<le> x"
       
    66     unfolding order_def by simp
       
    67   show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z"
       
    68     unfolding order_def by (metis add_assoc)
       
    69   show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y"
       
    70     unfolding order_def by (simp add: add_commute)
       
    71   show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
       
    72     by (fact strict_order_def)
       
    73 qed
       
    74 
       
    75 subclass ordered_ab_semigroup_add proof
       
    76   fix a b c :: 'a
       
    77   assume "a \<le> b" show "c + a \<le> c + b"
       
    78   proof (rule ord_intro)
       
    79     have "c + a + (c + b) = a + b + c" by (simp add: add_ac)
       
    80     also have "\<dots> = c + b" by (simp add: `a \<le> b` add_ac)
       
    81     finally show "c + a + (c + b) = c + b" .
       
    82   qed
       
    83 qed
       
    84 
       
    85 lemma plus_leI [simp]: 
       
    86   "x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x + y \<le> z"
       
    87   unfolding order_def by (simp add: add_assoc)
       
    88 
       
    89 lemma less_add [simp]: "x \<le> x + y" "y \<le> x + y"
       
    90 unfolding order_def by (auto simp: add_ac)
       
    91 
       
    92 lemma add_est1 [elim]: "x + y \<le> z \<Longrightarrow> x \<le> z"
       
    93 using less_add(1) by (rule order_trans)
       
    94 
       
    95 lemma add_est2 [elim]: "x + y \<le> z \<Longrightarrow> y \<le> z"
       
    96 using less_add(2) by (rule order_trans)
       
    97 
       
    98 lemma add_supremum: "(x + y \<le> z) = (x \<le> z \<and> y \<le> z)"
       
    99 by auto
       
   100 
       
   101 end
       
   102 
       
   103 text {* A class of commutative monoids (written additively) where
       
   104   order is defined in terms of addition. *}
       
   105 
       
   106 class ordered_comm_monoid_add = comm_monoid_add + order_by_add
       
   107 begin
       
   108 
       
   109 lemma zero_minimum [simp]: "0 \<le> x"
       
   110 unfolding order_def by simp
       
   111 
       
   112 end
       
   113 
       
   114 text {* A class of idempotent commutative monoids (written additively)
       
   115   where order is defined in terms of addition. *}
       
   116 
       
   117 class ordered_idem_comm_monoid_add = ordered_comm_monoid_add + idem_add
       
   118 begin
       
   119 
       
   120 subclass ordered_idem_ab_semigroup_add ..
       
   121 
       
   122 lemma sum_is_zero: "(x + y = 0) = (x = 0 \<and> y = 0)"
       
   123 by (simp add: add_supremum eq_iff)
       
   124 
       
   125 end
       
   126 
       
   127 subsection {* A class of Kleene algebras *}
       
   128 
       
   129 text {* Class @{text pre_kleene} provides all operations of Kleene
       
   130   algebras except for the Kleene star. *}
       
   131 
       
   132 class pre_kleene = semiring_1 + idem_add + order_by_add
       
   133 begin
       
   134 
       
   135 subclass ordered_idem_comm_monoid_add ..
       
   136 
       
   137 subclass ordered_semiring proof
       
   138   fix a b c :: 'a
       
   139   assume "a \<le> b"
       
   140 
       
   141   show "c * a \<le> c * b"
       
   142   proof (rule ord_intro)
       
   143     from `a \<le> b` have "c * (a + b) = c * b" by simp
       
   144     thus "c * a + c * b = c * b" by (simp add: distrib_left)
       
   145   qed
       
   146 
       
   147   show "a * c \<le> b * c"
       
   148   proof (rule ord_intro)
       
   149     from `a \<le> b` have "(a + b) * c = b * c" by simp
       
   150     thus "a * c + b * c = b * c" by (simp add: distrib_right)
       
   151   qed
       
   152 qed
       
   153 
       
   154 end
       
   155 
       
   156 text {* A class that provides a star operator. *}
       
   157 
       
   158 class star =
       
   159   fixes star :: "'a \<Rightarrow> 'a"
       
   160 
       
   161 text {* Finally, a class of Kleene algebras. *}
       
   162 
       
   163 class kleene = pre_kleene + star +
       
   164   assumes star1: "1 + a * star a \<le> star a"
       
   165   and star2: "1 + star a * a \<le> star a"
       
