src/HOL/Tools/inductive_package.ML
changeset 31723 f5cafe803b55
parent 31717 d1f7b6245a75
child 31724 9b5a128cdb5c
equal deleted inserted replaced
31717:d1f7b6245a75 31723:f5cafe803b55
     1 (*  Title:      HOL/Tools/inductive_package.ML
       
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     3     Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
       
     4 
       
     5 (Co)Inductive Definition module for HOL.
       
     6 
       
     7 Features:
       
     8   * least or greatest fixedpoints
       
     9   * mutually recursive definitions
       
    10   * definitions involving arbitrary monotone operators
       
    11   * automatically proves introduction and elimination rules
       
    12 
       
    13   Introduction rules have the form
       
    14   [| M Pj ti, ..., Q x, ... |] ==> Pk t
       
    15   where M is some monotone operator (usually the identity)
       
    16   Q x is any side condition on the free variables
       
    17   ti, t are any terms
       
    18   Pj, Pk are two of the predicates being defined in mutual recursion
       
    19 *)
       
    20 
       
    21 signature BASIC_INDUCTIVE_PACKAGE =
       
    22 sig
       
    23   type inductive_result
       
    24   val morph_result: morphism -> inductive_result -> inductive_result
       
    25   type inductive_info
       
    26   val the_inductive: Proof.context -> string -> inductive_info
       
    27   val print_inductives: Proof.context -> unit
       
    28   val mono_add: attribute
       
    29   val mono_del: attribute
       
    30   val get_monos: Proof.context -> thm list
       
    31   val mk_cases: Proof.context -> term -> thm
       
    32   val inductive_forall_name: string
       
    33   val inductive_forall_def: thm
       
    34   val rulify: thm -> thm
       
    35   val inductive_cases: (Attrib.binding * string list) list -> local_theory ->
       
    36     thm list list * local_theory
       
    37   val inductive_cases_i: (Attrib.binding * term list) list -> local_theory ->
       
    38     thm list list * local_theory
       
    39   type inductive_flags
       
    40   val add_inductive_i:
       
    41     inductive_flags -> ((binding * typ) * mixfix) list ->
       
    42     (string * typ) list -> (Attrib.binding * term) list -> thm list -> local_theory ->
       
    43     inductive_result * local_theory
       
    44   val add_inductive: bool -> bool ->
       
    45     (binding * string option * mixfix) list ->
       
    46     (binding * string option * mixfix) list ->
       
    47     (Attrib.binding * string) list ->
       
    48     (Facts.ref * Attrib.src list) list ->
       
    49     bool -> local_theory -> inductive_result * local_theory
       
    50   val add_inductive_global: string -> inductive_flags ->
       
    51     ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list ->
       
    52     thm list -> theory -> inductive_result * theory
       
    53   val arities_of: thm -> (string * int) list
       
    54   val params_of: thm -> term list
       
    55   val partition_rules: thm -> thm list -> (string * thm list) list
       
    56   val partition_rules': thm -> (thm * 'a) list -> (string * (thm * 'a) list) list
       
    57   val unpartition_rules: thm list -> (string * 'a list) list -> 'a list
       
    58   val infer_intro_vars: thm -> int -> thm list -> term list list
       
    59   val setup: theory -> theory
       
    60 end;
       
    61 
       
    62 signature INDUCTIVE_PACKAGE =
       
    63 sig
       
    64   include BASIC_INDUCTIVE_PACKAGE
       
    65   type add_ind_def
       
    66   val declare_rules: string -> binding -> bool -> bool -> string list ->
       
    67     thm list -> binding list -> Attrib.src list list -> (thm * string list) list ->
       
    68     thm -> local_theory -> thm list * thm list * thm * local_theory
       
    69   val add_ind_def: add_ind_def
       
    70   val gen_add_inductive_i: add_ind_def -> inductive_flags ->
       
    71     ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list ->
       
    72     thm list -> local_theory -> inductive_result * local_theory
       
    73   val gen_add_inductive: add_ind_def -> bool -> bool ->
       
    74     (binding * string option * mixfix) list ->
       
    75     (binding * string option * mixfix) list ->
       
    76     (Attrib.binding * string) list -> (Facts.ref * Attrib.src list) list ->
       
    77     bool -> local_theory -> inductive_result * local_theory
       
    78   val gen_ind_decl: add_ind_def -> bool ->
       
    79     OuterParse.token list -> (bool -> local_theory -> local_theory) * OuterParse.token list
       
    80 end;
       
    81 
       
    82 structure InductivePackage: INDUCTIVE_PACKAGE =
       
    83 struct
       
    84 
       
    85 
       
    86 (** theory context references **)
       
    87 
       
    88 val inductive_forall_name = "HOL.induct_forall";
       
    89 val inductive_forall_def = thm "induct_forall_def";
       
    90 val inductive_conj_name = "HOL.induct_conj";
       
    91 val inductive_conj_def = thm "induct_conj_def";
       
    92 val inductive_conj = thms "induct_conj";
       
    93 val inductive_atomize = thms "induct_atomize";
       
    94 val inductive_rulify = thms "induct_rulify";
       
    95 val inductive_rulify_fallback = thms "induct_rulify_fallback";
       
    96 
       
    97 val notTrueE = TrueI RSN (2, notE);
       
    98 val notFalseI = Seq.hd (atac 1 notI);
       
    99 val simp_thms' = map (fn s => mk_meta_eq (the (find_first
       
   100   (equal (OldGoals.read_prop @{theory HOL} s) o prop_of) simp_thms)))
       
   101   ["(~True) = False", "(~False) = True",
       
   102    "(True --> ?P) = ?P", "(False --> ?P) = True",
       
   103    "(?P & True) = ?P", "(True & ?P) = ?P"];
       
   104 
       
   105 
       
   106 
       
   107 (** context data **)
       
   108 
       
   109 type inductive_result =
       
   110   {preds: term list, elims: thm list, raw_induct: thm,
       
   111    induct: thm, intrs: thm list};
       
   112 
       
   113 fun morph_result phi {preds, elims, raw_induct: thm, induct, intrs} =
       
   114   let
       
   115     val term = Morphism.term phi;
       
   116     val thm = Morphism.thm phi;
       
   117     val fact = Morphism.fact phi;
       
   118   in
       
   119    {preds = map term preds, elims = fact elims, raw_induct = thm raw_induct,
       
   120     induct = thm induct, intrs = fact intrs}
       
   121   end;
       
