src/HOL/Tools/record_package.ML
changeset 31723 f5cafe803b55
parent 31717 d1f7b6245a75
child 31724 9b5a128cdb5c
equal deleted inserted replaced
31717:d1f7b6245a75 31723:f5cafe803b55
     1 (*  Title:      HOL/Tools/record_package.ML
       
     2     Author:     Wolfgang Naraschewski, Norbert Schirmer and Markus Wenzel, TU Muenchen
       
     3 
       
     4 Extensible records with structural subtyping in HOL.
       
     5 *)
       
     6 
       
     7 
       
     8 signature BASIC_RECORD_PACKAGE =
       
     9 sig
       
    10   val record_simproc: simproc
       
    11   val record_eq_simproc: simproc
       
    12   val record_upd_simproc: simproc
       
    13   val record_split_simproc: (term -> int) -> simproc
       
    14   val record_ex_sel_eq_simproc: simproc
       
    15   val record_split_tac: int -> tactic
       
    16   val record_split_simp_tac: thm list -> (term -> int) -> int -> tactic
       
    17   val record_split_name: string
       
    18   val record_split_wrapper: string * wrapper
       
    19   val print_record_type_abbr: bool ref
       
    20   val print_record_type_as_fields: bool ref
       
    21 end;
       
    22 
       
    23 signature RECORD_PACKAGE =
       
    24 sig
       
    25   include BASIC_RECORD_PACKAGE
       
    26   val timing: bool ref
       
    27   val record_quick_and_dirty_sensitive: bool ref
       
    28   val updateN: string
       
    29   val updN: string
       
    30   val ext_typeN: string
       
    31   val extN: string
       
    32   val makeN: string
       
    33   val moreN: string
       
    34   val ext_dest: string
       
    35 
       
    36   val last_extT: typ -> (string * typ list) option
       
    37   val dest_recTs : typ -> (string * typ list) list
       
    38   val get_extT_fields:  theory -> typ -> (string * typ) list * (string * typ)
       
    39   val get_recT_fields:  theory -> typ -> (string * typ) list * (string * typ)
       
    40   val get_parent: theory -> string -> (typ list * string) option
       
    41   val get_extension: theory -> string -> (string * typ list) option
       
    42   val get_extinjects: theory -> thm list
       
    43   val get_simpset: theory -> simpset
       
    44   val print_records: theory -> unit
       
    45   val read_typ: Proof.context -> string -> (string * sort) list -> typ * (string * sort) list
       
    46   val cert_typ: Proof.context -> typ -> (string * sort) list -> typ * (string * sort) list
       
    47   val add_record: bool -> string list * string -> string option -> (string * string * mixfix) list
       
    48     -> theory -> theory
       
    49   val add_record_i: bool -> string list * string -> (typ list * string) option
       
    50     -> (string * typ * mixfix) list -> theory -> theory
       
    51   val setup: theory -> theory
       
    52 end;
       
    53 
       
    54 
       
    55 structure RecordPackage: RECORD_PACKAGE =
       
    56 struct
       
    57 
       
    58 val eq_reflection = thm "eq_reflection";
       
    59 val rec_UNIV_I = thm "rec_UNIV_I";
       
    60 val rec_True_simp = thm "rec_True_simp";
       
    61 val Pair_eq = thm "Product_Type.prod.inject";
       
    62 val atomize_all = thm "HOL.atomize_all";
       
    63 val atomize_imp = thm "HOL.atomize_imp";
       
    64 val meta_allE = thm "Pure.meta_allE";
       
    65 val prop_subst = thm "prop_subst";
       
    66 val Pair_sel_convs = [fst_conv,snd_conv];
       
    67 val K_record_comp = @{thm "K_record_comp"};
       
    68 val K_comp_convs = [@{thm o_apply}, K_record_comp]
       
    69 
       
    70 (** name components **)
       
    71 
       
    72 val rN = "r";
       
    73 val wN = "w";
       
    74 val moreN = "more";
       
    75 val schemeN = "_scheme";
       
    76 val ext_typeN = "_ext_type";
       
    77 val extN ="_ext";
       
    78 val casesN = "_cases";
       
    79 val ext_dest = "_sel";
       
    80 val updateN = "_update";
       
    81 val updN = "_upd";
       
    82 val makeN = "make";
       
    83 val fields_selN = "fields";
       
    84 val extendN = "extend";
       
    85 val truncateN = "truncate";
       
    86 
       
    87 (*see typedef_package.ML*)
       
    88 val RepN = "Rep_";
       
    89 val AbsN = "Abs_";
       
    90 
       
    91 (*** utilities ***)
       
    92 
       
    93 fun but_last xs = fst (split_last xs);
       
    94 
       
    95 fun varifyT midx =
       
    96   let fun varify (a, S) = TVar ((a, midx + 1), S);
       
    97   in map_type_tfree varify end;
       
    98 
       
    99 fun domain_type' T =
       
   100     domain_type T handle Match => T;
       
   101 
       
   102 fun range_type' T =
       
   103     range_type T handle Match => T;
       
   104 
       
   105 (* messages *)
       
   106 
       
   107 fun trace_thm str thm =
       
   108     tracing (str ^ (Pretty.string_of (Display.pretty_thm thm)));
       
   109 
       
   110 fun trace_thms str thms =
       
   111     (tracing str; map (trace_thm "") thms);
       
   112 
       
   113 fun trace_term str t =
       
   114     tracing (str ^ Syntax.string_of_term_global Pure.thy t);
       
   115 
       
   116 (* timing *)
       
   117 
       
   118 val timing = ref false;
       
   119 fun timeit_msg s x = if !timing then (warning s; timeit x) else x ();
       
   120 fun timing_msg s = if !timing then warning s else ();
       
   121 
       
   122 (* syntax *)
       
   123 
       
   124 fun prune n xs = Library.drop (n, xs);
       
   125 fun prefix_base s = Long_Name.map_base_name (fn bname => s ^ bname);
       
   126 
       
   127 val Trueprop = HOLogic.mk_Trueprop;
       
   128 fun All xs t = Term.list_all_free (xs, t);
       
   129 
       
   130 infix 9 $$;
       
   131 infix 0 :== ===;
       
   132 infixr 0 ==>;
       
   133 
       
   134 val (op $$) = Term.list_comb;
       
   135 val (op :==) = PrimitiveDefs.mk_defpair;
       
   136 val (op ===) = Trueprop o HOLogic.mk_eq;
       
   137 val (op ==>) = Logic.mk_implies;
       
   138 
       
   139 (* morphisms *)
       
   140 
       
   141 fun mk_RepN name = suffix ext_typeN (prefix_base RepN name);
       
   142 fun mk_AbsN name = suffix ext_typeN (prefix_base AbsN name);
       
   143 
       
   144 fun mk_Rep name repT absT  =
       
   145   Const (suffix ext_typeN (prefix_base RepN name),absT --> repT);
       
   146 
       
   147 fun mk_Abs name repT absT =
       
   148   Const (mk_AbsN name,repT --> absT);
       
   149 
       
   150 (* constructor *)
       
   151 
       
   152 fun mk_extC (name,T) Ts  = (suffix extN name, Ts ---> T);
       
   153 
       
   154 fun mk_ext (name,T) ts =
       
   155   let val Ts = map fastype_of ts
       
   156   in list_comb (Const (mk_extC (name,T) Ts),ts) end;
       
   157 
       
   158 (* cases *)
       
   159 
       
   160 fun mk_casesC (name,T,vT) Ts = (suffix casesN name, (Ts ---> vT) --> T --> vT)
       
   161 
       
   162 fun mk_cases (name,T,vT) f =
       
   163   let val Ts = binder_types (fastype_of f)
       
   164   in Const (mk_casesC (name,T,vT) Ts) $ f end;
       
   165 
       
   166 (* selector *)
       
   167 
       
   168 fun mk_selC sT (c,T) = (c,sT --> T);
       
   169 
       
   170 fun mk_sel s (c,T) =
       
   171   let val sT = fastype_of s
       
   172   in Const (mk_selC sT (c,T)) $ s end;
       
   173 
       
   174 (* updates *)
       
   175 
       
   176 fun mk_updC sfx sT (c,T) = (suffix sfx c, (T --> T) --> sT --> sT);
       
   177 
       
   178 fun mk_upd' sfx c v sT =
       
   179   let val vT = domain_type (fastype_of v);
       
   180   in Const (mk_updC sfx sT (c, vT)) $ v  end;
       
   181 
       
   182 fun mk_upd sfx c v s = mk_upd' sfx c v (fastype_of s) $ s
       
   183 
       
   184 (* types *)
       
   185 
       
   186 fun dest_recT (typ as Type (c_ext_type, Ts as (T::_))) =
       
   187       (case try (unsuffix ext_typeN) c_ext_type of
       
   188         NONE => raise TYPE ("RecordPackage.dest_recT", [typ], [])
       
   189       | SOME c => ((c, Ts), List.last Ts))
       
   190   | dest_recT typ = raise TYPE ("RecordPackage.dest_recT", [typ], []);
       
   191 
       
   192 fun is_recT T =
       
   193   (case try dest_recT T of NONE => false | SOME _ => true);
       
   194 
       
   195 fun dest_recTs T =
       
   196   let val ((c, Ts), U) = dest_recT T
       
   197   in (c, Ts) :: dest_recTs U
       
   198   end handle TYPE _ => [];
       
   199 
       
   200 fun last_extT T =
       
   201   let val ((c, Ts), U) = dest_recT T
       
   202   in (case last_extT U of
       
   203         NONE => SOME (c,Ts)
       
   204       | SOME l => SOME l)
       
   205   end handle TYPE _ => NONE
       
   206 
       
   207 fun rec_id i T =
       
   208   let val rTs = dest_recTs T
       
   209       val rTs' = if i < 0 then rTs else Library.take (i,rTs)
       
   210   in Library.foldl (fn (s,(c,T)) => s ^ c) ("",rTs') end;
       
   211 
       
   212 (*** extend theory by record definition ***)
       
   213 
       
   214 (** record info **)
       
   215 
       
   216 (* type record_info and parent_info  *)
       
   217 
       
   218 type record_info =
       
   219  {args: (string * sort) list,
       
   220   parent: (typ list * string) option,
       
   221   fields: (string * typ) list,
       
   222   extension: (string * typ list),
       
   223   induct: thm
       
   224  };
       
   225 
       
   226 fun make_record_info args parent fields extension induct =
       
   227  {args = args, parent = parent, fields = fields, extension = extension,
       
   228   induct = induct}: record_info;
       
   229 
       
   230 
       
   231 type parent_info =
       
   232  {name: string,
       
   233   fields: (string * typ) list,
       
   234   extension: (string * typ list),
       
   235   induct: thm
       
   236 };
       
   237 
       
   238 fun make_parent_info name fields extension induct =
       
   239  {name = name, fields = fields, extension = extension, induct = induct}: parent_info;
       
   240 
       
   241 
       
   242 (* theory data *)
       
   243 
       
   244 type record_data =
       
   245  {records: record_info Symtab.table,
       
   246   sel_upd:
       
   247    {selectors: unit Symtab.table,
       
   248     updates: string Symtab.table,
       
   249     simpset: Simplifier.simpset},
       
   250   equalities: thm Symtab.table,
       
   251   extinjects: thm list,
       
   252   extsplit: thm Symtab.table, (* maps extension name to split rule *)
       
   253   splits: (thm*thm*thm*thm) Symtab.table,    (* !!,!,EX - split-equalities,induct rule *)
       
   254   extfields: (string*typ) list Symtab.table, (* maps extension to its fields *)
       
   255   fieldext: (string*typ list) Symtab.table   (* maps field to its extension *)
       
   256 };
       
   257 
       
   258 fun make_record_data
       
   259       records sel_upd equalities extinjects extsplit splits extfields fieldext =
       
   260  {records = records, sel_upd = sel_upd,
       
   261   equalities = equalities, extinjects=extinjects, extsplit = extsplit, splits = splits,
       