   166   and star3: "a * x \<le> x \<Longrightarrow> star a * x \<le> x"
       
   167   and star4: "x * a \<le> x \<Longrightarrow> x * star a \<le> x"
       
   168 begin
       
   169 
       
   170 lemma star3' [simp]:
       
   171   assumes a: "b + a * x \<le> x"
       
   172   shows "star a * b \<le> x"
       
   173 by (metis assms less_add mult_left_mono order_trans star3 zero_minimum)
       
   174 
       
   175 lemma star4' [simp]:
       
   176   assumes a: "b + x * a \<le> x"
       
   177   shows "b * star a \<le> x"
       
   178 by (metis assms less_add mult_right_mono order_trans star4 zero_minimum)
       
   179 
       
   180 lemma star_unfold_left: "1 + a * star a = star a"
       
   181 proof (rule antisym, rule star1)
       
   182   have "1 + a * (1 + a * star a) \<le> 1 + a * star a"
       
   183     by (metis add_left_mono mult_left_mono star1 zero_minimum)
       
   184   with star3' have "star a * 1 \<le> 1 + a * star a" .
       
   185   thus "star a \<le> 1 + a * star a" by simp
       
   186 qed
       
   187 
       
   188 lemma star_unfold_right: "1 + star a * a = star a"
       
   189 proof (rule antisym, rule star2)
       
   190   have "1 + (1 + star a * a) * a \<le> 1 + star a * a"
       
   191     by (metis add_left_mono mult_right_mono star2 zero_minimum)
       
   192   with star4' have "1 * star a \<le> 1 + star a * a" .
       
   193   thus "star a \<le> 1 + star a * a" by simp
       
   194 qed
       
   195 
       
   196 lemma star_zero [simp]: "star 0 = 1"
       
   197 by (fact star_unfold_left[of 0, simplified, symmetric])
       
   198 
       
   199 lemma star_one [simp]: "star 1 = 1"
       
   200 by (metis add_idem2 eq_iff mult_1_right ord_simp2 star3 star_unfold_left)
       
   201 
       
   202 lemma one_less_star [simp]: "1 \<le> star x"
       
   203 by (metis less_add(1) star_unfold_left)
       
   204 
       
   205 lemma ka1 [simp]: "x * star x \<le> star x"
       
   206 by (metis less_add(2) star_unfold_left)
       
   207 
       
   208 lemma star_mult_idem [simp]: "star x * star x = star x"
       
   209 by (metis add_commute add_est1 eq_iff mult_1_right distrib_left star3 star_unfold_left)
       
   210 
       
   211 lemma less_star [simp]: "x \<le> star x"
       
   212 by (metis less_add(2) mult_1_right mult_left_mono one_less_star order_trans star_unfold_left zero_minimum)
       
   213 
       
   214 lemma star_simulation_leq_1:
       
   215   assumes a: "a * x \<le> x * b"
       
   216   shows "star a * x \<le> x * star b"
       
   217 proof (rule star3', rule order_trans)
       
   218   from a have "a * x * star b \<le> x * b * star b"
       
   219     by (rule mult_right_mono) simp
       
   220   thus "x + a * (x * star b) \<le> x + x * b * star b"
       
   221     using add_left_mono by (auto simp: mult_assoc)
       
   222   show "\<dots> \<le> x * star b"
       
   223     by (metis add_supremum ka1 mult.right_neutral mult_assoc mult_left_mono one_less_star zero_minimum)
       
   224 qed
       
   225 
       
   226 lemma star_simulation_leq_2:
       
   227   assumes a: "x * a \<le> b * x"
       
   228   shows "x * star a \<le> star b * x"
       
   229 proof (rule star4', rule order_trans)
       
   230   from a have "star b * x * a \<le> star b * b * x"
       
   231     by (metis mult_assoc mult_left_mono zero_minimum)
       
   232   thus "x + star b * x * a \<le> x + star b * b * x"
       
   233     using add_mono by auto
       
   234   show "\<dots> \<le> star b * x"
       
   235     by (metis add_supremum distrib_right less_add mult.left_neutral mult_assoc mult_right_mono star_unfold_right zero_minimum)
       
   236 qed
       
   237 
       
   238 lemma star_simulation [simp]:
       
   239   assumes a: "a * x = x * b"
       
   240   shows "star a * x = x * star b"
       