   122 
       
   123 type inductive_info =
       
   124   {names: string list, coind: bool} * inductive_result;
       
   125 
       
   126 structure InductiveData = GenericDataFun
       
   127 (
       
   128   type T = inductive_info Symtab.table * thm list;
       
   129   val empty = (Symtab.empty, []);
       
   130   val extend = I;
       
   131   fun merge _ ((tab1, monos1), (tab2, monos2)) =
       
   132     (Symtab.merge (K true) (tab1, tab2), Thm.merge_thms (monos1, monos2));
       
   133 );
       
   134 
       
   135 val get_inductives = InductiveData.get o Context.Proof;
       
   136 
       
   137 fun print_inductives ctxt =
       
   138   let
       
   139     val (tab, monos) = get_inductives ctxt;
       
   140     val space = Consts.space_of (ProofContext.consts_of ctxt);
       
   141   in
       
   142     [Pretty.strs ("(co)inductives:" :: map #1 (NameSpace.extern_table (space, tab))),
       
   143      Pretty.big_list "monotonicity rules:" (map (ProofContext.pretty_thm ctxt) monos)]
       
   144     |> Pretty.chunks |> Pretty.writeln
       
   145   end;
       
   146 
       
   147 
       
   148 (* get and put data *)
       
   149 
       
   150 fun the_inductive ctxt name =
       
   151   (case Symtab.lookup (#1 (get_inductives ctxt)) name of
       
   152     NONE => error ("Unknown (co)inductive predicate " ^ quote name)
       
   153   | SOME info => info);
       
   154 
       
   155 fun put_inductives names info = InductiveData.map
       
   156   (apfst (fold (fn name => Symtab.update (name, info)) names));
       
   157 
       
   158 
       
   159 
       
   160 (** monotonicity rules **)
       
   161 
       
   162 val get_monos = #2 o get_inductives;
       
   163 val map_monos = InductiveData.map o apsnd;
       
   164 
       
   165 fun mk_mono thm =
       
   166   let
       
   167     val concl = concl_of thm;
       
   168     fun eq2mono thm' = [thm' RS (thm' RS eq_to_mono)] @
       
   169       (case concl of
       
   170           (_ $ (_ $ (Const ("Not", _) $ _) $ _)) => []
       
   171         | _ => [thm' RS (thm' RS eq_to_mono2)]);
       
   172     fun dest_less_concl thm = dest_less_concl (thm RS le_funD)
       
   173       handle THM _ => thm RS le_boolD
       
   174   in
       
   175     case concl of
       
   176       Const ("==", _) $ _ $ _ => eq2mono (thm RS meta_eq_to_obj_eq)
       
   177     | _ $ (Const ("op =", _) $ _ $ _) => eq2mono thm
       
   178     | _ $ (Const ("HOL.ord_class.less_eq", _) $ _ $ _) =>
       
   179       [dest_less_concl (Seq.hd (REPEAT (FIRSTGOAL
       
   180          (resolve_tac [le_funI, le_boolI'])) thm))]
       
   181     | _ => [thm]
       
   182   end handle THM _ => error ("Bad monotonicity theorem:\n" ^ Display.string_of_thm thm);
       
   183 
       
   184 val mono_add = Thm.declaration_attribute (map_monos o fold Thm.add_thm o mk_mono);
       
   185 val mono_del = Thm.declaration_attribute (map_monos o fold Thm.del_thm o mk_mono);
       
   186 
       
   187 
       
   188 
       
   189 (** misc utilities **)
       
   190 
       
   191 fun message quiet_mode s = if quiet_mode then () else writeln s;
       
   192 fun clean_message quiet_mode s = if ! quick_and_dirty then () else message quiet_mode s;
       
   193 
       
   194 fun coind_prefix true = "co"
       
   195   | coind_prefix false = "";
       
   196 
       
   197 fun log (b:int) m n = if m >= n then 0 else 1 + log b (b * m) n;
       
   198 
       
   199 fun make_bool_args f g [] i = []
       
   200   | make_bool_args f g (x :: xs) i =
       
   201       (if i mod 2 = 0 then f x else g x) :: make_bool_args f g xs (i div 2);
       
   202 
       
   203 fun make_bool_args' xs =
       
   204   make_bool_args (K HOLogic.false_const) (K HOLogic.true_const) xs;
       
   205 
       
   206 fun find_arg T x [] = sys_error "find_arg"
       
   207   | find_arg T x ((p as (_, (SOME _, _))) :: ps) =
       
   208       apsnd (cons p) (find_arg T x ps)
       
   209   | find_arg T x ((p as (U, (NONE, y))) :: ps) =
       
   210       if (T: typ) = U then (y, (U, (SOME x, y)) :: ps)
       
   211       else apsnd (cons p) (find_arg T x ps);
       
   212 
       
   213 fun make_args Ts xs =
       
   214   map (fn (T, (NONE, ())) => Const (@{const_name undefined}, T) | (_, (SOME t, ())) => t)
       
   215     (fold (fn (t, T) => snd o find_arg T t) xs (map (rpair (NONE, ())) Ts));
       
   216 
       
   217 fun make_args' Ts xs Us =
       
   218   fst (fold_map (fn T => find_arg T ()) Us (Ts ~~ map (pair NONE) xs));
       
   219 
       
   220 fun dest_predicate cs params t =
       
   221   let
       
   222     val k = length params;
       
   223     val (c, ts) = strip_comb t;
       
   224     val (xs, ys) = chop k ts;
       
   225     val i = find_index_eq c cs;
       
   226   in
       
   227     if xs = params andalso i >= 0 then
       
   228       SOME (c, i, ys, chop (length ys)
       
   229         (List.drop (binder_types (fastype_of c), k)))
       
   230     else NONE
       
   231   end;
       
   232 
       
   233 fun mk_names a 0 = []
       
   234   | mk_names a 1 = [a]
       
   235   | mk_names a n = map (fn i => a ^ string_of_int i) (1 upto n);
       
   236 
       
   237 
       
   238 
       
   239 (** process rules **)
       
   240 
       
   241 local
       
   242 
       
   243 fun err_in_rule ctxt name t msg =
       
   244   error (cat_lines ["Ill-formed introduction rule " ^ quote name,
       
   245     Syntax.string_of_term ctxt t, msg]);
       
   246 
       
   247 fun err_in_prem ctxt name t p msg =
       
   248   error (cat_lines ["Ill-formed premise", Syntax.string_of_term ctxt p,
       
   249     "in introduction rule " ^ quote name, Syntax.string_of_term ctxt t, msg]);
       