   262   extfields = extfields, fieldext = fieldext }: record_data;
       
   263 
       
   264 structure RecordsData = TheoryDataFun
       
   265 (
       
   266   type T = record_data;
       
   267   val empty =
       
   268     make_record_data Symtab.empty
       
   269       {selectors = Symtab.empty, updates = Symtab.empty, simpset = HOL_basic_ss}
       
   270        Symtab.empty [] Symtab.empty Symtab.empty Symtab.empty Symtab.empty;
       
   271 
       
   272   val copy = I;
       
   273   val extend = I;
       
   274   fun merge _
       
   275    ({records = recs1,
       
   276      sel_upd = {selectors = sels1, updates = upds1, simpset = ss1},
       
   277      equalities = equalities1,
       
   278      extinjects = extinjects1,
       
   279      extsplit = extsplit1,
       
   280      splits = splits1,
       
   281      extfields = extfields1,
       
   282      fieldext = fieldext1},
       
   283     {records = recs2,
       
   284      sel_upd = {selectors = sels2, updates = upds2, simpset = ss2},
       
   285      equalities = equalities2,
       
   286      extinjects = extinjects2,
       
   287      extsplit = extsplit2,
       
   288      splits = splits2,
       
   289      extfields = extfields2,
       
   290      fieldext = fieldext2}) =
       
   291     make_record_data
       
   292       (Symtab.merge (K true) (recs1, recs2))
       
   293       {selectors = Symtab.merge (K true) (sels1, sels2),
       
   294         updates = Symtab.merge (K true) (upds1, upds2),
       
   295         simpset = Simplifier.merge_ss (ss1, ss2)}
       
   296       (Symtab.merge Thm.eq_thm_prop (equalities1, equalities2))
       
   297       (Library.merge Thm.eq_thm_prop (extinjects1, extinjects2))
       
   298       (Symtab.merge Thm.eq_thm_prop (extsplit1,extsplit2))
       
   299       (Symtab.merge (fn ((a,b,c,d),(w,x,y,z))
       
   300                      => Thm.eq_thm (a,w) andalso Thm.eq_thm (b,x) andalso
       
   301                         Thm.eq_thm (c,y) andalso Thm.eq_thm (d,z))
       
   302                     (splits1, splits2))
       
   303       (Symtab.merge (K true) (extfields1,extfields2))
       
   304       (Symtab.merge (K true) (fieldext1,fieldext2));
       
   305 );
       
   306 
       
   307 fun print_records thy =
       
   308   let
       
   309     val {records = recs, ...} = RecordsData.get thy;
       
   310     val prt_typ = Syntax.pretty_typ_global thy;
       
   311 
       
   312     fun pretty_parent NONE = []
       
   313       | pretty_parent (SOME (Ts, name)) =
       
   314           [Pretty.block [prt_typ (Type (name, Ts)), Pretty.str " +"]];
       
   315 
       
   316     fun pretty_field (c, T) = Pretty.block
       
   317       [Pretty.str (Sign.extern_const thy c), Pretty.str " ::",
       
   318         Pretty.brk 1, Pretty.quote (prt_typ T)];
       
   319 
       
   320     fun pretty_record (name, {args, parent, fields, ...}: record_info) =
       
   321       Pretty.block (Pretty.fbreaks (Pretty.block
       
   322         [prt_typ (Type (name, map TFree args)), Pretty.str " = "] ::
       
   323         pretty_parent parent @ map pretty_field fields));
       
   324   in map pretty_record (Symtab.dest recs) |> Pretty.chunks |> Pretty.writeln end;
       
   325 
       
   326 
       
   327 (* access 'records' *)
       
   328 
       
   329 val get_record = Symtab.lookup o #records o RecordsData.get;
       
   330 
       
   331 fun put_record name info thy =
       
   332   let
       
   333     val {records, sel_upd, equalities, extinjects,extsplit,splits,extfields,fieldext} =
       
   334           RecordsData.get thy;
       
   335     val data = make_record_data (Symtab.update (name, info) records)
       
   336       sel_upd equalities extinjects extsplit splits extfields fieldext;
       
   337   in RecordsData.put data thy end;
       
   338 
       
   339 
       
   340 (* access 'sel_upd' *)
       
   341 
       
   342 val get_sel_upd = #sel_upd o RecordsData.get;
       
   343 
       
   344 val is_selector = Symtab.defined o #selectors o get_sel_upd;
       
   345 val get_updates = Symtab.lookup o #updates o get_sel_upd;
       
   346 fun get_simpset thy = Simplifier.theory_context thy (#simpset (get_sel_upd thy));
       
   347 
       
   348 fun put_sel_upd names simps = RecordsData.map (fn {records,
       
   349   sel_upd = {selectors, updates, simpset},
       
   350     equalities, extinjects, extsplit, splits, extfields, fieldext} =>
       
   351   make_record_data records
       
   352     {selectors = fold (fn name => Symtab.update (name, ())) names selectors,
       
   353       updates = fold (fn name => Symtab.update ((suffix updateN) name, name)) names updates,
       
   354       simpset = Simplifier.addsimps (simpset, simps)}
       
   355       equalities extinjects extsplit splits extfields fieldext);
       
   356 
       
   357 
       
   358 (* access 'equalities' *)
       
   359 
       
   360 fun add_record_equalities name thm thy =
       
   361   let
       
   362     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
       
   363           RecordsData.get thy;
       
   364     val data = make_record_data records sel_upd
       
   365            (Symtab.update_new (name, thm) equalities) extinjects extsplit
       
   366            splits extfields fieldext;
       
   367   in RecordsData.put data thy end;
       
   368 
       
   369 val get_equalities =Symtab.lookup o #equalities o RecordsData.get;
       
   370 
       
   371 
       
   372 (* access 'extinjects' *)
       
   373 
       
   374 fun add_extinjects thm thy =
       
   375   let
       
   376     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
       
   377           RecordsData.get thy;
       
   378     val data =
       
   379       make_record_data records sel_upd equalities (insert Thm.eq_thm_prop thm extinjects) extsplit
       
   380         splits extfields fieldext;
       
   381   in RecordsData.put data thy end;
       
   382 
       
   383 val get_extinjects = rev o #extinjects o RecordsData.get;
       
   384 
       
   385 
       
   386 (* access 'extsplit' *)
       
   387 
       
   388 fun add_extsplit name thm thy =
       
   389   let
       
   390     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
       
   391           RecordsData.get thy;
       
   392     val data = make_record_data records sel_upd
       
   393       equalities extinjects (Symtab.update_new (name, thm) extsplit) splits
       
   394       extfields fieldext;
       
   395   in RecordsData.put data thy end;
       
   396 
       
   397 val get_extsplit = Symtab.lookup o #extsplit o RecordsData.get;
       
   398 
       
   399 
       
   400 (* access 'splits' *)
       
   401 
       
   402 fun add_record_splits name thmP thy =
       
   403   let
       
   404     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
       
   405           RecordsData.get thy;
       
   406     val data = make_record_data records sel_upd
       
   407       equalities extinjects extsplit (Symtab.update_new (name, thmP) splits)
       
   408       extfields fieldext;
       
   409   in RecordsData.put data thy end;
       
   410 
       
   411 val get_splits = Symtab.lookup o #splits o RecordsData.get;
       
   412 
       
   413 
       
   414 (* parent/extension of named record *)
       
   415 
       
   416 val get_parent = (Option.join o Option.map #parent) oo (Symtab.lookup o #records o RecordsData.get);
       
   417 val get_extension = Option.map #extension oo (Symtab.lookup o #records o RecordsData.get);
       
   418 
       
   419 
       
   420 (* access 'extfields' *)
       
   421 
       
   422 fun add_extfields name fields thy =
       
   423   let
       
   424     val {records, sel_upd, equalities, extinjects, extsplit,splits, extfields, fieldext} =
       
   425           RecordsData.get thy;
       
   426     val data = make_record_data records sel_upd
       
   427          equalities extinjects extsplit splits
       
   428          (Symtab.update_new (name, fields) extfields) fieldext;
       
   429   in RecordsData.put data thy end;
       
   430 
       
   431 val get_extfields = Symtab.lookup o #extfields o RecordsData.get;
       
   432 
       
   433 fun get_extT_fields thy T =
       
   434   let
       
   435     val ((name,Ts),moreT) = dest_recT T;
       
   436     val recname = let val (nm::recn::rst) = rev (Long_Name.explode name)
       
   437                   in Long_Name.implode (rev (nm::rst)) end;
       
   438     val midx = maxidx_of_typs (moreT::Ts);
       
   439     val varifyT = varifyT midx;
       
   440     val {records,extfields,...} = RecordsData.get thy;
       
   441     val (flds,(more,_)) = split_last (Symtab.lookup_list extfields name);
       
   442     val args = map varifyT (snd (#extension (the (Symtab.lookup records recname))));
       
   443 
       
   444     val subst = fold (Sign.typ_match thy) (but_last args ~~ but_last Ts) (Vartab.empty);
       
   445     val flds' = map (apsnd ((Envir.norm_type subst) o varifyT)) flds;
       
   446   in (flds',(more,moreT)) end;
       
   447 
       
   448 fun get_recT_fields thy T =
       
   449   let
       
   450     val (root_flds,(root_more,root_moreT)) = get_extT_fields thy T;
       
   451     val (rest_flds,rest_more) =
       
   452            if is_recT root_moreT then get_recT_fields thy root_moreT
       
   453            else ([],(root_more,root_moreT));
       
   454   in (root_flds@rest_flds,rest_more) end;
       
   455 
       
   456 
       
   457 (* access 'fieldext' *)
       
   458 
       
   459 fun add_fieldext extname_types fields thy =
       
   460   let
       
   461     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
       
   462            RecordsData.get thy;
       
   463     val fieldext' =
       
   464       fold (fn field => Symtab.update_new (field, extname_types)) fields fieldext;
       
   465     val data=make_record_data records sel_upd equalities extinjects extsplit
       
   466               splits extfields fieldext';
       
   467   in RecordsData.put data thy end;
       
   468 
       
   469 
       
   470 val get_fieldext = Symtab.lookup o #fieldext o RecordsData.get;
       
   471 
       
   472 
       
   473 (* parent records *)
       
   474 
       
   475 fun add_parents thy NONE parents = parents
       
   476   | add_parents thy (SOME (types, name)) parents =
       
   477       let
       
   478         fun err msg = error (msg ^ " parent record " ^ quote name);
       
   479 
       
   480         val {args, parent, fields, extension, induct} =
       
   481           (case get_record thy name of SOME info => info | NONE => err "Unknown");
       
   482         val _ = if length types <> length args then err "Bad number of arguments for" else ();
       
   483 
       
   484         fun bad_inst ((x, S), T) =
       
   485           if Sign.of_sort thy (T, S) then NONE else SOME x
       
   486         val bads = List.mapPartial bad_inst (args ~~ types);
       
   487         val _ = null bads orelse err ("Ill-sorted instantiation of " ^ commas bads ^ " in");
       
   488 
       
   489         val inst = map fst args ~~ types;
       
   490         val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst);
       
   491         val parent' = Option.map (apfst (map subst)) parent;
       
   492         val fields' = map (apsnd subst) fields;
       
   493         val extension' = apsnd (map subst) extension;
       
   494       in
       
   495         add_parents thy parent'
       
   496           (make_parent_info name fields' extension' induct :: parents)
       
   497       end;
       
   498 
       
   499 
       
   500 
       
   501 (** concrete syntax for records **)
       
   502 
       
   503 (* decode type *)
       
   504 
       
   505 fun decode_type thy t =
       
   506   let
       
   507     fun get_sort xs n = AList.lookup (op =) xs (n: indexname) |> the_default (Sign.defaultS thy);
       
   508     val map_sort = Sign.intern_sort thy;
       
   509   in
       
   510     Syntax.typ_of_term (get_sort (Syntax.term_sorts map_sort t)) map_sort t
       
   511     |> Sign.intern_tycons thy
       
   512   end;
       