   241 by (metis antisym assms order_refl star_simulation_leq_1 star_simulation_leq_2)
       
   242 
       
   243 lemma star_slide2 [simp]: "star x * x = x * star x"
       
   244 by (metis star_simulation)
       
   245 
       
   246 lemma star_idemp [simp]: "star (star x) = star x"
       
   247 by (metis add_idem2 eq_iff less_star mult_1_right star3' star_mult_idem star_unfold_left)
       
   248 
       
   249 lemma star_slide [simp]: "star (x * y) * x = x * star (y * x)"
       
   250 by (metis mult_assoc star_simulation)
       
   251 
       
   252 lemma star_one':
       
   253   assumes "p * p' = 1" "p' * p = 1"
       
   254   shows "p' * star a * p = star (p' * a * p)"
       
   255 proof -
       
   256   from assms
       
   257   have "p' * star a * p = p' * star (p * p' * a) * p"
       
   258     by simp
       
   259   also have "\<dots> = p' * p * star (p' * a * p)"
       
   260     by (simp add: mult_assoc)
       
   261   also have "\<dots> = star (p' * a * p)"
       
   262     by (simp add: assms)
       
   263   finally show ?thesis .
       
   264 qed
       
   265 
       
   266 lemma x_less_star [simp]: "x \<le> x * star a"
       
   267 by (metis mult.right_neutral mult_left_mono one_less_star zero_minimum)
       
   268 
       
   269 lemma star_mono [simp]: "x \<le> y \<Longrightarrow> star x \<le> star y"
       
   270 by (metis add_commute eq_iff less_star ord_simp2 order_trans star3 star4' star_idemp star_mult_idem x_less_star)
       
   271 
       
   272 lemma star_sub: "x \<le> 1 \<Longrightarrow> star x = 1"
       
   273 by (metis add_commute ord_simp star_idemp star_mono star_mult_idem star_one star_unfold_left)
       
   274 
       
   275 lemma star_unfold2: "star x * y = y + x * star x * y"
       
   276 by (subst star_unfold_right[symmetric]) (simp add: mult_assoc distrib_right)
       
   277 
       
   278 lemma star_absorb_one [simp]: "star (x + 1) = star x"
       
   279 by (metis add_commute eq_iff distrib_right less_add mult_1_left mult_assoc star3 star_mono star_mult_idem star_unfold2 x_less_star)
       
   280 
       
   281 lemma star_absorb_one' [simp]: "star (1 + x) = star x"
       
   282 by (subst add_commute) (fact star_absorb_one)
       
   283 
       
   284 lemma ka16: "(y * star x) * star (y * star x) \<le> star x * star (y * star x)"
       
   285 by (metis ka1 less_add(1) mult_assoc order_trans star_unfold2)
       
   286 
       
   287 lemma ka16': "(star x * y) * star (star x * y) \<le> star (star x * y) * star x"
       
   288 by (metis ka1 mult_assoc order_trans star_slide x_less_star)
       
   289 
       
   290 lemma ka17: "(x * star x) * star (y * star x) \<le> star x * star (y * star x)"
       
   291 by (metis ka1 mult_assoc mult_right_mono zero_minimum)
       
   292 
       
   293 lemma ka18: "(x * star x) * star (y * star x) + (y * star x) * star (y * star x)
       
   294   \<le> star x * star (y * star x)"
       
   295 by (metis ka16 ka17 distrib_right mult_assoc plus_leI)
       
   296 
       
   297 lemma star_decomp: "star (x + y) = star x * star (y * star x)"
       
   298 proof (rule antisym)
       
   299   have "1 + (x + y) * star x * star (y * star x) \<le>
       
   300     1 + x * star x * star (y * star x) + y * star x * star (y * star x)"
       
   301     by (metis add_commute add_left_commute eq_iff distrib_right mult_assoc)
       
   302   also have "\<dots> \<le> star x * star (y * star x)"
       
   303     by (metis add_commute add_est1 add_left_commute ka18 plus_leI star_unfold_left x_less_star)
       
   304   finally show "star (x + y) \<le> star x * star (y * star x)"
       
   305     by (metis mult_1_right mult_assoc star3')
       
   306 next
       
   307   show "star x * star (y * star x) \<le> star (x + y)"
       
   308     by (metis add_assoc add_est1 add_est2 add_left_commute less_star mult_mono'
       