   250 
       
   251 val bad_concl = "Conclusion of introduction rule must be an inductive predicate";
       
   252 
       
   253 val bad_ind_occ = "Inductive predicate occurs in argument of inductive predicate";
       
   254 
       
   255 val bad_app = "Inductive predicate must be applied to parameter(s) ";
       
   256 
       
   257 fun atomize_term thy = MetaSimplifier.rewrite_term thy inductive_atomize [];
       
   258 
       
   259 in
       
   260 
       
   261 fun check_rule ctxt cs params ((binding, att), rule) =
       
   262   let
       
   263     val err_name = Binding.str_of binding;
       
   264     val params' = Term.variant_frees rule (Logic.strip_params rule);
       
   265     val frees = rev (map Free params');
       
   266     val concl = subst_bounds (frees, Logic.strip_assums_concl rule);
       
   267     val prems = map (curry subst_bounds frees) (Logic.strip_assums_hyp rule);
       
   268     val rule' = Logic.list_implies (prems, concl);
       
   269     val aprems = map (atomize_term (ProofContext.theory_of ctxt)) prems;
       
   270     val arule = list_all_free (params', Logic.list_implies (aprems, concl));
       
   271 
       
   272     fun check_ind err t = case dest_predicate cs params t of
       
   273         NONE => err (bad_app ^
       
   274           commas (map (Syntax.string_of_term ctxt) params))
       
   275       | SOME (_, _, ys, _) =>
       
   276           if exists (fn c => exists (fn t => Logic.occs (c, t)) ys) cs
       
   277           then err bad_ind_occ else ();
       
   278 
       
   279     fun check_prem' prem t =
       
   280       if head_of t mem cs then
       
   281         check_ind (err_in_prem ctxt err_name rule prem) t
       
   282       else (case t of
       
   283           Abs (_, _, t) => check_prem' prem t
       
   284         | t $ u => (check_prem' prem t; check_prem' prem u)
       
   285         | _ => ());
       
   286 
       
   287     fun check_prem (prem, aprem) =
       
   288       if can HOLogic.dest_Trueprop aprem then check_prem' prem prem
       
   289       else err_in_prem ctxt err_name rule prem "Non-atomic premise";
       
   290   in
       
   291     (case concl of
       
   292        Const ("Trueprop", _) $ t =>
       
   293          if head_of t mem cs then
       
   294            (check_ind (err_in_rule ctxt err_name rule') t;
       
   295             List.app check_prem (prems ~~ aprems))
       
   296          else err_in_rule ctxt err_name rule' bad_concl
       
   297      | _ => err_in_rule ctxt err_name rule' bad_concl);
       
   298     ((binding, att), arule)
       
   299   end;
       
   300 
       
   301 val rulify =
       
   302   hol_simplify inductive_conj
       
   303   #> hol_simplify inductive_rulify
       
   304   #> hol_simplify inductive_rulify_fallback
       
   305   #> Simplifier.norm_hhf;
       
   306 
       
   307 end;
       
   308 
       
   309 
       
   310 
       
   311 (** proofs for (co)inductive predicates **)
       
   312 
       
   313 (* prove monotonicity *)
       
   314 
       
   315 fun prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos ctxt =
       
   316  (message (quiet_mode orelse skip_mono andalso !quick_and_dirty orelse fork_mono)
       
   317     "  Proving monotonicity ...";
       
   318   (if skip_mono then SkipProof.prove else if fork_mono then Goal.prove_future else Goal.prove) ctxt
       
   319     [] []
       
   320     (HOLogic.mk_Trueprop
       
   321       (Const (@{const_name Orderings.mono}, (predT --> predT) --> HOLogic.boolT) $ fp_fun))
       
   322     (fn _ => EVERY [rtac @{thm monoI} 1,
       
   323       REPEAT (resolve_tac [le_funI, le_boolI'] 1),
       
   324       REPEAT (FIRST
       
   325         [atac 1,
       
   326          resolve_tac (List.concat (map mk_mono monos) @ get_monos ctxt) 1,
       
   327          etac le_funE 1, dtac le_boolD 1])]));
       
   328 
       
   329 
       
   330 (* prove introduction rules *)
       
   331 
       
   332 fun prove_intrs quiet_mode coind mono fp_def k params intr_ts rec_preds_defs ctxt =
       
   333   let
       
   334     val _ = clean_message quiet_mode "  Proving the introduction rules ...";
       
   335 
       
   336     val unfold = funpow k (fn th => th RS fun_cong)
       
   337       (mono RS (fp_def RS
       
   338         (if coind then def_gfp_unfold else def_lfp_unfold)));
       
   339 
       
   340     fun select_disj 1 1 = []
       
   341       | select_disj _ 1 = [rtac disjI1]
       
   342       | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
       
   343 
       
   344     val rules = [refl, TrueI, notFalseI, exI, conjI];
       
   345 
       
   346     val intrs = map_index (fn (i, intr) => rulify
       
   347       (SkipProof.prove ctxt (map (fst o dest_Free) params) [] intr (fn _ => EVERY
       
   348        [rewrite_goals_tac rec_preds_defs,
       
   349         rtac (unfold RS iffD2) 1,
       
   350         EVERY1 (select_disj (length intr_ts) (i + 1)),
       
   351         (*Not ares_tac, since refl must be tried before any equality assumptions;
       
   352           backtracking may occur if the premises have extra variables!*)
       
   353         DEPTH_SOLVE_1 (resolve_tac rules 1 APPEND assume_tac 1)]))) intr_ts
       
   354 
       
   355   in (intrs, unfold) end;
       
   356 
       
   357 
       
   358 (* prove elimination rules *)
       
   359 
       
   360 fun prove_elims quiet_mode cs params intr_ts intr_names unfold rec_preds_defs ctxt =
       
   361   let
       
   362     val _ = clean_message quiet_mode "  Proving the elimination rules ...";
       
   363 
       
   364     val ([pname], ctxt') = ctxt |>
       
   365       Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
       
   366       Variable.variant_fixes ["P"];
       
   367     val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
       
   368 
       
   369     fun dest_intr r =
       
   370       (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
       
   371        Logic.strip_assums_hyp r, Logic.strip_params r);
       
   372 
       
   373     val intrs = map dest_intr intr_ts ~~ intr_names;
       