   513 
       
   514 
       
   515 (* parse translations *)
       
   516 
       
   517 fun gen_field_tr mark sfx (t as Const (c, _) $ Const (name, _) $ arg) =
       
   518       if c = mark then Syntax.const (suffix sfx name) $ (Abs ("_",dummyT, arg))
       
   519       else raise TERM ("gen_field_tr: " ^ mark, [t])
       
   520   | gen_field_tr mark _ t = raise TERM ("gen_field_tr: " ^ mark, [t]);
       
   521 
       
   522 fun gen_fields_tr sep mark sfx (tm as Const (c, _) $ t $ u) =
       
   523       if c = sep then gen_field_tr mark sfx t :: gen_fields_tr sep mark sfx u
       
   524       else [gen_field_tr mark sfx tm]
       
   525   | gen_fields_tr _ mark sfx tm = [gen_field_tr mark sfx tm];
       
   526 
       
   527 
       
   528 fun record_update_tr [t, u] =
       
   529       Library.foldr (op $) (rev (gen_fields_tr "_updates" "_update" updateN u), t)
       
   530   | record_update_tr ts = raise TERM ("record_update_tr", ts);
       
   531 
       
   532 fun update_name_tr (Free (x, T) :: ts) = Free (suffix updateN x, T) $$ ts
       
   533   | update_name_tr (Const (x, T) :: ts) = Const (suffix updateN x, T) $$ ts
       
   534   | update_name_tr (((c as Const ("_constrain", _)) $ t $ ty) :: ts) =
       
   535       (c $ update_name_tr [t] $ (Syntax.const "fun" $ ty $ Syntax.const "dummy")) $$ ts
       
   536   | update_name_tr ts = raise TERM ("update_name_tr", ts);
       
   537 
       
   538 fun dest_ext_field mark (t as (Const (c,_) $ Const (name,_) $ arg)) =
       
   539      if c = mark then (name,arg) else raise TERM ("dest_ext_field: " ^ mark, [t])
       
   540   | dest_ext_field _ t = raise TERM ("dest_ext_field", [t])
       
   541 
       
   542 fun dest_ext_fields sep mark (trm as (Const (c,_) $ t $ u)) =
       
   543      if c = sep then dest_ext_field mark t::dest_ext_fields sep mark u
       
   544      else [dest_ext_field mark trm]
       
   545   | dest_ext_fields _ mark t = [dest_ext_field mark t]
       
   546 
       
   547 fun gen_ext_fields_tr sep mark sfx more ctxt t =
       
   548   let
       
   549     val thy = ProofContext.theory_of ctxt;
       
   550     val msg = "error in record input: ";
       
   551     val fieldargs = dest_ext_fields sep mark t;
       
   552     fun splitargs (field::fields) ((name,arg)::fargs) =
       
   553           if can (unsuffix name) field
       
   554           then let val (args,rest) = splitargs fields fargs
       
   555                in (arg::args,rest) end
       
   556           else raise TERM (msg ^ "expecting field " ^ field ^ " but got " ^ name, [t])
       
   557       | splitargs [] (fargs as (_::_)) = ([],fargs)
       
   558       | splitargs (_::_) [] = raise TERM (msg ^ "expecting more fields", [t])
       
   559       | splitargs _ _ = ([],[]);
       
   560 
       
   561     fun mk_ext (fargs as (name,arg)::_) =
       
   562          (case get_fieldext thy (Sign.intern_const thy name) of
       
   563             SOME (ext,_) => (case get_extfields thy ext of
       
   564                                SOME flds
       
   565                                  => let val (args,rest) =
       
   566                                                splitargs (map fst (but_last flds)) fargs;
       
   567                                         val more' = mk_ext rest;
       
   568                                     in list_comb (Syntax.const (suffix sfx ext),args@[more'])
       
   569                                     end
       
   570                              | NONE => raise TERM(msg ^ "no fields defined for "
       
   571                                                    ^ ext,[t]))
       
   572           | NONE => raise TERM (msg ^ name ^" is no proper field",[t]))
       
   573       | mk_ext [] = more
       
   574 
       
   575   in mk_ext fieldargs end;
       
   576 
       
   577 fun gen_ext_type_tr sep mark sfx more ctxt t =
       
   578   let
       
   579     val thy = ProofContext.theory_of ctxt;
       
   580     val msg = "error in record-type input: ";
       
   581     val fieldargs = dest_ext_fields sep mark t;
       
   582     fun splitargs (field::fields) ((name,arg)::fargs) =
       
   583           if can (unsuffix name) field
       
   584           then let val (args,rest) = splitargs fields fargs
       
   585                in (arg::args,rest) end
       
   586           else raise TERM (msg ^ "expecting field " ^ field ^ " but got " ^ name, [t])
       
   587       | splitargs [] (fargs as (_::_)) = ([],fargs)
       
   588       | splitargs (_::_) [] = raise TERM (msg ^ "expecting more fields", [t])
       
   589       | splitargs _ _ = ([],[]);
       
   590 
       
   591     fun mk_ext (fargs as (name,arg)::_) =
       
   592          (case get_fieldext thy (Sign.intern_const thy name) of
       
   593             SOME (ext,alphas) =>
       
   594               (case get_extfields thy ext of
       
   595                  SOME flds
       
   596                   => (let
       
   597                        val flds' = but_last flds;
       
   598                        val types = map snd flds';
       
   599                        val (args,rest) = splitargs (map fst flds') fargs;
       
   600                        val argtypes = map (Sign.certify_typ thy o decode_type thy) args;
       
   601                        val midx =  fold (fn T => fn i => Int.max (maxidx_of_typ T, i))
       
   602                                     argtypes 0;
       
   603                        val varifyT = varifyT midx;
       
   604                        val vartypes = map varifyT types;
       
   605 
       
   606                        val subst = fold (Sign.typ_match thy) (vartypes ~~ argtypes)
       
   607                                             Vartab.empty;
       
   608                        val alphas' = map ((Syntax.term_of_typ (! Syntax.show_sorts)) o
       
   609                                           Envir.norm_type subst o varifyT)
       
   610                                          (but_last alphas);
       
   611 
       
   612                        val more' = mk_ext rest;
       
   613                      in list_comb (Syntax.const (suffix sfx ext),alphas'@[more'])
       
   614                      end handle TYPE_MATCH => raise
       
   615                            TERM (msg ^ "type is no proper record (extension)", [t]))
       
   616                | NONE => raise TERM (msg ^ "no fields defined for " ^ ext,[t]))
       
   617           | NONE => raise TERM (msg ^ name ^" is no proper field",[t]))
       
   618       | mk_ext [] = more
       
   619 
       
   620   in mk_ext fieldargs end;
       
   621 
       
   622 fun gen_adv_record_tr sep mark sfx unit ctxt [t] =
       
   623       gen_ext_fields_tr sep mark sfx unit ctxt t
       
   624   | gen_adv_record_tr _ _ _ _ _ ts = raise TERM ("gen_record_tr", ts);
       
   625 
       
   626 fun gen_adv_record_scheme_tr sep mark sfx ctxt [t, more] =
       
   627       gen_ext_fields_tr sep mark sfx more ctxt t
       
   628   | gen_adv_record_scheme_tr _ _ _ _ ts = raise TERM ("gen_record_scheme_tr", ts);
       
   629 
       
   630 fun gen_adv_record_type_tr sep mark sfx unit ctxt [t] =
       
   631       gen_ext_type_tr sep mark sfx unit ctxt t
       
   632   | gen_adv_record_type_tr _ _ _ _ _ ts = raise TERM ("gen_record_tr", ts);
       
   633 
       
   634 fun gen_adv_record_type_scheme_tr sep mark sfx ctxt [t, more] =
       
   635       gen_ext_type_tr sep mark sfx more ctxt t
       
   636   | gen_adv_record_type_scheme_tr _ _ _ _ ts = raise TERM ("gen_record_scheme_tr", ts);
       
   637 
       
   638 val adv_record_tr = gen_adv_record_tr "_fields" "_field" extN HOLogic.unit;
       
   639 val adv_record_scheme_tr = gen_adv_record_scheme_tr "_fields" "_field" extN;
       
   640 
       
   641 val adv_record_type_tr =
       
   642       gen_adv_record_type_tr "_field_types" "_field_type" ext_typeN
       
   643         (Syntax.term_of_typ false (HOLogic.unitT));
       
   644 val adv_record_type_scheme_tr =
       
   645       gen_adv_record_type_scheme_tr "_field_types" "_field_type" ext_typeN;
       
   646 
       
   647 
       
   648 val parse_translation =
       
   649  [("_record_update", record_update_tr),
       
   650   ("_update_name", update_name_tr)];
       
   651 
       
   652 
       
   653 val adv_parse_translation =
       
   654  [("_record",adv_record_tr),
       
   655   ("_record_scheme",adv_record_scheme_tr),
       
   656   ("_record_type",adv_record_type_tr),
       
   657   ("_record_type_scheme",adv_record_type_scheme_tr)];
       
   658 
       
   659 
       
   660 (* print translations *)
       
   661 
       
   662 val print_record_type_abbr = ref true;
       
   663 val print_record_type_as_fields = ref true;
       
   664 
       
   665 fun gen_field_upds_tr' mark sfx (tm as Const (name_field, _) $ k $ u) =
       
   666   let val t = (case k of (Abs (_,_,(Abs (_,_,t)$Bound 0))) 
       
   667                   => if null (loose_bnos t) then t else raise Match
       
   668                | Abs (x,_,t) => if null (loose_bnos t) then t else raise Match
       
   669                | _ => raise Match)
       
   670 
       
   671       (* (case k of (Const ("K_record",_)$t) => t
       
   672                | Abs (x,_,Const ("K_record",_)$t$Bound 0) => t
       
   673                | _ => raise Match)*)
       
   674   in
       
   675     (case try (unsuffix sfx) name_field of
       
   676       SOME name =>
       
   677         apfst (cons (Syntax.const mark $ Syntax.free name $ t)) (gen_field_upds_tr' mark sfx u)
       
   678      | NONE => ([], tm))
       
   679   end
       
   680   | gen_field_upds_tr' _ _ tm = ([], tm);
       
   681 
       
   682 fun record_update_tr' tm =
       
   683   let val (ts, u) = gen_field_upds_tr' "_update" updateN tm in
       
   684     if null ts then raise Match
       
   685     else Syntax.const "_record_update" $ u $
       
   686           foldr1 (fn (v, w) => Syntax.const "_updates" $ v $ w) (rev ts)
       
   687   end;
       
   688 
       
   689 fun gen_field_tr' sfx tr' name =
       
   690   let val name_sfx = suffix sfx name
       
   691   in (name_sfx, fn [t, u] => tr' (Syntax.const name_sfx $ t $ u) | _ => raise Match) end;
       
   692 
       
   693 fun record_tr' sep mark record record_scheme unit ctxt t =
       
   694   let
       
   695     val thy = ProofContext.theory_of ctxt;
       
   696     fun field_lst t =
       
   697       (case strip_comb t of
       
   698         (Const (ext,_),args as (_::_))
       
   699          => (case try (unsuffix extN) (Sign.intern_const thy ext) of
       
   700                SOME ext'
       
   701                => (case get_extfields thy ext' of
       
   702                      SOME flds
       
   703                      => (let
       
   704                           val (f::fs) = but_last (map fst flds);
       
   705                           val flds' = Sign.extern_const thy f :: map Long_Name.base_name fs;
       
   706                           val (args',more) = split_last args;
       
   707                          in (flds'~~args')@field_lst more end
       
   708                          handle Library.UnequalLengths => [("",t)])
       
   709                    | NONE => [("",t)])
       
   710              | NONE => [("",t)])
       
   711        | _ => [("",t)])
       
   712 
       
   713     val (flds,(_,more)) = split_last (field_lst t);
       
   714     val _ = if null flds then raise Match else ();
       
   715     val flds' = map (fn (n,t)=>Syntax.const mark$Syntax.const n$t) flds;
       
   716     val flds'' = foldr1 (fn (x,y) => Syntax.const sep$x$y) flds';
       
   717 
       
   718   in if unit more
       
   719      then Syntax.const record$flds''
       
   720      else Syntax.const record_scheme$flds''$more
       
   721   end
       
   722 
       
   723 fun gen_record_tr' name =
       
   724   let val name_sfx = suffix extN name;
       
   725       val unit = (fn Const (@{const_syntax "Product_Type.Unity"},_) => true | _ => false);
       
   726       fun tr' ctxt ts = record_tr' "_fields" "_field" "_record" "_record_scheme" unit ctxt
       
   727                        (list_comb (Syntax.const name_sfx,ts))
       
   728   in (name_sfx,tr')
       
   729   end
       
   730 
       
   731 fun print_translation names =
       
   732   map (gen_field_tr' updateN record_update_tr') names;
       
   733 
       
   734 
       
   735 (* record_type_abbr_tr' tries to reconstruct the record name type abbreviation from *)
       
   736 (* the (nested) extension types.                                                    *)
       
   737 fun record_type_abbr_tr' default_tr' abbr alphas zeta lastExt schemeT ctxt tm =
       
   738   let
       
   739       val thy = ProofContext.theory_of ctxt;
       
   740       (* tm is term representation of a (nested) field type. We first reconstruct the      *)
       
   741       (* type from tm so that we can continue on the type level rather then the term level.*)
       
   742 
       
   743       (* WORKAROUND:
       
   744        * If a record type occurs in an error message of type inference there
       
   745        * may be some internal frees donoted by ??:
       
   746        * (Const "_tfree",_)$Free ("??'a",_).
       