   309       star_absorb_one star_absorb_one' star_idemp star_mono star_mult_idem zero_minimum)
       
   310 qed
       
   311 
       
   312 lemma ka22: "y * star x \<le> star x * star y \<Longrightarrow>  star y * star x \<le> star x * star y"
       
   313 by (metis mult_assoc mult_right_mono plus_leI star3' star_mult_idem x_less_star zero_minimum)
       
   314 
       
   315 lemma ka23: "star y * star x \<le> star x * star y \<Longrightarrow> y * star x \<le> star x * star y"
       
   316 by (metis less_star mult_right_mono order_trans zero_minimum)
       
   317 
       
   318 lemma ka24: "star (x + y) \<le> star (star x * star y)"
       
   319 by (metis add_est1 add_est2 less_add(1) mult_assoc order_def plus_leI star_absorb_one star_mono star_slide2 star_unfold2 star_unfold_left x_less_star)
       
   320 
       
   321 lemma ka25: "star y * star x \<le> star x * star y \<Longrightarrow> star (star y * star x) \<le> star x * star y"
       
   322 proof -
       
   323   assume "star y * star x \<le> star x * star y"
       
   324   hence "\<forall>x\<^sub>1. star y * (star x * x\<^sub>1) \<le> star x * (star y * x\<^sub>1)" by (metis mult_assoc mult_right_mono zero_minimum)
       
   325   hence "star y * (star x * star y) \<le> star x * star y" by (metis star_mult_idem)
       
   326   hence "\<exists>x\<^sub>1. star (star y * star x) * star x\<^sub>1 \<le> star x * star y" by (metis star_decomp star_idemp star_simulation_leq_2 star_slide)
       
   327   hence "\<exists>x\<^sub>1\<ge>star (star y * star x). x\<^sub>1 \<le> star x * star y" by (metis x_less_star)
       
   328   thus "star (star y * star x) \<le> star x * star y" by (metis order_trans)
       
   329 qed
       
   330 
       
   331 lemma church_rosser: 
       
   332   "star y * star x \<le> star x * star y \<Longrightarrow> star (x + y) \<le> star x * star y"
       
   333 by (metis add_commute ka24 ka25 order_trans)
       
   334 
       
   335 lemma kleene_bubblesort: "y * x \<le> x * y \<Longrightarrow> star (x + y) \<le> star x * star y"
       
   336 by (metis church_rosser star_simulation_leq_1 star_simulation_leq_2)
       
   337 
       
   338 lemma ka27: "star (x + star y) = star (x + y)"
       
   339 by (metis add_commute star_decomp star_idemp)
       
   340 
       
   341 lemma ka28: "star (star x + star y) = star (x + y)"
       
   342 by (metis add_commute ka27)
       
   343 
       
   344 lemma ka29: "(y * (1 + x) \<le> (1 + x) * star y) = (y * x \<le> (1 + x) * star y)"
       
   345 by (metis add_supremum distrib_right less_add(1) less_star mult.left_neutral mult.right_neutral order_trans distrib_left)
       
   346 
       
   347 lemma ka30: "star x * star y \<le> star (x + y)"
       
   348 by (metis mult_left_mono star_decomp star_mono x_less_star zero_minimum)
       
   349 
       
   350 lemma simple_simulation: "x * y = 0 \<Longrightarrow> star x * y = y"
       
   351 by (metis mult.right_neutral mult_zero_right star_simulation star_zero)
       
   352 
       
   353 lemma ka32: "star (x * y) = 1 + x * star (y * x) * y"
       
   354 by (metis mult_assoc star_slide star_unfold_left)
       
   355 
       
   356 lemma ka33: "x * y + 1 \<le> y \<Longrightarrow> star x \<le> y"
       
   357 by (metis add_commute mult.right_neutral star3')
       
   358 
       
   359 end
       
   360 
       
   361 subsection {* Complete lattices are Kleene algebras *}
       
   362 
       
   363 lemma (in complete_lattice) SUP_upper':
       
   364   assumes "l \<le> M i"
       
   365   shows "l \<le> (SUP i. M i)"
       
   366   using assms by (rule order_trans) (rule SUP_upper [OF UNIV_I])
       
   367 
       
   368 class kleene_by_complete_lattice = pre_kleene
       
   369   + complete_lattice + power + star +
       
   370   assumes star_cont: "a * star b * c = SUPREMUM UNIV (\<lambda>n. a * b ^ n * c)"
       