   374 
       
   375     val rules1 = [disjE, exE, FalseE];
       
   376     val rules2 = [conjE, FalseE, notTrueE];
       
   377 
       
   378     fun prove_elim c =
       
   379       let
       
   380         val Ts = List.drop (binder_types (fastype_of c), length params);
       
   381         val (anames, ctxt'') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt';
       
   382         val frees = map Free (anames ~~ Ts);
       
   383 
       
   384         fun mk_elim_prem ((_, _, us, _), ts, params') =
       
   385           list_all (params',
       
   386             Logic.list_implies (map (HOLogic.mk_Trueprop o HOLogic.mk_eq)
       
   387               (frees ~~ us) @ ts, P));
       
   388         val c_intrs = (List.filter (equal c o #1 o #1 o #1) intrs);
       
   389         val prems = HOLogic.mk_Trueprop (list_comb (c, params @ frees)) ::
       
   390            map mk_elim_prem (map #1 c_intrs)
       
   391       in
       
   392         (SkipProof.prove ctxt'' [] prems P
       
   393           (fn {prems, ...} => EVERY
       
   394             [cut_facts_tac [hd prems] 1,
       
   395              rewrite_goals_tac rec_preds_defs,
       
   396              dtac (unfold RS iffD1) 1,
       
   397              REPEAT (FIRSTGOAL (eresolve_tac rules1)),
       
   398              REPEAT (FIRSTGOAL (eresolve_tac rules2)),
       
   399              EVERY (map (fn prem =>
       
   400                DEPTH_SOLVE_1 (ares_tac [rewrite_rule rec_preds_defs prem, conjI] 1)) (tl prems))])
       
   401           |> rulify
       
   402           |> singleton (ProofContext.export ctxt'' ctxt),
       
   403          map #2 c_intrs)
       
   404       end
       
   405 
       
   406    in map prove_elim cs end;
       
   407 
       
   408 
       
   409 (* derivation of simplified elimination rules *)
       
   410 
       
   411 local
       
   412 
       
   413 (*delete needless equality assumptions*)
       
   414 val refl_thin = Goal.prove_global @{theory HOL} [] [] @{prop "!!P. a = a ==> P ==> P"}
       
   415   (fn _ => assume_tac 1);
       
   416 val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE];
       
   417 val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
       
   418 
       
   419 fun simp_case_tac ss i =
       
   420   EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i;
       
   421 
       
   422 in
       
   423 
       
   424 fun mk_cases ctxt prop =
       
   425   let
       
   426     val thy = ProofContext.theory_of ctxt;
       
   427     val ss = Simplifier.local_simpset_of ctxt;
       
   428 
       
   429     fun err msg =
       
   430       error (Pretty.string_of (Pretty.block
       
   431         [Pretty.str msg, Pretty.fbrk, Syntax.pretty_term ctxt prop]));
       
   432 
       
   433     val elims = Induct.find_casesP ctxt prop;
       
   434 
       
   435     val cprop = Thm.cterm_of thy prop;
       
   436     val tac = ALLGOALS (simp_case_tac ss) THEN prune_params_tac;
       
   437     fun mk_elim rl =
       
   438       Thm.implies_intr cprop (Tactic.rule_by_tactic tac (Thm.assume cprop RS rl))
       
   439       |> singleton (Variable.export (Variable.auto_fixes prop ctxt) ctxt);
       
   440   in
       
   441     (case get_first (try mk_elim) elims of
       
   442       SOME r => r
       
   443     | NONE => err "Proposition not an inductive predicate:")
       
   444   end;
       
   445 
       
   446 end;
       
   447 
       
   448 
       
   449 (* inductive_cases *)
       
   450 
       
   451 fun gen_inductive_cases prep_att prep_prop args lthy =
       
   452   let
       
   453     val thy = ProofContext.theory_of lthy;
       
   454     val facts = args |> map (fn ((a, atts), props) =>
       
   455       ((a, map (prep_att thy) atts),
       
   456         map (Thm.no_attributes o single o mk_cases lthy o prep_prop lthy) props));
       
   457   in lthy |> LocalTheory.notes Thm.generatedK facts |>> map snd end;
       
   458 
       
   459 val inductive_cases = gen_inductive_cases Attrib.intern_src Syntax.read_prop;
       
   460 val inductive_cases_i = gen_inductive_cases (K I) Syntax.check_prop;
       
   461 
       
   462 
       
   463 val ind_cases_setup =
       
   464   Method.setup @{binding ind_cases}
       
   465     (Scan.lift (Scan.repeat1 Args.name_source --
       
   466       Scan.optional (Args.$$$ "for" |-- Scan.repeat1 Args.name) []) >>
       
   467       (fn (raw_props, fixes) => fn ctxt =>
       
   468         let
       
   469           val (_, ctxt') = Variable.add_fixes fixes ctxt;
       
   470           val props = Syntax.read_props ctxt' raw_props;
       
   471           val ctxt'' = fold Variable.declare_term props ctxt';
       
   472           val rules = ProofContext.export ctxt'' ctxt (map (mk_cases ctxt'') props)
       
   473         in Method.erule 0 rules end))
       
   474     "dynamic case analysis on predicates";
       
   475 
       
   476 
       
   477 (* prove induction rule *)
       
   478 
       
   479 fun prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono
       
   480     fp_def rec_preds_defs ctxt =
       
   481   let
       
   482     val _ = clean_message quiet_mode "  Proving the induction rule ...";
       
   483     val thy = ProofContext.theory_of ctxt;
       
   484 
       
   485     (* predicates for induction rule *)
       
   486 
       
   487     val (pnames, ctxt') = ctxt |>
       
   488       Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
       
   489       Variable.variant_fixes (mk_names "P" (length cs));
       
   490     val preds = map Free (pnames ~~
       
   491       map (fn c => List.drop (binder_types (fastype_of c), length params) --->
       
   492         HOLogic.boolT) cs);
       
   493 
       
   494     (* transform an introduction rule into a premise for induction rule *)
       
   495 
       
   496     fun mk_ind_prem r =
       
   497       let
       
   498         fun subst s = (case dest_predicate cs params s of
       
   499             SOME (_, i, ys, (_, Ts)) =>
       
   500               let
       
   501                 val k = length Ts;
       
   502                 val bs = map Bound (k - 1 downto 0);
       
   503                 val P = list_comb (List.nth (preds, i),
       
   504                   map (incr_boundvars k) ys @ bs);
       