   747 
       
   748        * This will unfortunately be translated to Type ("??'a",[]) instead of
       
   749        * TFree ("??'a",_) by typ_of_term, which will confuse unify below.
       
   750        * fixT works around.
       
   751        *)
       
   752       fun fixT (T as Type (x,[])) =
       
   753             if String.isPrefix "??'" x then TFree (x,Sign.defaultS thy) else T
       
   754         | fixT (Type (x,xs)) = Type (x,map fixT xs)
       
   755         | fixT T = T;
       
   756 
       
   757       val T = fixT (decode_type thy tm);
       
   758       val midx = maxidx_of_typ T;
       
   759       val varifyT = varifyT midx;
       
   760 
       
   761       fun mk_type_abbr subst name alphas =
       
   762           let val abbrT = Type (name, map (fn a => varifyT (TFree (a, Sign.defaultS thy))) alphas);
       
   763           in Syntax.term_of_typ (! Syntax.show_sorts)
       
   764                (Sign.extern_typ thy (Envir.norm_type subst abbrT)) end;
       
   765 
       
   766       fun match rT T = (Sign.typ_match thy (varifyT rT,T)
       
   767                                                 Vartab.empty);
       
   768 
       
   769    in if !print_record_type_abbr
       
   770       then (case last_extT T of
       
   771              SOME (name,_)
       
   772               => if name = lastExt
       
   773                  then
       
   774                   (let
       
   775                      val subst = match schemeT T
       
   776                    in
       
   777                     if HOLogic.is_unitT (Envir.norm_type subst (varifyT (TFree(zeta,Sign.defaultS thy))))
       
   778                     then mk_type_abbr subst abbr alphas
       
   779                     else mk_type_abbr subst (suffix schemeN abbr) (alphas@[zeta])
       
   780                    end handle TYPE_MATCH => default_tr' ctxt tm)
       
   781                  else raise Match (* give print translation of specialised record a chance *)
       
   782             | _ => raise Match)
       
   783        else default_tr' ctxt tm
       
   784   end
       
   785 
       
   786 fun record_type_tr' sep mark record record_scheme ctxt t =
       
   787   let
       
   788     val thy = ProofContext.theory_of ctxt;
       
   789 
       
   790     val T = decode_type thy t;
       
   791     val varifyT = varifyT (Term.maxidx_of_typ T);
       
   792 
       
   793     fun term_of_type T = Syntax.term_of_typ (!Syntax.show_sorts) (Sign.extern_typ thy T);
       
   794 
       
   795     fun field_lst T =
       
   796       (case T of
       
   797         Type (ext, args)
       
   798          => (case try (unsuffix ext_typeN) ext of
       
   799                SOME ext'
       
   800                => (case get_extfields thy ext' of
       
   801                      SOME flds
       
   802                      => (case get_fieldext thy (fst (hd flds)) of
       
   803                            SOME (_, alphas)
       
   804                            => (let
       
   805                                 val (f :: fs) = but_last flds;
       
   806                                 val flds' = apfst (Sign.extern_const thy) f
       
   807                                   :: map (apfst Long_Name.base_name) fs;
       
   808                                 val (args', more) = split_last args;
       
   809                                 val alphavars = map varifyT (but_last alphas);
       
   810                                 val subst = fold2 (curry (Sign.typ_match thy))
       
   811                                   alphavars args' Vartab.empty;
       
   812                                 val flds'' = (map o apsnd)
       
   813                                   (Envir.norm_type subst o varifyT) flds';
       
   814                               in flds'' @ field_lst more end
       
   815                               handle TYPE_MATCH => [("", T)]
       
   816                                   | Library.UnequalLengths => [("", T)])
       
   817                          | NONE => [("", T)])
       
   818                    | NONE => [("", T)])
       
   819              | NONE => [("", T)])
       
   820         | _ => [("", T)])
       
   821 
       
   822     val (flds, (_, moreT)) = split_last (field_lst T);
       
   823     val flds' = map (fn (n, T) => Syntax.const mark $ Syntax.const n $ term_of_type T) flds;
       
   824     val flds'' = foldr1 (fn (x, y) => Syntax.const sep $ x $ y) flds' handle Empty => raise Match;
       
   825 
       
   826   in if not (!print_record_type_as_fields) orelse null flds then raise Match
       
   827      else if moreT = HOLogic.unitT
       
   828           then Syntax.const record$flds''
       
   829           else Syntax.const record_scheme$flds''$term_of_type moreT
       
   830   end
       
   831 
       
   832 
       
   833 fun gen_record_type_tr' name =
       
   834   let val name_sfx = suffix ext_typeN name;
       
   835       fun tr' ctxt ts = record_type_tr' "_field_types" "_field_type"
       
   836                        "_record_type" "_record_type_scheme" ctxt
       
   837                        (list_comb (Syntax.const name_sfx,ts))
       
   838   in (name_sfx,tr')
       
   839   end
       
   840 
       
   841 
       
   842 fun gen_record_type_abbr_tr' abbr alphas zeta lastExt schemeT name =
       
   843   let val name_sfx = suffix ext_typeN name;
       
   844       val default_tr' = record_type_tr' "_field_types" "_field_type"
       
   845                                "_record_type" "_record_type_scheme"
       
   846       fun tr' ctxt ts =
       
   847           record_type_abbr_tr' default_tr' abbr alphas zeta lastExt schemeT ctxt
       
   848                                (list_comb (Syntax.const name_sfx,ts))
       
   849   in (name_sfx, tr') end;
       
   850 
       
   851 (** record simprocs **)
       
   852 
       
   853 val record_quick_and_dirty_sensitive = ref false;
       
   854 
       
   855 
       
   856 fun quick_and_dirty_prove stndrd thy asms prop tac =
       
   857   if !record_quick_and_dirty_sensitive andalso !quick_and_dirty
       
   858   then Goal.prove (ProofContext.init thy) [] []
       
   859         (Logic.list_implies (map Logic.varify asms,Logic.varify prop))
       
   860         (K (SkipProof.cheat_tac @{theory HOL}))
       
   861         (* standard can take quite a while for large records, thats why
       
   862          * we varify the proposition manually here.*)
       
   863   else let val prf = Goal.prove (ProofContext.init thy) [] asms prop tac;
       
   864        in if stndrd then standard prf else prf end;
       
   865 
       
   866 fun quick_and_dirty_prf noopt opt () =
       
   867       if !record_quick_and_dirty_sensitive andalso !quick_and_dirty
       
   868       then noopt ()
       
   869       else opt ();
       
   870 
       
   871 local
       
   872 fun abstract_over_fun_app (Abs (f,fT,t)) =
       
   873   let
       
   874      val (f',t') = Term.dest_abs (f,fT,t);
       
   875      val T = domain_type fT;
       
   876      val (x,T') = hd (Term.variant_frees t' [("x",T)]);
       
   877      val f_x = Free (f',fT)$(Free (x,T'));
       
   878      fun is_constr (Const (c,_)$_) = can (unsuffix extN) c
       
   879        | is_constr _ = false;
       
   880      fun subst (t as u$w) = if Free (f',fT)=u
       
   881                             then if is_constr w then f_x
       
   882                                  else raise TERM ("abstract_over_fun_app",[t])
       
   883                             else subst u$subst w
       
   884        | subst (Abs (x,T,t)) = (Abs (x,T,subst t))
       
   885        | subst t = t
       
   886      val t'' = abstract_over (f_x,subst t');
       
   887      val vars = strip_qnt_vars "all" t'';
       
   888      val bdy = strip_qnt_body "all" t'';
       
   889 
       
   890   in list_abs ((x,T')::vars,bdy) end
       
   891   | abstract_over_fun_app t = raise TERM ("abstract_over_fun_app",[t]);
       
   892 (* Generates a theorem of the kind:
       
   893  * !!f x*. PROP P (f ( r x* ) x* == !!r x*. PROP P r x*
       
   894  *)
       
   895 fun mk_fun_apply_eq (Abs (f, fT, t)) thy =
       
   896   let
       
   897     val rT = domain_type fT;
       
   898     val vars = Term.strip_qnt_vars "all" t;
       
   899     val Ts = map snd vars;
       
   900     val n = length vars;
       
   901     fun app_bounds 0 t = t$Bound 0
       
   902       | app_bounds n t = if n > 0 then app_bounds (n-1) (t$Bound n) else t
       
   903 
       
   904 
       
   905     val [P,r] = Term.variant_frees t [("P",rT::Ts--->Term.propT),("r",Ts--->rT)];
       
   906     val prop = Logic.mk_equals
       
   907                 (list_all ((f,fT)::vars,
       
   908                            app_bounds (n - 1) ((Free P)$(Bound n$app_bounds (n-1) (Free r)))),
       
   909                  list_all ((fst r,rT)::vars,
       
   910                            app_bounds (n - 1) ((Free P)$Bound n)));
       
   911     val prove_standard = quick_and_dirty_prove true thy;
       
   912     val thm = prove_standard [] prop (fn _ =>
       
   913 	 EVERY [rtac equal_intr_rule 1,
       
   914                 Goal.norm_hhf_tac 1,REPEAT (etac meta_allE 1), atac 1,
       
   915                 Goal.norm_hhf_tac 1,REPEAT (etac meta_allE 1), atac 1]);
       
   916   in thm end
       
   917   | mk_fun_apply_eq t thy = raise TERM ("mk_fun_apply_eq",[t]);
       
   918 
       
   919 in
       
   920 (* During proof of theorems produced by record_simproc you can end up in
       
   921  * situations like "!!f ... . ... f r ..." where f is an extension update function.
       
   922  * In order to split "f r" we transform this to "!!r ... . ... r ..." so that the
       
   923  * usual split rules for extensions can apply.
       
