src/HOL/Limits.thy
changeset 44218 f0e442e24816
parent 44206 5e4a1664106e
child 44251 d101ed3177b6
equal deleted inserted replaced
44217:5cdad94bdc29 44218:f0e442e24816
   609 lemma tendsto_const_iff:
   609 lemma tendsto_const_iff:
   610   fixes a b :: "'a::t2_space"
   610   fixes a b :: "'a::t2_space"
   611   assumes "\<not> trivial_limit F" shows "((\<lambda>x. a) ---> b) F \<longleftrightarrow> a = b"
   611   assumes "\<not> trivial_limit F" shows "((\<lambda>x. a) ---> b) F \<longleftrightarrow> a = b"
   612   by (safe intro!: tendsto_const tendsto_unique [OF assms tendsto_const])
   612   by (safe intro!: tendsto_const tendsto_unique [OF assms tendsto_const])
   613 
   613 
       
   614 lemma tendsto_compose:
       
   615   assumes g: "(g ---> g l) (at l)"
       
   616   assumes f: "(f ---> l) F"
       
   617   shows "((\<lambda>x. g (f x)) ---> g l) F"
       
   618 proof (rule topological_tendstoI)
       
   619   fix B assume B: "open B" "g l \<in> B"
       
   620   obtain A where A: "open A" "l \<in> A"
       
   621     and gB: "\<forall>y. y \<in> A \<longrightarrow> g y \<in> B"
       
   622     using topological_tendstoD [OF g B] B(2)
       
   623     unfolding eventually_at_topological by fast
       
   624   hence "\<forall>x. f x \<in> A \<longrightarrow> g (f x) \<in> B" by simp
       
   625   from this topological_tendstoD [OF f A]
       
   626   show "eventually (\<lambda>x. g (f x) \<in> B) F"
       
   627     by (rule eventually_mono)
       
   628 qed
       
   629 
   614 subsubsection {* Distance and norms *}
   630 subsubsection {* Distance and norms *}
   615 
   631 
   616 lemma tendsto_dist [tendsto_intros]:
   632 lemma tendsto_dist [tendsto_intros]:
   617   assumes f: "(f ---> l) F" and g: "(g ---> m) F"
   633   assumes f: "(f ---> l) F" and g: "(g ---> m) F"
   618   shows "((\<lambda>x. dist (f x) (g x)) ---> dist l m) F"
   634   shows "((\<lambda>x. dist (f x) (g x)) ---> dist l m) F"