   505                 val Q = list_abs (mk_names "x" k ~~ Ts,
       
   506                   HOLogic.mk_binop inductive_conj_name
       
   507                     (list_comb (incr_boundvars k s, bs), P))
       
   508               in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end
       
   509           | NONE => (case s of
       
   510               (t $ u) => (fst (subst t) $ fst (subst u), NONE)
       
   511             | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), NONE)
       
   512             | _ => (s, NONE)));
       
   513 
       
   514         fun mk_prem (s, prems) = (case subst s of
       
   515               (_, SOME (t, u)) => t :: u :: prems
       
   516             | (t, _) => t :: prems);
       
   517 
       
   518         val SOME (_, i, ys, _) = dest_predicate cs params
       
   519           (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))
       
   520 
       
   521       in list_all_free (Logic.strip_params r,
       
   522         Logic.list_implies (map HOLogic.mk_Trueprop (List.foldr mk_prem
       
   523           [] (map HOLogic.dest_Trueprop (Logic.strip_assums_hyp r))),
       
   524             HOLogic.mk_Trueprop (list_comb (List.nth (preds, i), ys))))
       
   525       end;
       
   526 
       
   527     val ind_prems = map mk_ind_prem intr_ts;
       
   528 
       
   529 
       
   530     (* make conclusions for induction rules *)
       
   531 
       
   532     val Tss = map (binder_types o fastype_of) preds;
       
   533     val (xnames, ctxt'') =
       
   534       Variable.variant_fixes (mk_names "x" (length (flat Tss))) ctxt';
       
   535     val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
       
   536         (map (fn (((xnames, Ts), c), P) =>
       
   537            let val frees = map Free (xnames ~~ Ts)
       
   538            in HOLogic.mk_imp
       
   539              (list_comb (c, params @ frees), list_comb (P, frees))
       
   540            end) (unflat Tss xnames ~~ Tss ~~ cs ~~ preds)));
       
   541 
       
   542 
       
   543     (* make predicate for instantiation of abstract induction rule *)
       
   544 
       
   545     val ind_pred = fold_rev lambda (bs @ xs) (foldr1 HOLogic.mk_conj
       
   546       (map_index (fn (i, P) => List.foldr HOLogic.mk_imp
       
   547          (list_comb (P, make_args' argTs xs (binder_types (fastype_of P))))
       
   548          (make_bool_args HOLogic.mk_not I bs i)) preds));
       
   549 
       
   550     val ind_concl = HOLogic.mk_Trueprop
       
   551       (HOLogic.mk_binrel "HOL.ord_class.less_eq" (rec_const, ind_pred));
       
   552 
       
   553     val raw_fp_induct = (mono RS (fp_def RS def_lfp_induct));
       
   554 
       
   555     val induct = SkipProof.prove ctxt'' [] ind_prems ind_concl
       
   556       (fn {prems, ...} => EVERY
       
   557         [rewrite_goals_tac [inductive_conj_def],
       
   558          DETERM (rtac raw_fp_induct 1),
       
   559          REPEAT (resolve_tac [le_funI, le_boolI] 1),
       
   560          rewrite_goals_tac (inf_fun_eq :: inf_bool_eq :: simp_thms'),
       
   561          (*This disjE separates out the introduction rules*)
       
   562          REPEAT (FIRSTGOAL (eresolve_tac [disjE, exE, FalseE])),
       
   563          (*Now break down the individual cases.  No disjE here in case
       
   564            some premise involves disjunction.*)
       
   565          REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)),
       
   566          REPEAT (FIRSTGOAL
       
   567            (resolve_tac [conjI, impI] ORELSE' (etac notE THEN' atac))),
       
   568          EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule
       
   569              (inductive_conj_def :: rec_preds_defs @ simp_thms') prem,
       
   570            conjI, refl] 1)) prems)]);
       
   571 
       
   572     val lemma = SkipProof.prove ctxt'' [] []
       
   573       (Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn _ => EVERY
       
   574         [rewrite_goals_tac rec_preds_defs,
       
   575          REPEAT (EVERY
       
   576            [REPEAT (resolve_tac [conjI, impI] 1),
       
   577             REPEAT (eresolve_tac [le_funE, le_boolE] 1),
       
   578             atac 1,
       
   579             rewrite_goals_tac simp_thms',
       
   580             atac 1])])
       
   581 
       
   582   in singleton (ProofContext.export ctxt'' ctxt) (induct RS lemma) end;
       
   583 
       
   584 
       
   585 
       
   586 (** specification of (co)inductive predicates **)
       
   587 
       
   588 fun mk_ind_def quiet_mode skip_mono fork_mono alt_name coind cs intr_ts monos params cnames_syn ctxt =
       
   589   let
       
   590     val fp_name = if coind then @{const_name Inductive.gfp} else @{const_name Inductive.lfp};
       
   591 
       
   592     val argTs = fold (fn c => fn Ts => Ts @
       
   593       (List.drop (binder_types (fastype_of c), length params) \\ Ts)) cs [];
       
   594     val k = log 2 1 (length cs);
       
   595     val predT = replicate k HOLogic.boolT ---> argTs ---> HOLogic.boolT;
       
   596     val p :: xs = map Free (Variable.variant_frees ctxt intr_ts
       
   597       (("p", predT) :: (mk_names "x" (length argTs) ~~ argTs)));
       
   598     val bs = map Free (Variable.variant_frees ctxt (p :: xs @ intr_ts)
       
   599       (map (rpair HOLogic.boolT) (mk_names "b" k)));
       
   600 
       
   601     fun subst t = (case dest_predicate cs params t of
       
   602         SOME (_, i, ts, (Ts, Us)) =>
       
   603           let
       
   604             val l = length Us;
       
   605             val zs = map Bound (l - 1 downto 0)
       
   606           in
       
   607             list_abs (map (pair "z") Us, list_comb (p,
       
   608               make_bool_args' bs i @ make_args argTs
       
   609                 ((map (incr_boundvars l) ts ~~ Ts) @ (zs ~~ Us))))
       
   610           end
       
   611       | NONE => (case t of
       
   612           t1 $ t2 => subst t1 $ subst t2
       
   613         | Abs (x, T, u) => Abs (x, T, subst u)
       
   614         | _ => t));
       
   615 
       
   616     (* transform an introduction rule into a conjunction  *)
       
   617     (*   [| p_i t; ... |] ==> p_j u                       *)
       