   924  *)
       
   925 val record_split_f_more_simproc =
       
   926   Simplifier.simproc @{theory HOL} "record_split_f_more_simp" ["x"]
       
   927     (fn thy => fn _ => fn t =>
       
   928       (case t of (Const ("all", Type (_, [Type (_, [Type("fun",[T,T']), _]), _])))$
       
   929                   (trm as Abs _) =>
       
   930          (case rec_id (~1) T of
       
   931             "" => NONE
       
   932           | n => if T=T'
       
   933                  then (let
       
   934                         val P=cterm_of thy (abstract_over_fun_app trm);
       
   935                         val thm = mk_fun_apply_eq trm thy;
       
   936                         val PV = cterm_of thy (hd (OldTerm.term_vars (prop_of thm)));
       
   937                         val thm' = cterm_instantiate [(PV,P)] thm;
       
   938                        in SOME  thm' end handle TERM _ => NONE)
       
   939                 else NONE)
       
   940        | _ => NONE))
       
   941 end
       
   942 
       
   943 fun prove_split_simp thy ss T prop =
       
   944   let
       
   945     val {sel_upd={simpset,...},extsplit,...} = RecordsData.get thy;
       
   946     val extsplits =
       
   947             Library.foldl (fn (thms,(n,_)) => the_list (Symtab.lookup extsplit n) @ thms)
       
   948                     ([],dest_recTs T);
       
   949     val thms = (case get_splits thy (rec_id (~1) T) of
       
   950                    SOME (all_thm,_,_,_) =>
       
   951                      all_thm::(case extsplits of [thm] => [] | _ => extsplits)
       
   952                               (* [thm] is the same as all_thm *)
       
   953                  | NONE => extsplits)
       
   954     val thms'=K_comp_convs@thms;
       
   955     val ss' = (Simplifier.inherit_context ss simpset
       
   956                 addsimps thms'
       
   957                 addsimprocs [record_split_f_more_simproc]);
       
   958   in
       
   959     quick_and_dirty_prove true thy [] prop (fn _ => simp_tac ss' 1)
       
   960   end;
       
   961 
       
   962 
       
   963 local
       
   964 fun eq (s1:string) (s2:string) = (s1 = s2);
       
   965 fun has_field extfields f T =
       
   966      exists (fn (eN,_) => exists (eq f o fst) (Symtab.lookup_list extfields eN))
       
   967        (dest_recTs T);
       
   968 
       
   969 fun K_skeleton n (T as Type (_,[_,kT])) (b as Bound i) (Abs (x,xT,t)) =
       
   970      if null (loose_bnos t) then ((n,kT),(Abs (x,xT,Bound (i+1)))) else ((n,T),b)
       
   971   | K_skeleton n T b _ = ((n,T),b);
       
   972 
       
   973 (*
       
   974 fun K_skeleton n _ b ((K_rec as Const ("Record.K_record",Type (_,[kT,_])))$_) = 
       
   975       ((n,kT),K_rec$b)
       
   976   | K_skeleton n _ (Bound i) 
       
   977       (Abs (x,T,(K_rec as Const ("Record.K_record",Type (_,[kT,_])))$_$Bound 0)) =
       
   978         ((n,kT),Abs (x,T,(K_rec$Bound (i+1)$Bound 0)))
       
   979   | K_skeleton n T b  _ = ((n,T),b);
       
   980  *)
       
   981 
       
   982 fun normalize_rhs thm =
       
   983   let
       
   984      val ss = HOL_basic_ss addsimps K_comp_convs; 
       
   985      val rhs = thm |> Thm.cprop_of |> Thm.dest_comb |> snd;
       
   986      val rhs' = (Simplifier.rewrite ss rhs);
       
   987   in Thm.transitive thm rhs' end;
       
   988 in
       
   989 (* record_simproc *)
       
   990 (* Simplifies selections of an record update:
       
   991  *  (1)  S (S_update k r) = k (S r)
       
   992  *  (2)  S (X_update k r) = S r
       
   993  * The simproc skips multiple updates at once, eg:
       
   994  *  S (X_update x (Y_update y (S_update k r))) = k (S r)
       
   995  * But be careful in (2) because of the extendibility of records.
       
   996  * - If S is a more-selector we have to make sure that the update on component
       
   997  *   X does not affect the selected subrecord.
       
   998  * - If X is a more-selector we have to make sure that S is not in the updated
       
   999  *   subrecord.
       
  1000  *)
       
  1001 val record_simproc =
       
  1002   Simplifier.simproc @{theory HOL} "record_simp" ["x"]
       
  1003     (fn thy => fn ss => fn t =>
       
  1004       (case t of (sel as Const (s, Type (_,[domS,rangeS])))$
       
  1005                    ((upd as Const (u,Type(_,[_,Type (_,[rT,_])]))) $ k $ r)=>
       
  1006         if is_selector thy s then
       
  1007           (case get_updates thy u of SOME u_name =>
       
  1008             let
       
  1009               val {sel_upd={updates,...},extfields,...} = RecordsData.get thy;
       
  1010 
       
  1011               fun mk_eq_terms ((upd as Const (u,Type(_,[kT,_]))) $ k $ r) =
       
  1012                   (case Symtab.lookup updates u of
       
  1013                      NONE => NONE
       
  1014                    | SOME u_name
       
  1015                      => if u_name = s
       
  1016                         then (case mk_eq_terms r of
       
  1017                                NONE =>
       
  1018                                  let
       
  1019                                    val rv = ("r",rT)
       
  1020                                    val rb = Bound 0
       
  1021                                    val (kv,kb) = K_skeleton "k" kT (Bound 1) k;
       
  1022                                   in SOME (upd$kb$rb,kb$(sel$rb),[kv,rv]) end
       
  1023                               | SOME (trm,trm',vars) =>
       
  1024                                  let
       
  1025                                    val (kv,kb) = K_skeleton "k" kT (Bound (length vars)) k;
       
  1026                                  in SOME (upd$kb$trm,kb$trm',kv::vars) end)
       
  1027                         else if has_field extfields u_name rangeS
       
  1028                              orelse has_field extfields s (domain_type kT)
       
  1029                              then NONE
       
  1030                              else (case mk_eq_terms r of
       
  1031                                      SOME (trm,trm',vars)
       
  1032                                      => let
       
  1033                                           val (kv,kb) = 
       
  1034                                                  K_skeleton "k" kT (Bound (length vars)) k;
       
  1035                                         in SOME (upd$kb$trm,trm',kv::vars) end
       
  1036                                    | NONE
       
  1037                                      => let
       
  1038                                           val rv = ("r",rT)
       
  1039                                           val rb = Bound 0
       
  1040                                           val (kv,kb) = K_skeleton "k" kT (Bound 1) k;
       
  1041                                         in SOME (upd$kb$rb,sel$rb,[kv,rv]) end))
       
  1042                 | mk_eq_terms r = NONE
       
  1043             in
       
  1044               (case mk_eq_terms (upd$k$r) of
       
  1045                  SOME (trm,trm',vars)
       
  1046                  => SOME (prove_split_simp thy ss domS
       
  1047                                  (list_all(vars, Logic.mk_equals (sel $ trm, trm'))))
       
  1048                | NONE => NONE)
       
  1049             end
       
  1050           | NONE => NONE)
       
  1051         else NONE
       
  1052       | _ => NONE));
       
  1053 
       
  1054 (* record_upd_simproc *)
       
  1055 (* simplify multiple updates:
       
  1056  *  (1)  "N_update y (M_update g (N_update x (M_update f r))) =
       
  1057           (N_update (y o x) (M_update (g o f) r))"
       
  1058  *  (2)  "r(|M:= M r|) = r"
       
  1059  * For (2) special care of "more" updates has to be taken:
       
  1060  *    r(|more := m; A := A r|)
       
  1061  * If A is contained in the fields of m we cannot remove the update A := A r!
       
  1062  * (But r(|more := r; A := A (r(|more := r|))|) = r(|more := r|)
       
  1063 *)
       
  1064 val record_upd_simproc =
       
  1065   Simplifier.simproc @{theory HOL} "record_upd_simp" ["x"]
       
  1066     (fn thy => fn ss => fn t =>
       
  1067       (case t of ((upd as Const (u, Type(_,[_,Type(_,[rT,_])]))) $ k $ r) =>
       
  1068          let datatype ('a,'b) calc = Init of 'b | Inter of 'a
       
  1069              val {sel_upd={selectors,updates,...},extfields,...} = RecordsData.get thy;
       
  1070 
       
  1071              (*fun mk_abs_var x t = (x, fastype_of t);*)
       
  1072              fun sel_name u = Long_Name.base_name (unsuffix updateN u);
       
  1073 
       
  1074              fun seed s (upd as Const (more,Type(_,[mT,_]))$ k $ r) =
       
  1075                   if has_field extfields s (domain_type' mT) then upd else seed s r
       
  1076                | seed _ r = r;
       
  1077 
       
  1078              fun grow u uT k kT vars (sprout,skeleton) =
       
  1079                    if sel_name u = moreN
       
  1080                    then let val (kv,kb) = K_skeleton "k" kT (Bound (length vars)) k;
       
  1081                         in ((Const (u,uT)$k$sprout,Const (u,uT)$kb$skeleton),kv::vars) end
       
  1082                    else ((sprout,skeleton),vars);
       
  1083 
       
  1084 
       
  1085              fun dest_k (Abs (x,T,((sel as Const (s,_))$r))) =
       
  1086                   if null (loose_bnos r) then SOME (x,T,sel,s,r) else NONE
       
  1087                | dest_k (Abs (_,_,(Abs (x,T,((sel as Const (s,_))$r)))$Bound 0)) =
       
  1088                   (* eta expanded variant *)
       
  1089                   if null (loose_bnos r) then SOME (x,T,sel,s,r) else NONE
       
  1090                | dest_k _ = NONE;
       
  1091 
       
  1092              fun is_upd_same (sprout,skeleton) u k =
       
  1093                (case dest_k k of SOME (x,T,sel,s,r) =>
       
  1094                    if (unsuffix updateN u) = s andalso (seed s sprout) = r
       
  1095                    then SOME (fn t => Abs (x,T,incr_boundvars 1 t),sel,seed s skeleton)
       
  1096                    else NONE
       
  1097                 | NONE => NONE);
       
  1098 
       
  1099              fun init_seed r = ((r,Bound 0), [("r", rT)]);
       
  1100 
       
  1101              fun add (n:string) f fmaps =
       
  1102                (case AList.lookup (op =) fmaps n of
       
  1103                   NONE => AList.update (op =) (n,[f]) fmaps
       
  1104                 | SOME fs => AList.update (op =) (n,f::fs) fmaps)
       
  1105 
       
  1106              fun comps (n:string) T fmaps =
       
  1107                (case AList.lookup (op =) fmaps n of
       
  1108                  SOME fs =>
       
  1109                    foldr1 (fn (f,g) => Const ("Fun.comp",(T-->T)-->(T-->T)-->(T-->T))$f$g) fs
       
  1110                 | NONE => error ("record_upd_simproc.comps"))
       
  1111 
       
  1112              (* mk_updterm returns either
       
  1113               *  - Init (orig-term, orig-term-skeleton, vars) if no optimisation can be made,
       
  1114               *     where vars are the bound variables in the skeleton
       
  1115               *  - Inter (orig-term-skeleton,simplified-term-skeleton,
       
  1116               *           vars, (term-sprout, skeleton-sprout))
       
  1117               *     where "All vars. orig-term-skeleton = simplified-term-skeleton" is
       
  1118               *     the desired simplification rule,
       
  1119               *     the sprouts accumulate the "more-updates" on the way from the seed
       
  1120               *     to the outermost update. It is only relevant to calculate the
       
  1121               *     possible simplification for (2)
       
  1122               * The algorithm first walks down the updates to the seed-record while
       
  1123               * memorising the updates in the already-table. While walking up the
       
  1124               * updates again, the optimised term is constructed.
       