   371 begin
       
   372 
       
   373 subclass kleene
       
   374 proof
       
   375   fix a x :: 'a
       
   376   
       
   377   have [simp]: "1 \<le> star a"
       
   378     unfolding star_cont[of 1 a 1, simplified] 
       
   379     by (subst power_0[symmetric]) (rule SUP_upper [OF UNIV_I])
       
   380 
       
   381   have "a * star a \<le> star a"
       
   382     using star_cont[of a a 1] star_cont[of 1 a 1]
       
   383     by (auto simp add: power_Suc[symmetric] simp del: power_Suc
       
   384       intro: SUP_least SUP_upper)
       
   385 
       
   386   then show "1 + a * star a \<le> star a"
       
   387     by simp
       
   388 
       
   389   then show "1 + star a * a \<le> star a"
       
   390     using star_cont[of a a 1] star_cont[of 1 a a]
       
   391     by (simp add: power_commutes)
       
   392 
       
   393   show "a * x \<le> x \<Longrightarrow> star a * x \<le> x"
       
   394   proof -
       
   395     assume a: "a * x \<le> x"
       
   396 
       
   397     {
       
   398       fix n
       
   399       have "a ^ (Suc n) * x \<le> a ^ n * x"
       
   400       proof (induct n)
       
   401         case 0 thus ?case by (simp add: a)
       
   402       next
       
   403         case (Suc n)
       
   404         hence "a * (a ^ Suc n * x) \<le> a * (a ^ n * x)"
       
   405           by (auto intro: mult_mono)
       
   406         thus ?case
       
   407           by (simp add: mult_assoc)
       
   408       qed
       
   409     }
       
   410     note a = this
       
   411     
       
   412     {
       
   413       fix n have "a ^ n * x \<le> x"
       
   414       proof (induct n)
       
   415         case 0 show ?case by simp
       
   416       next
       
   417         case (Suc n) with a[of n]
       
   418         show ?case by simp
       
   419       qed
       
   420     }
       
   421     note b = this
       
   422     
       
   423     show "star a * x \<le> x"
       
   424       unfolding star_cont[of 1 a x, simplified]
       
   425       by (rule SUP_least) (rule b)
       
   426   qed
       
   427 
       
   428   show "x * a \<le> x \<Longrightarrow> x * star a \<le> x" (* symmetric *)
       
   429   proof -
       
   430     assume a: "x * a \<le> x"
       
   431 
       
   432     {
       
   433       fix n
       
   434       have "x * a ^ (Suc n) \<le> x * a ^ n"
       
   435       proof (induct n)
       
   436         case 0 thus ?case by (simp add: a)
       
   437       next
       
   438         case (Suc n)
       
   439         hence "(x * a ^ Suc n) * a  \<le> (x * a ^ n) * a"
       
   440           by (auto intro: mult_mono)
       
   441         thus ?case
       
   442           by (simp add: power_commutes mult_assoc)
       
   443       qed
       
   444     }
       
   445     note a = this
       
   446     
       
   447     {
       
   448       fix n have "x * a ^ n \<le> x"
       
   449       proof (induct n)
       
   450         case 0 show ?case by simp
       
   451       next
       
   452         case (Suc n) with a[of n]
       
   453         show ?case by simp
       
   454       qed
       
   455     }
       
   456     note b = this
       
   457     
       
   458     show "x * star a \<le> x"
       
   459       unfolding star_cont[of x a 1, simplified]
       
   460       by (rule SUP_least) (rule b)
       
   461   qed
       
   462 qed
       
   463 
       
   464 end
       
   465 
       
   466 subsection {* Transitive closure *}
       
   467 
       
   468 context kleene
       
   469 begin
       
   470 
       
   471 definition
       
   472   tcl_def: "tcl x = star x * x"
       
   473 
       
   474 lemma tcl_zero: "tcl 0 = 0"
       
   475 unfolding tcl_def by simp
       
   476 
       
   477 lemma tcl_unfold_right: "tcl a = a + tcl a * a"
       
   478 by (metis star_slide2 star_unfold2 tcl_def)
       
   479 
       
   480 lemma less_tcl: "a \<le> tcl a"
       
   481 by (metis star_slide2 tcl_def x_less_star)
       
   482 
       
   483 end
       
   484 
       
   485 end