   618     (* is transformed into                                *)
       
   619     (*   b_j & x_j = u & p b_j t & ...                    *)
       
   620 
       
   621     fun transform_rule r =
       
   622       let
       
   623         val SOME (_, i, ts, (Ts, _)) = dest_predicate cs params
       
   624           (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
       
   625         val ps = make_bool_args HOLogic.mk_not I bs i @
       
   626           map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @
       
   627           map (subst o HOLogic.dest_Trueprop)
       
   628             (Logic.strip_assums_hyp r)
       
   629       in List.foldr (fn ((x, T), P) => HOLogic.exists_const T $ (Abs (x, T, P)))
       
   630         (if null ps then HOLogic.true_const else foldr1 HOLogic.mk_conj ps)
       
   631         (Logic.strip_params r)
       
   632       end
       
   633 
       
   634     (* make a disjunction of all introduction rules *)
       
   635 
       
   636     val fp_fun = fold_rev lambda (p :: bs @ xs)
       
   637       (if null intr_ts then HOLogic.false_const
       
   638        else foldr1 HOLogic.mk_disj (map transform_rule intr_ts));
       
   639 
       
   640     (* add definiton of recursive predicates to theory *)
       
   641 
       
   642     val rec_name =
       
   643       if Binding.is_empty alt_name then
       
   644         Binding.name (space_implode "_" (map (Binding.name_of o fst) cnames_syn))
       
   645       else alt_name;
       
   646 
       
   647     val ((rec_const, (_, fp_def)), ctxt') = ctxt |>
       
   648       LocalTheory.define Thm.internalK
       
   649         ((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn),
       
   650          (Attrib.empty_binding, fold_rev lambda params
       
   651            (Const (fp_name, (predT --> predT) --> predT) $ fp_fun)));
       
   652     val fp_def' = Simplifier.rewrite (HOL_basic_ss addsimps [fp_def])
       
   653       (cterm_of (ProofContext.theory_of ctxt') (list_comb (rec_const, params)));
       
   654     val specs = if length cs < 2 then [] else
       
   655       map_index (fn (i, (name_mx, c)) =>
       
   656         let
       
   657           val Ts = List.drop (binder_types (fastype_of c), length params);
       
   658           val xs = map Free (Variable.variant_frees ctxt intr_ts
       
   659             (mk_names "x" (length Ts) ~~ Ts))
       
   660         in
       
   661           (name_mx, (Attrib.empty_binding, fold_rev lambda (params @ xs)
       
   662             (list_comb (rec_const, params @ make_bool_args' bs i @
       
   663               make_args argTs (xs ~~ Ts)))))
       
   664         end) (cnames_syn ~~ cs);
       
   665     val (consts_defs, ctxt'') = fold_map (LocalTheory.define Thm.internalK) specs ctxt';
       
   666     val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
       
   667 
       
   668     val mono = prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos ctxt'';
       
   669     val ((_, [mono']), ctxt''') =
       
   670       LocalTheory.note Thm.internalK (Attrib.empty_binding, [mono]) ctxt'';
       
   671 
       
   672   in (ctxt''', rec_name, mono', fp_def', map (#2 o #2) consts_defs,
       
   673     list_comb (rec_const, params), preds, argTs, bs, xs)
       
   674   end;
       
   675 
       
   676 fun declare_rules kind rec_binding coind no_ind cnames intrs intr_bindings intr_atts
       
   677       elims raw_induct ctxt =
       
   678   let
       
   679     val rec_name = Binding.name_of rec_binding;
       
   680     val rec_qualified = Binding.qualify false rec_name;
       
   681     val intr_names = map Binding.name_of intr_bindings;
       
   682     val ind_case_names = RuleCases.case_names intr_names;
       
   683     val induct =
       
   684       if coind then
       
   685         (raw_induct, [RuleCases.case_names [rec_name],
       
   686           RuleCases.case_conclusion (rec_name, intr_names),
       
   687           RuleCases.consumes 1, Induct.coinduct_pred (hd cnames)])
       
   688       else if no_ind orelse length cnames > 1 then
       
   689         (raw_induct, [ind_case_names, RuleCases.consumes 0])
       
   690       else (raw_induct RSN (2, rev_mp), [ind_case_names, RuleCases.consumes 1]);
       
   691 
       
   692     val (intrs', ctxt1) =
       
   693       ctxt |>
       
   694       LocalTheory.notes kind
       
   695         (map rec_qualified intr_bindings ~~ intr_atts ~~ map (fn th => [([th],
       
   696            [Attrib.internal (K (ContextRules.intro_query NONE)),
       
   697             Attrib.internal (K Nitpick_Ind_Intro_Thms.add)])]) intrs) |>>
       
   698       map (hd o snd);
       
   699     val (((_, elims'), (_, [induct'])), ctxt2) =
       
   700       ctxt1 |>
       
   701       LocalTheory.note kind ((rec_qualified (Binding.name "intros"), []), intrs') ||>>
       
   702       fold_map (fn (name, (elim, cases)) =>
       
   703         LocalTheory.note kind ((Binding.qualified_name (Long_Name.qualify (Long_Name.base_name name) "cases"),
       
   704           [Attrib.internal (K (RuleCases.case_names cases)),
       
   705            Attrib.internal (K (RuleCases.consumes 1)),
       
   706            Attrib.internal (K (Induct.cases_pred name)),
       
   707            Attrib.internal (K (ContextRules.elim_query NONE))]), [elim]) #>
       
   708         apfst (hd o snd)) (if null elims then [] else cnames ~~ elims) ||>>
       
   709       LocalTheory.note kind
       
   710         ((rec_qualified (Binding.name (coind_prefix coind ^ "induct")),
       
   711           map (Attrib.internal o K) (#2 induct)), [rulify (#1 induct)]);
       
   712 
       
   713     val ctxt3 = if no_ind orelse coind then ctxt2 else
       
   714       let val inducts = cnames ~~ ProjectRule.projects ctxt2 (1 upto length cnames) induct'
       
   715       in
       
   716         ctxt2 |>
       
   717         LocalTheory.notes kind [((rec_qualified (Binding.name "inducts"), []),
       
   718           inducts |> map (fn (name, th) => ([th],
       
   719             [Attrib.internal (K ind_case_names),
       
   720              Attrib.internal (K (RuleCases.consumes 1)),
       
   721              Attrib.internal (K (Induct.induct_pred name))])))] |> snd
       
   722       end
       
   723   in (intrs', elims', induct', ctxt3) end;
       