  1125               *)
       
  1126              fun mk_updterm upds already
       
  1127                  (t as ((upd as Const (u,uT as (Type (_,[kT,_])))) $ k $ r)) =
       
  1128                  if Symtab.defined upds u
       
  1129                  then let
       
  1130                          fun rest already = mk_updterm upds already
       
  1131                       in if u mem_string already
       
  1132                          then (case (rest already r) of
       
  1133                                  Init ((sprout,skel),vars) =>
       
  1134                                  let
       
  1135                                    val n = sel_name u;
       
  1136                                    val (kv,kb) = K_skeleton n kT (Bound (length vars)) k;
       
  1137                                    val (sprout',vars')= grow u uT k kT (kv::vars) (sprout,skel);
       
  1138                                  in Inter (upd$kb$skel,skel,vars',add n kb [],sprout') end
       
  1139                                | Inter (trm,trm',vars,fmaps,sprout) =>
       
  1140                                  let
       
  1141                                    val n = sel_name u;
       
  1142                                    val (kv,kb) = K_skeleton n kT (Bound (length vars)) k;
       
  1143                                    val (sprout',vars') = grow u uT k kT (kv::vars) sprout;
       
  1144                                  in Inter(upd$kb$trm,trm',kv::vars',add n kb fmaps,sprout')
       
  1145                                  end)
       
  1146                          else
       
  1147                           (case rest (u::already) r of
       
  1148                              Init ((sprout,skel),vars) =>
       
  1149                               (case is_upd_same (sprout,skel) u k of
       
  1150                                  SOME (K_rec,sel,skel') =>
       
  1151                                  let
       
  1152                                    val (sprout',vars') = grow u uT k kT vars (sprout,skel);
       
  1153                                   in Inter(upd$(K_rec (sel$skel'))$skel,skel,vars',[],sprout')
       
  1154                                   end
       
  1155                                | NONE =>
       
  1156                                  let
       
  1157                                    val n = sel_name u;
       
  1158                                    val (kv,kb) = K_skeleton n kT (Bound (length vars)) k;
       
  1159                                  in Init ((upd$k$sprout,upd$kb$skel),kv::vars) end)
       
  1160                            | Inter (trm,trm',vars,fmaps,sprout) =>
       
  1161                                (case is_upd_same sprout u k of
       
  1162                                   SOME (K_rec,sel,skel) =>
       
  1163                                   let
       
  1164                                     val (sprout',vars') = grow u uT k kT vars sprout
       
  1165                                   in Inter(upd$(K_rec (sel$skel))$trm,trm',vars',fmaps,sprout')
       
  1166                                   end
       
  1167                                 | NONE =>
       
  1168                                   let
       
  1169                                     val n = sel_name u
       
  1170                                     val T = domain_type kT
       
  1171                                     val (kv,kb) = K_skeleton n kT (Bound (length vars)) k;
       
  1172                                     val (sprout',vars') = grow u uT k kT (kv::vars) sprout
       
  1173                                     val fmaps' = add n kb fmaps
       
  1174                                   in Inter (upd$kb$trm,upd$comps n T fmaps'$trm'
       
  1175                                            ,vars',fmaps',sprout') end))
       
  1176                      end
       
  1177                  else Init (init_seed t)
       
  1178                | mk_updterm _ _ t = Init (init_seed t);
       
  1179 
       
  1180          in (case mk_updterm updates [] t of
       
  1181                Inter (trm,trm',vars,_,_)
       
  1182                 => SOME (normalize_rhs 
       
  1183                           (prove_split_simp thy ss rT
       
  1184                             (list_all(vars, Logic.mk_equals (trm, trm')))))
       
  1185              | _ => NONE)
       
  1186          end
       
  1187        | _ => NONE))
       
  1188 end
       
  1189 
       
  1190 (* record_eq_simproc *)
       
  1191 (* looks up the most specific record-equality.
       
  1192  * Note on efficiency:
       
  1193  * Testing equality of records boils down to the test of equality of all components.
       
  1194  * Therefore the complexity is: #components * complexity for single component.
       
  1195  * Especially if a record has a lot of components it may be better to split up
       
  1196  * the record first and do simplification on that (record_split_simp_tac).
       
  1197  * e.g. r(|lots of updates|) = x
       
  1198  *
       
  1199  *               record_eq_simproc       record_split_simp_tac
       
  1200  * Complexity: #components * #updates     #updates
       
  1201  *
       
  1202  *)
       
  1203 val record_eq_simproc =
       
  1204   Simplifier.simproc @{theory HOL} "record_eq_simp" ["r = s"]
       
  1205     (fn thy => fn _ => fn t =>
       
  1206       (case t of Const ("op =", Type (_, [T, _])) $ _ $ _ =>
       
  1207         (case rec_id (~1) T of
       
  1208            "" => NONE
       
  1209          | name => (case get_equalities thy name of
       
  1210                                 NONE => NONE
       
  1211                               | SOME thm => SOME (thm RS Eq_TrueI)))
       
  1212        | _ => NONE));
       
  1213 
       
  1214 (* record_split_simproc *)
       
  1215 (* splits quantified occurrences of records, for which P holds. P can peek on the
       
  1216  * subterm starting at the quantified occurrence of the record (including the quantifier)
       
  1217  * P t = 0: do not split
       
  1218  * P t = ~1: completely split
       
  1219  * P t > 0: split up to given bound of record extensions
       
  1220  *)
       
  1221 fun record_split_simproc P =
       
  1222   Simplifier.simproc @{theory HOL} "record_split_simp" ["x"]
       
  1223     (fn thy => fn _ => fn t =>
       
  1224       (case t of (Const (quantifier, Type (_, [Type (_, [T, _]), _])))$trm =>
       
  1225          if quantifier = "All" orelse quantifier = "all" orelse quantifier = "Ex"
       
  1226          then (case rec_id (~1) T of
       
  1227                  "" => NONE
       
  1228                | name
       
  1229                   => let val split = P t
       
  1230                      in if split <> 0 then
       
  1231                         (case get_splits thy (rec_id split T) of
       
  1232                               NONE => NONE
       
  1233                             | SOME (all_thm, All_thm, Ex_thm,_)
       
  1234                                => SOME (case quantifier of
       
  1235                                           "all" => all_thm
       
  1236                                         | "All" => All_thm RS eq_reflection
       
  1237                                         | "Ex"  => Ex_thm RS eq_reflection
       
  1238                                         | _     => error "record_split_simproc"))
       
  1239                         else NONE
       
  1240                       end)
       
  1241          else NONE
       
  1242        | _ => NONE))
       
  1243 
       
  1244 val record_ex_sel_eq_simproc =
       
  1245   Simplifier.simproc @{theory HOL} "record_ex_sel_eq_simproc" ["Ex t"]
       
  1246     (fn thy => fn ss => fn t =>
       
  1247        let
       
  1248          fun prove prop =
       
  1249            quick_and_dirty_prove true thy [] prop
       
  1250              (fn _ => simp_tac (Simplifier.inherit_context ss (get_simpset thy)
       
  1251                addsimps simp_thms addsimprocs [record_split_simproc (K ~1)]) 1);
       
  1252 
       
  1253          fun mkeq (lr,Teq,(sel,Tsel),x) i =
       
  1254               if is_selector thy sel then
       
  1255                  let val x' = if not (loose_bvar1 (x,0))
       
  1256                               then Free ("x" ^ string_of_int i, range_type Tsel)
       
  1257                               else raise TERM ("",[x]);
       
  1258                      val sel' = Const (sel,Tsel)$Bound 0;
       
  1259                      val (l,r) = if lr then (sel',x') else (x',sel');
       
  1260                   in Const ("op =",Teq)$l$r end
       
  1261               else raise TERM ("",[Const (sel,Tsel)]);
       
  1262 
       
  1263          fun dest_sel_eq (Const ("op =",Teq)$(Const (sel,Tsel)$Bound 0)$X) =
       
  1264                            (true,Teq,(sel,Tsel),X)
       
  1265            | dest_sel_eq (Const ("op =",Teq)$X$(Const (sel,Tsel)$Bound 0)) =
       
  1266                            (false,Teq,(sel,Tsel),X)
       
  1267            | dest_sel_eq _ = raise TERM ("",[]);
       
  1268 
       
  1269        in
       
  1270          (case t of
       
  1271            (Const ("Ex",Tex)$Abs(s,T,t)) =>
       
  1272              (let val eq = mkeq (dest_sel_eq t) 0;
       
  1273                  val prop = list_all ([("r",T)],
       
  1274                               Logic.mk_equals (Const ("Ex",Tex)$Abs(s,T,eq),
       
  1275                                                HOLogic.true_const));
       
  1276              in SOME (prove prop) end
       
  1277              handle TERM _ => NONE)
       
  1278           | _ => NONE)
       
  1279          end)
       
  1280 
       
  1281 
       
  1282 
       
  1283 
       
  1284 local
       
  1285 val inductive_atomize = thms "induct_atomize";
       
  1286 val inductive_rulify = thms "induct_rulify";
       
  1287 in
       
  1288 (* record_split_simp_tac *)
       
  1289 (* splits (and simplifies) all records in the goal for which P holds.
       
  1290  * For quantified occurrences of a record
       
  1291  * P can peek on the whole subterm (including the quantifier); for free variables P
       
  1292  * can only peek on the variable itself.
       
  1293  * P t = 0: do not split
       
  1294  * P t = ~1: completely split
       
  1295  * P t > 0: split up to given bound of record extensions
       
  1296  *)
       
  1297 fun record_split_simp_tac thms P i st =
       
  1298   let
       
  1299     val thy = Thm.theory_of_thm st;
       
  1300 
       
  1301     val has_rec = exists_Const
       
  1302       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
       
  1303           (s = "all" orelse s = "All" orelse s = "Ex") andalso is_recT T
       
  1304         | _ => false);
       
  1305 
       
  1306     val goal = nth (Thm.prems_of st) (i - 1);
       
  1307     val frees = List.filter (is_recT o type_of) (OldTerm.term_frees goal);
       
  1308 
       
  1309     fun mk_split_free_tac free induct_thm i =
       
  1310         let val cfree = cterm_of thy free;
       
  1311             val (_$(_$r)) = concl_of induct_thm;
       
  1312             val crec = cterm_of thy r;
       
  1313             val thm  = cterm_instantiate [(crec,cfree)] induct_thm;
       
  1314         in EVERY [simp_tac (HOL_basic_ss addsimps inductive_atomize) i,
       
  1315                   rtac thm i,
       
  1316                   simp_tac (HOL_basic_ss addsimps inductive_rulify) i]
       
  1317         end;
       
  1318 
       
  1319     fun split_free_tac P i (free as Free (n,T)) =
       
  1320         (case rec_id (~1) T of
       
  1321            "" => NONE
       
  1322          | name => let val split = P free
       
  1323                    in if split <> 0 then
       
  1324                       (case get_splits thy (rec_id split T) of
       
  1325                              NONE => NONE
       
  1326                            | SOME (_,_,_,induct_thm)
       
  1327                                => SOME (mk_split_free_tac free induct_thm i))
       
  1328                       else NONE
       
  1329                    end)
       
  1330      | split_free_tac _ _ _ = NONE;
       
  1331 
       
  1332     val split_frees_tacs = List.mapPartial (split_free_tac P i) frees;
       
  1333 
       
  1334     val simprocs = if has_rec goal then [record_split_simproc P] else [];
       
  1335     val thms' = K_comp_convs@thms
       
  1336   in st |> ((EVERY split_frees_tacs)
       
  1337            THEN (Simplifier.full_simp_tac (get_simpset thy addsimps thms' addsimprocs simprocs) i))
       
  1338   end handle Empty => Seq.empty;
       
  1339 end;
       
  1340 
       
  1341 
       
  1342 (* record_split_tac *)
       
  1343 (* splits all records in the goal, which are quantified by ! or !!. *)
       
  1344 fun record_split_tac i st =
       
  1345   let
       
  1346     val thy = Thm.theory_of_thm st;
       
  1347 
       
  1348     val has_rec = exists_Const
       
  1349       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
       
  1350           (s = "all" orelse s = "All") andalso is_recT T
       
  1351         | _ => false);
       
  1352 
       
  1353     val goal = nth (Thm.prems_of st) (i - 1);
       
  1354 
       
  1355     fun is_all t =
       
  1356       (case t of (Const (quantifier, _)$_) =>
       
  1357          if quantifier = "All" orelse quantifier = "all" then ~1 else 0
       
  1358        | _ => 0);
       
