src/HOL/Set.thy
changeset 29901 f4b3f8fbf599
parent 29691 9f03b5f847cd
child 30304 d8e4cd2ac2a1
equal deleted inserted replaced
29889:95e6eb9044fe 29901:f4b3f8fbf599
   784 
   784 
   785 lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P"
   785 lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P"
   786   by simp
   786   by simp
   787 
   787 
   788 lemma set_diff_eq: "A - B = {x. x : A & ~ x : B}" by blast
   788 lemma set_diff_eq: "A - B = {x. x : A & ~ x : B}" by blast
       
   789 
       
   790 lemma Compl_eq_Diff_UNIV: "-A = (UNIV - A)"
       
   791 by blast
   789 
   792 
   790 
   793 
   791 subsubsection {* Augmenting a set -- insert *}
   794 subsubsection {* Augmenting a set -- insert *}
   792 
   795 
   793 lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)"
   796 lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)"