   724 
       
   725 type inductive_flags =
       
   726   {quiet_mode: bool, verbose: bool, kind: string, alt_name: binding,
       
   727    coind: bool, no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool}
       
   728 
       
   729 type add_ind_def =
       
   730   inductive_flags ->
       
   731   term list -> (Attrib.binding * term) list -> thm list ->
       
   732   term list -> (binding * mixfix) list ->
       
   733   local_theory -> inductive_result * local_theory
       
   734 
       
   735 fun add_ind_def {quiet_mode, verbose, kind, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono}
       
   736     cs intros monos params cnames_syn ctxt =
       
   737   let
       
   738     val _ = null cnames_syn andalso error "No inductive predicates given";
       
   739     val names = map (Binding.name_of o fst) cnames_syn;
       
   740     val _ = message (quiet_mode andalso not verbose)
       
   741       ("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^ commas_quote names);
       
   742 
       
   743     val cnames = map (LocalTheory.full_name ctxt o #1) cnames_syn;  (* FIXME *)
       
   744     val ((intr_names, intr_atts), intr_ts) =
       
   745       apfst split_list (split_list (map (check_rule ctxt cs params) intros));
       
   746 
       
   747     val (ctxt1, rec_name, mono, fp_def, rec_preds_defs, rec_const, preds,
       
   748       argTs, bs, xs) = mk_ind_def quiet_mode skip_mono fork_mono alt_name coind cs intr_ts
       
   749         monos params cnames_syn ctxt;
       
   750 
       
   751     val (intrs, unfold) = prove_intrs quiet_mode coind mono fp_def (length bs + length xs)
       
   752       params intr_ts rec_preds_defs ctxt1;
       
   753     val elims = if no_elim then [] else
       
   754       prove_elims quiet_mode cs params intr_ts (map Binding.name_of intr_names)
       
   755         unfold rec_preds_defs ctxt1;
       
   756     val raw_induct = zero_var_indexes
       
   757       (if no_ind then Drule.asm_rl else
       
   758        if coind then
       
   759          singleton (ProofContext.export
       
   760            (snd (Variable.add_fixes (map (fst o dest_Free) params) ctxt1)) ctxt1)
       
   761            (rotate_prems ~1 (ObjectLogic.rulify
       
   762              (fold_rule rec_preds_defs
       
   763                (rewrite_rule [le_fun_def, le_bool_def, sup_fun_eq, sup_bool_eq]
       
   764                 (mono RS (fp_def RS def_coinduct))))))
       
   765        else
       
   766          prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono fp_def
       
   767            rec_preds_defs ctxt1);
       
   768 
       
   769     val (intrs', elims', induct, ctxt2) = declare_rules kind rec_name coind no_ind
       
   770       cnames intrs intr_names intr_atts elims raw_induct ctxt1;
       
   771 
       
   772     val result =
       
   773       {preds = preds,
       
   774        intrs = intrs',
       
   775        elims = elims',
       
   776        raw_induct = rulify raw_induct,
       
   777        induct = induct};
       
   778 
       
   779     val ctxt3 = ctxt2
       
   780       |> LocalTheory.declaration (fn phi =>
       
   781         let val result' = morph_result phi result;
       
   782         in put_inductives cnames (*global names!?*) ({names = cnames, coind = coind}, result') end);
       
   783   in (result, ctxt3) end;
       
   784 
       
   785 
       
   786 (* external interfaces *)
       
   787 
       
   788 fun gen_add_inductive_i mk_def
       
   789     (flags as {quiet_mode, verbose, kind, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono})
       
   790     cnames_syn pnames spec monos lthy =
       
   791   let
       
   792     val thy = ProofContext.theory_of lthy;
       
   793     val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
       
   794 
       
   795 
       
   796     (* abbrevs *)
       
   797 
       
   798     val (_, ctxt1) = Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn) lthy;
       
   799 
       
   800     fun get_abbrev ((name, atts), t) =
       
   801       if can (Logic.strip_assums_concl #> Logic.dest_equals) t then
       
   802         let
       
   803           val _ = Binding.is_empty name andalso null atts orelse
       
   804             error "Abbreviations may not have names or attributes";
       
   805           val ((x, T), rhs) = LocalDefs.abs_def (snd (LocalDefs.cert_def ctxt1 t));
       
   806           val var =
       
   807             (case find_first (fn ((c, _), _) => Binding.name_of c = x) cnames_syn of
       
   808               NONE => error ("Undeclared head of abbreviation " ^ quote x)
       
   809             | SOME ((b, T'), mx) =>
       
   810                 if T <> T' then error ("Bad type specification for abbreviation " ^ quote x)
       
   811                 else (b, mx));
       
   812         in SOME (var, rhs) end
       
   813       else NONE;
       
   814 
       
   815     val abbrevs = map_filter get_abbrev spec;
       
   816     val bs = map (Binding.name_of o fst o fst) abbrevs;
       
   817 
       
   818 
       
   819     (* predicates *)
       
   820 
       
   821     val pre_intros = filter_out (is_some o get_abbrev) spec;
       
   822     val cnames_syn' = filter_out (member (op =) bs o Binding.name_of o fst o fst) cnames_syn;
       
   823     val cs = map (Free o apfst Binding.name_of o fst) cnames_syn';
       
   824     val ps = map Free pnames;
       
   825 
       
   826     val (_, ctxt2) = lthy |> Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn');
       
   827     val _ = map (fn abbr => LocalDefs.fixed_abbrev abbr ctxt2) abbrevs;
       
   828     val ctxt3 = ctxt2 |> fold (snd oo LocalDefs.fixed_abbrev) abbrevs;
       
   829     val expand = Assumption.export_term ctxt3 lthy #> ProofContext.cert_term lthy;
       
   830 
       
   831     fun close_rule r = list_all_free (rev (fold_aterms
       
   832       (fn t as Free (v as (s, _)) =>
       
   833           if Variable.is_fixed ctxt1 s orelse
       
   834             member (op =) ps t then I else insert (op =) v
       
   835         | _ => I) r []), r);
       
   836 
       
   837     val intros = map (apsnd (Syntax.check_term lthy #> close_rule #> expand)) pre_intros;
       
   838     val preds = map (fn ((c, _), mx) => (c, mx)) cnames_syn';
       