  1359 
       
  1360   in if has_rec goal
       
  1361      then Simplifier.full_simp_tac
       
  1362            (HOL_basic_ss addsimprocs [record_split_simproc is_all]) i st
       
  1363      else Seq.empty
       
  1364   end handle Subscript => Seq.empty;
       
  1365 
       
  1366 (* wrapper *)
       
  1367 
       
  1368 val record_split_name = "record_split_tac";
       
  1369 val record_split_wrapper = (record_split_name, fn tac => record_split_tac ORELSE' tac);
       
  1370 
       
  1371 
       
  1372 
       
  1373 (** theory extender interface **)
       
  1374 
       
  1375 (* prepare arguments *)
       
  1376 
       
  1377 fun read_raw_parent ctxt raw_T =
       
  1378   (case ProofContext.read_typ_abbrev ctxt raw_T of
       
  1379     Type (name, Ts) => (Ts, name)
       
  1380   | T => error ("Bad parent record specification: " ^ Syntax.string_of_typ ctxt T));
       
  1381 
       
  1382 fun read_typ ctxt raw_T env =
       
  1383   let
       
  1384     val ctxt' = fold (Variable.declare_typ o TFree) env ctxt;
       
  1385     val T = Syntax.read_typ ctxt' raw_T;
       
  1386     val env' = OldTerm.add_typ_tfrees (T, env);
       
  1387   in (T, env') end;
       
  1388 
       
  1389 fun cert_typ ctxt raw_T env =
       
  1390   let
       
  1391     val thy = ProofContext.theory_of ctxt;
       
  1392     val T = Type.no_tvars (Sign.certify_typ thy raw_T) handle TYPE (msg, _, _) => error msg;
       
  1393     val env' = OldTerm.add_typ_tfrees (T, env);
       
  1394   in (T, env') end;
       
  1395 
       
  1396 
       
  1397 (* attributes *)
       
  1398 
       
  1399 fun case_names_fields x = RuleCases.case_names ["fields"] x;
       
  1400 fun induct_type_global name = [case_names_fields, Induct.induct_type name];
       
  1401 fun cases_type_global name = [case_names_fields, Induct.cases_type name];
       
  1402 
       
  1403 (* tactics *)
       
  1404 
       
  1405 fun simp_all_tac ss simps = ALLGOALS (Simplifier.asm_full_simp_tac (ss addsimps simps));
       
  1406 
       
  1407 (* do case analysis / induction according to rule on last parameter of ith subgoal
       
  1408  * (or on s if there are no parameters);
       
  1409  * Instatiation of record variable (and predicate) in rule is calculated to
       
  1410  * avoid problems with higher order unification.
       
  1411  *)
       
  1412 
       
  1413 fun try_param_tac s rule i st =
       
  1414   let
       
  1415     val cert = cterm_of (Thm.theory_of_thm st);
       
  1416     val g = nth (prems_of st) (i - 1);
       
  1417     val params = Logic.strip_params g;
       
  1418     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl g);
       
  1419     val rule' = Thm.lift_rule (Thm.cprem_of st i) rule;
       
  1420     val (P, ys) = strip_comb (HOLogic.dest_Trueprop
       
  1421       (Logic.strip_assums_concl (prop_of rule')));
       
  1422     (* ca indicates if rule is a case analysis or induction rule *)
       
  1423     val (x, ca) = (case rev (Library.drop (length params, ys)) of
       
  1424         [] => (head_of (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop
       
  1425           (hd (rev (Logic.strip_assums_hyp (hd (prems_of rule')))))))), true)
       
  1426       | [x] => (head_of x, false));
       
  1427     val rule'' = cterm_instantiate (map (pairself cert) (case (rev params) of
       
  1428         [] => (case AList.lookup (op =) (map dest_Free (OldTerm.term_frees (prop_of st))) s of
       
  1429           NONE => sys_error "try_param_tac: no such variable"
       
  1430         | SOME T => [(P, if ca then concl else lambda (Free (s, T)) concl),
       
  1431             (x, Free (s, T))])
       
  1432       | (_, T) :: _ => [(P, list_abs (params, if ca then concl
       
  1433           else incr_boundvars 1 (Abs (s, T, concl)))),
       
  1434         (x, list_abs (params, Bound 0))])) rule'
       
  1435   in compose_tac (false, rule'', nprems_of rule) i st end;
       
  1436 
       
  1437 
       
  1438 (* !!x1 ... xn. ... ==> EX x1 ... xn. P x1 ... xn;
       
  1439    instantiates x1 ... xn with parameters x1 ... xn *)
       
  1440 fun ex_inst_tac i st =
       
  1441   let
       
  1442     val thy = Thm.theory_of_thm st;
       
  1443     val g = nth (prems_of st) (i - 1);
       
  1444     val params = Logic.strip_params g;
       
  1445     val exI' = Thm.lift_rule (Thm.cprem_of st i) exI;
       
  1446     val (_$(_$x)) = Logic.strip_assums_concl (hd (prems_of exI'));
       
  1447     val cx = cterm_of thy (fst (strip_comb x));
       
  1448 
       
  1449   in Seq.single (Library.foldl (fn (st,v) =>
       
  1450         Seq.hd
       
  1451         (compose_tac (false, cterm_instantiate
       
  1452                                 [(cx,cterm_of thy (list_abs (params,Bound v)))] exI',1)
       
  1453                 i st)) (st,((length params) - 1) downto 0))
       
  1454   end;
       
  1455 
       
  1456 fun extension_typedef name repT alphas thy =
       
  1457   let
       
  1458     fun get_thms thy name =
       
  1459       let
       
  1460         val SOME { Abs_induct = abs_induct,
       
  1461           Abs_inject=abs_inject, Abs_inverse = abs_inverse, ...} = TypedefPackage.get_info thy name;
       
  1462         val rewrite_rule = MetaSimplifier.rewrite_rule [rec_UNIV_I, rec_True_simp];
       
  1463       in map rewrite_rule [abs_inject, abs_inverse, abs_induct] end;
       
  1464     val tname = Binding.name (Long_Name.base_name name);
       
  1465   in
       
  1466     thy
       
  1467     |> TypecopyPackage.typecopy (Binding.suffix_name ext_typeN tname, alphas) repT NONE
       
  1468     |-> (fn (name, _) => `(fn thy => get_thms thy name))
       
  1469   end;
       
  1470 
       
  1471 fun mixit convs refls =
       
  1472   let fun f ((res,lhs,rhs),refl) = ((refl,List.revAppend (lhs,refl::tl rhs))::res,hd rhs::lhs,tl rhs);
       
  1473   in #1 (Library.foldl f (([],[],convs),refls)) end;
       
  1474 
       
  1475 
       
  1476 fun extension_definition full name fields names alphas zeta moreT more vars thy =
       
  1477   let
       
  1478     val base = Long_Name.base_name;
       
  1479     val fieldTs = (map snd fields);
       
  1480     val alphas_zeta = alphas@[zeta];
       
  1481     val alphas_zetaTs = map (fn n => TFree (n, HOLogic.typeS)) alphas_zeta;
       
  1482     val vT = TFree (Name.variant alphas_zeta "'v", HOLogic.typeS);
       
  1483     val extT_name = suffix ext_typeN name
       
  1484     val extT = Type (extT_name, alphas_zetaTs);
       
  1485     val repT = foldr1 HOLogic.mk_prodT (fieldTs@[moreT]);
       
  1486     val fields_more = fields@[(full moreN,moreT)];
       
  1487     val fields_moreTs = fieldTs@[moreT];
       
  1488     val bfields_more = map (apfst base) fields_more;
       
  1489     val r = Free (rN,extT)
       
  1490     val len = length fields;
       
  1491     val idxms = 0 upto len;
       
  1492 
       
  1493     (* prepare declarations and definitions *)
       
  1494 
       
  1495     (*fields constructor*)
       
  1496     val ext_decl = (mk_extC (name,extT) fields_moreTs);
       
  1497     (*
       
  1498     val ext_spec = Const ext_decl :==
       
  1499          (foldr (uncurry lambda)
       
  1500             (mk_Abs name repT extT $ (foldr1 HOLogic.mk_prod (vars@[more]))) (vars@[more]))
       
  1501     *)
       
  1502     val ext_spec = list_comb (Const ext_decl,vars@[more]) :==
       
  1503          (mk_Abs name repT extT $ (foldr1 HOLogic.mk_prod (vars@[more])));
       
  1504 
       
  1505     fun mk_ext args = list_comb (Const ext_decl, args);
       
  1506 
       
  1507     (*destructors*)
       
  1508     val _ = timing_msg "record extension preparing definitions";
       
  1509     val dest_decls = map (mk_selC extT o (apfst (suffix ext_dest))) bfields_more;
       
  1510 
       
  1511     fun mk_dest_spec (i, (c,T)) =
       
  1512       let val snds = (funpow i HOLogic.mk_snd (mk_Rep name repT extT $ r))
       
  1513       in Const (mk_selC extT (suffix ext_dest c,T))
       
  1514          :== (lambda r (if i=len then snds else HOLogic.mk_fst snds))
       
  1515       end;
       
  1516     val dest_specs =
       
  1517       ListPair.map mk_dest_spec (idxms, fields_more);
       
  1518 
       
  1519     (*updates*)
       
  1520     val upd_decls = map (mk_updC updN extT) bfields_more;
       
  1521     fun mk_upd_spec (c,T) =
       
  1522       let
       
  1523         val args = map (fn (n,nT) => if n=c then Free (base c,T --> T)$
       
  1524                                                   (mk_sel r (suffix ext_dest n,nT))
       
  1525                                      else (mk_sel r (suffix ext_dest n,nT)))
       
  1526                        fields_more;
       
  1527       in Const (mk_updC updN extT (c,T))$(Free (base c,T --> T))$r
       
  1528           :== mk_ext args
       
  1529       end;
       
  1530     val upd_specs = map mk_upd_spec fields_more;
       
  1531 
       
  1532     (* 1st stage: defs_thy *)
       
  1533     fun mk_defs () =
       
  1534       thy
       
  1535       |> extension_typedef name repT (alphas @ [zeta])
       
  1536       ||> Sign.add_consts_i
       
  1537             (map (Syntax.no_syn o apfst Binding.name) (apfst base ext_decl :: dest_decls @ upd_decls))
       
  1538       ||>> PureThy.add_defs false
       
  1539             (map (Thm.no_attributes o apfst Binding.name) (ext_spec :: dest_specs))
       
  1540       ||>> PureThy.add_defs false
       
  1541             (map (Thm.no_attributes o apfst Binding.name) upd_specs)
       
  1542       |-> (fn args as ((_, dest_defs), upd_defs) =>
       
  1543           fold Code.add_default_eqn dest_defs
       
  1544           #> fold Code.add_default_eqn upd_defs
       
  1545           #> pair args);
       
  1546     val ((([abs_inject, abs_inverse, abs_induct], ext_def :: dest_defs), upd_defs), defs_thy) =
       
  1547       timeit_msg "record extension type/selector/update defs:" mk_defs;
       
  1548 
       
  1549     (* prepare propositions *)
       
  1550     val _ = timing_msg "record extension preparing propositions";
       
  1551     val vars_more = vars@[more];
       
  1552     val named_vars_more = (names@[full moreN])~~vars_more;
       
  1553     val variants = map (fn (Free (x,_))=>x) vars_more;
       
  1554     val ext = mk_ext vars_more;
       
  1555     val s     = Free (rN, extT);
       
  1556     val w     = Free (wN, extT);
       
  1557     val P = Free (Name.variant variants "P", extT-->HOLogic.boolT);
       
  1558     val C = Free (Name.variant variants "C", HOLogic.boolT);
       
  1559 
       
  1560     val inject_prop =
       
  1561       let val vars_more' = map (fn (Free (x,T)) => Free (x ^ "'",T)) vars_more;
       
  1562       in All (map dest_Free (vars_more@vars_more'))
       
  1563           ((HOLogic.eq_const extT $
       
  1564             mk_ext vars_more$mk_ext vars_more')
       