   839   in
       
   840     lthy
       
   841     |> mk_def flags cs intros monos ps preds
       
   842     ||> fold (snd oo LocalTheory.abbrev Syntax.mode_default) abbrevs
       
   843   end;
       
   844 
       
   845 fun gen_add_inductive mk_def verbose coind cnames_syn pnames_syn intro_srcs raw_monos int lthy =
       
   846   let
       
   847     val ((vars, intrs), _) = lthy
       
   848       |> ProofContext.set_mode ProofContext.mode_abbrev
       
   849       |> Specification.read_spec (cnames_syn @ pnames_syn) intro_srcs;
       
   850     val (cs, ps) = chop (length cnames_syn) vars;
       
   851     val monos = Attrib.eval_thms lthy raw_monos;
       
   852     val flags = {quiet_mode = false, verbose = verbose, kind = Thm.generatedK,
       
   853       alt_name = Binding.empty, coind = coind, no_elim = false, no_ind = false,
       
   854       skip_mono = false, fork_mono = not int};
       
   855   in
       
   856     lthy
       
   857     |> LocalTheory.set_group (serial_string ())
       
   858     |> gen_add_inductive_i mk_def flags cs (map (apfst Binding.name_of o fst) ps) intrs monos
       
   859   end;
       
   860 
       
   861 val add_inductive_i = gen_add_inductive_i add_ind_def;
       
   862 val add_inductive = gen_add_inductive add_ind_def;
       
   863 
       
   864 fun add_inductive_global group flags cnames_syn pnames pre_intros monos thy =
       
   865   let
       
   866     val name = Sign.full_name thy (fst (fst (hd cnames_syn)));
       
   867     val ctxt' = thy
       
   868       |> TheoryTarget.init NONE
       
   869       |> LocalTheory.set_group group
       
   870       |> add_inductive_i flags cnames_syn pnames pre_intros monos |> snd
       
   871       |> LocalTheory.exit;
       
   872     val info = #2 (the_inductive ctxt' name);
       
   873   in (info, ProofContext.theory_of ctxt') end;
       
   874 
       
   875 
       
   876 (* read off arities of inductive predicates from raw induction rule *)
       
   877 fun arities_of induct =
       
   878   map (fn (_ $ t $ u) =>
       
   879       (fst (dest_Const (head_of t)), length (snd (strip_comb u))))
       
   880     (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct)));
       
   881 
       
   882 (* read off parameters of inductive predicate from raw induction rule *)
       
   883 fun params_of induct =
       
   884   let
       
   885     val (_ $ t $ u :: _) =
       
   886       HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct));
       
   887     val (_, ts) = strip_comb t;
       
   888     val (_, us) = strip_comb u
       
   889   in
       
   890     List.take (ts, length ts - length us)
       
   891   end;
       
   892 
       
   893 val pname_of_intr =
       
   894   concl_of #> HOLogic.dest_Trueprop #> head_of #> dest_Const #> fst;
       
   895 
       
   896 (* partition introduction rules according to predicate name *)
       
   897 fun gen_partition_rules f induct intros =
       
   898   fold_rev (fn r => AList.map_entry op = (pname_of_intr (f r)) (cons r)) intros
       
   899     (map (rpair [] o fst) (arities_of induct));
       
   900 
       
   901 val partition_rules = gen_partition_rules I;
       
   902 fun partition_rules' induct = gen_partition_rules fst induct;
       
   903 
       
   904 fun unpartition_rules intros xs =
       
   905   fold_map (fn r => AList.map_entry_yield op = (pname_of_intr r)
       
   906     (fn x :: xs => (x, xs)) #>> the) intros xs |> fst;
       
   907 
       
   908 (* infer order of variables in intro rules from order of quantifiers in elim rule *)
       
   909 fun infer_intro_vars elim arity intros =
       
   910   let
       
   911     val thy = theory_of_thm elim;
       
   912     val _ :: cases = prems_of elim;
       
   913     val used = map (fst o fst) (Term.add_vars (prop_of elim) []);
       
   914     fun mtch (t, u) =
       
   915       let
       
   916         val params = Logic.strip_params t;
       
   917         val vars = map (Var o apfst (rpair 0))
       
   918           (Name.variant_list used (map fst params) ~~ map snd params);
       
   919         val ts = map (curry subst_bounds (rev vars))
       
   920           (List.drop (Logic.strip_assums_hyp t, arity));
       
   921         val us = Logic.strip_imp_prems u;
       
   922         val tab = fold (Pattern.first_order_match thy) (ts ~~ us)
       
   923           (Vartab.empty, Vartab.empty);
       
   924       in
       
   925         map (Envir.subst_vars tab) vars
       
   926       end
       
   927   in
       
   928     map (mtch o apsnd prop_of) (cases ~~ intros)
       
   929   end;
       
   930 
       
   931 
       
   932 
       
   933 (** package setup **)
       
   934 
       
   935 (* setup theory *)
       
   936 
       
   937 val setup =
       
   938   ind_cases_setup #>
       
   939   Attrib.setup @{binding mono} (Attrib.add_del mono_add mono_del)
       
   940     "declaration of monotonicity rule";
       
   941 
       
   942 
       
   943 (* outer syntax *)
       
   944 
       
   945 local structure P = OuterParse and K = OuterKeyword in
       
   946 
       
   947 val _ = OuterKeyword.keyword "monos";
       
   948 
       
   949 fun gen_ind_decl mk_def coind =
       
   950   P.fixes -- P.for_fixes --
       
   951   Scan.optional SpecParse.where_alt_specs [] --
       
   952   Scan.optional (P.$$$ "monos" |-- P.!!! SpecParse.xthms1) []
       
   953   >> (fn (((preds, params), specs), monos) =>
       
   954       (snd oo gen_add_inductive mk_def true coind preds params specs monos));
       
   955 
       
   956 val ind_decl = gen_ind_decl add_ind_def;
       
   957 
       
   958 val _ = OuterSyntax.local_theory' "inductive" "define inductive predicates" K.thy_decl (ind_decl false);
       
   959 val _ = OuterSyntax.local_theory' "coinductive" "define coinductive predicates" K.thy_decl (ind_decl true);
       
   960 
       
   961 val _ =
       
   962   OuterSyntax.local_theory "inductive_cases"
       
   963     "create simplified instances of elimination rules (improper)" K.thy_script
       
   964     (P.and_list1 SpecParse.specs >> (snd oo inductive_cases));
       
   965 
       
   966 end;
       
   967 
       
   968 end;