  1565            ===
       
  1566            foldr1 HOLogic.mk_conj (map HOLogic.mk_eq (vars_more ~~ vars_more')))
       
  1567       end;
       
  1568 
       
  1569     val induct_prop =
       
  1570       (All (map dest_Free vars_more) (Trueprop (P $ ext)), Trueprop (P $ s));
       
  1571 
       
  1572     val cases_prop =
       
  1573       (All (map dest_Free vars_more)
       
  1574         (Trueprop (HOLogic.mk_eq (s,ext)) ==> Trueprop C))
       
  1575       ==> Trueprop C;
       
  1576 
       
  1577     (*destructors*)
       
  1578     val dest_conv_props =
       
  1579        map (fn (c, x as Free (_,T)) => mk_sel ext (suffix ext_dest c,T) === x) named_vars_more;
       
  1580 
       
  1581     (*updates*)
       
  1582     fun mk_upd_prop (i,(c,T)) =
       
  1583       let val x' = Free (Name.variant variants (base c ^ "'"),T --> T)
       
  1584           val args' = nth_map i  (K (x'$nth vars_more i)) vars_more
       
  1585       in mk_upd updN c x' ext === mk_ext args'  end;
       
  1586     val upd_conv_props = ListPair.map mk_upd_prop (idxms, fields_more);
       
  1587 
       
  1588     val surjective_prop =
       
  1589       let val args =
       
  1590            map (fn (c, Free (_,T)) => mk_sel s (suffix ext_dest c,T)) named_vars_more;
       
  1591       in s === mk_ext args end;
       
  1592 
       
  1593     val split_meta_prop =
       
  1594       let val P = Free (Name.variant variants "P", extT-->Term.propT) in
       
  1595         Logic.mk_equals
       
  1596          (All [dest_Free s] (P $ s), All (map dest_Free vars_more) (P $ ext))
       
  1597       end;
       
  1598 
       
  1599     fun prove stndrd = quick_and_dirty_prove stndrd defs_thy;
       
  1600     val prove_standard = quick_and_dirty_prove true defs_thy;
       
  1601     fun prove_simp stndrd simps =
       
  1602       let val tac = simp_all_tac HOL_ss simps
       
  1603       in fn prop => prove stndrd [] prop (K tac) end;
       
  1604 
       
  1605     fun inject_prf () = (prove_simp true [ext_def,abs_inject,Pair_eq] inject_prop);
       
  1606     val inject = timeit_msg "record extension inject proof:" inject_prf;
       
  1607 
       
  1608     fun induct_prf () =
       
  1609       let val (assm, concl) = induct_prop
       
  1610       in prove_standard [assm] concl (fn {prems, ...} =>
       
  1611            EVERY [try_param_tac rN abs_induct 1,
       
  1612                   simp_tac (HOL_ss addsimps [split_paired_all]) 1,
       
  1613                   resolve_tac (map (rewrite_rule [ext_def]) prems) 1])
       
  1614       end;
       
  1615     val induct = timeit_msg "record extension induct proof:" induct_prf;
       
  1616 
       
  1617     fun cases_prf_opt () =
       
  1618       let
       
  1619         val (_$(Pvar$_)) = concl_of induct;
       
  1620         val ind = cterm_instantiate
       
  1621                     [(cterm_of defs_thy Pvar, cterm_of defs_thy
       
  1622                             (lambda w (HOLogic.imp$HOLogic.mk_eq(r,w)$C)))]
       
  1623                     induct;
       
  1624         in standard (ObjectLogic.rulify (mp OF [ind, refl])) end;
       
  1625 
       
  1626     fun cases_prf_noopt () =
       
  1627         prove_standard [] cases_prop (fn _ =>
       
  1628          EVERY [asm_full_simp_tac (HOL_basic_ss addsimps [atomize_all, atomize_imp]) 1,
       
  1629                 try_param_tac rN induct 1,
       
  1630                 rtac impI 1,
       
  1631                 REPEAT (etac allE 1),
       
  1632                 etac mp 1,
       
  1633                 rtac refl 1])
       
  1634 
       
  1635     val cases_prf = quick_and_dirty_prf cases_prf_noopt cases_prf_opt;
       
  1636     val cases = timeit_msg "record extension cases proof:" cases_prf;
       
  1637 
       
  1638     fun dest_convs_prf () = map (prove_simp false
       
  1639                       ([ext_def,abs_inverse]@Pair_sel_convs@dest_defs)) dest_conv_props;
       
  1640     val dest_convs = timeit_msg "record extension dest_convs proof:" dest_convs_prf;
       
  1641     fun dest_convs_standard_prf () = map standard dest_convs;
       
  1642 
       
  1643     val dest_convs_standard =
       
  1644         timeit_msg "record extension dest_convs_standard proof:" dest_convs_standard_prf;
       
  1645 
       
  1646     fun upd_convs_prf_noopt () = map (prove_simp true (dest_convs_standard@upd_defs))
       
  1647                                        upd_conv_props;
       
  1648     fun upd_convs_prf_opt () =
       
  1649       let
       
  1650 
       
  1651         fun mkrefl (c,T) = Thm.reflexive
       
  1652                     (cterm_of defs_thy (Free (Name.variant variants (base c ^ "'"),T-->T)));
       
  1653         val refls = map mkrefl fields_more;
       
  1654         val dest_convs' = map mk_meta_eq dest_convs;
       
  1655         val map_eqs = map (uncurry Thm.combination) (refls ~~ dest_convs');
       
  1656 
       
  1657         val constr_refl = Thm.reflexive (cterm_of defs_thy (head_of ext));
       
  1658 
       
  1659         fun mkthm (udef,(fld_refl,thms)) =
       
  1660           let val bdyeq = Library.foldl (uncurry Thm.combination) (constr_refl,thms);
       
  1661                (* (|N=N (|N=N,M=M,K=K,more=more|)
       
  1662                     M=M (|N=N,M=M,K=K,more=more|)
       
  1663                     K=K'
       
  1664                     more = more (|N=N,M=M,K=K,more=more|) =
       
  1665                   (|N=N,M=M,K=K',more=more|)
       
  1666                 *)
       
  1667               val (_$(_$v$r)$_) = prop_of udef;
       
  1668               val (_$(v'$_)$_) = prop_of fld_refl;
       
  1669               val udef' = cterm_instantiate
       
  1670                             [(cterm_of defs_thy v,cterm_of defs_thy v'),
       
  1671                              (cterm_of defs_thy r,cterm_of defs_thy ext)] udef;
       
  1672           in  standard (Thm.transitive udef' bdyeq) end;
       
  1673       in map mkthm (rev upd_defs  ~~ (mixit dest_convs' map_eqs)) end;
       
  1674 
       
  1675     val upd_convs_prf = quick_and_dirty_prf upd_convs_prf_noopt upd_convs_prf_opt;
       
  1676 
       
  1677     val upd_convs =
       
  1678          timeit_msg "record extension upd_convs proof:" upd_convs_prf;
       
  1679 
       
  1680     fun surjective_prf () =
       
  1681       prove_standard [] surjective_prop (fn _ =>
       
  1682           (EVERY [try_param_tac rN induct 1,
       
  1683                   simp_tac (HOL_basic_ss addsimps dest_convs_standard) 1]));
       
  1684     val surjective = timeit_msg "record extension surjective proof:" surjective_prf;
       
  1685 
       
  1686     fun split_meta_prf () =
       
  1687         prove_standard [] split_meta_prop (fn _ =>
       
  1688          EVERY [rtac equal_intr_rule 1, Goal.norm_hhf_tac 1,
       
  1689                 etac meta_allE 1, atac 1,
       
  1690                 rtac (prop_subst OF [surjective]) 1,
       
  1691                 REPEAT (etac meta_allE 1), atac 1]);
       
  1692     val split_meta = timeit_msg "record extension split_meta proof:" split_meta_prf;
       
  1693 
       
  1694 
       
  1695     val (([inject',induct',cases',surjective',split_meta'],
       
  1696           [dest_convs',upd_convs']),
       
  1697       thm_thy) =
       
  1698       defs_thy
       
  1699       |> (PureThy.add_thms o map (Thm.no_attributes o apfst Binding.name))
       
  1700            [("ext_inject", inject),
       
  1701             ("ext_induct", induct),
       
  1702             ("ext_cases", cases),
       
  1703             ("ext_surjective", surjective),
       
  1704             ("ext_split", split_meta)]
       
  1705       ||>> (PureThy.add_thmss o map (Thm.no_attributes o apfst Binding.name))
       
  1706             [("dest_convs", dest_convs_standard), ("upd_convs", upd_convs)]
       
  1707 
       
  1708   in (thm_thy,extT,induct',inject',dest_convs',split_meta',upd_convs')
       
  1709   end;
       
  1710 
       
  1711 fun chunks []      []   = []
       
  1712   | chunks []      xs   = [xs]
       
  1713   | chunks (l::ls) xs  = Library.take (l,xs)::chunks ls (Library.drop (l,xs));
       
  1714 
       
  1715 fun chop_last [] = error "last: list should not be empty"
       
  1716   | chop_last [x] = ([],x)
       
  1717   | chop_last (x::xs) = let val (tl,l) = chop_last xs in (x::tl,l) end;
       
  1718 
       
  1719 fun subst_last s []      = error "subst_last: list should not be empty"
       
  1720   | subst_last s ([x])   = [s]
       
  1721   | subst_last s (x::xs) = (x::subst_last s xs);
       
  1722 
       
  1723 (* mk_recordT builds up the record type from the current extension tpye extT and a list
       
  1724  * of parent extensions, starting with the root of the record hierarchy
       
  1725 *)
       
  1726 fun mk_recordT extT =
       
  1727     fold_rev (fn (parent, Ts) => fn T => Type (parent, subst_last T Ts)) extT;
       
  1728 
       
  1729 
       
  1730 
       
  1731 fun obj_to_meta_all thm =
       
  1732   let
       
  1733     fun E thm = case (SOME (spec OF [thm]) handle THM _ => NONE) of
       
  1734                   SOME thm' => E thm'
       
  1735                 | NONE => thm;
       
  1736     val th1 = E thm;
       
  1737     val th2 = Drule.forall_intr_vars th1;
       
  1738   in th2 end;
       
  1739 
       
  1740 fun meta_to_obj_all thm =
       
  1741   let
       
  1742     val thy = Thm.theory_of_thm thm;
       
  1743     val prop = Thm.prop_of thm;
       
  1744     val params = Logic.strip_params prop;
       
  1745     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl prop);
       
  1746     val ct = cterm_of thy
       
  1747       (HOLogic.mk_Trueprop (HOLogic.list_all (params, concl)));
       
  1748     val thm' = Seq.hd (REPEAT (rtac allI 1) (Thm.trivial ct));
       
  1749   in
       
  1750     Thm.implies_elim thm' thm
       
  1751   end;
       
  1752 
       
  1753 
       
  1754 
       
  1755 (* record_definition *)
       
  1756 
       
  1757 fun record_definition (args, bname) parent (parents: parent_info list) raw_fields thy =
       
  1758   let
       
  1759     val external_names = NameSpace.external_names (Sign.naming_of thy);
       
  1760 
       
  1761     val alphas = map fst args;
       
  1762     val name = Sign.full_bname thy bname;
       
  1763     val full = Sign.full_bname_path thy bname;
       
  1764     val base = Long_Name.base_name;
       
  1765 
       
  1766     val (bfields, field_syntax) = split_list (map (fn (x, T, mx) => ((x, T), mx)) raw_fields);
       
  1767 
       
  1768     val parent_fields = List.concat (map #fields parents);
       
  1769     val parent_chunks = map (length o #fields) parents;
       
  1770     val parent_names = map fst parent_fields;
       
  1771     val parent_types = map snd parent_fields;
       
  1772     val parent_fields_len = length parent_fields;
       
  1773     val parent_variants = Name.variant_list [moreN, rN, rN ^ "'", wN] (map base parent_names);
       
  1774     val parent_vars = ListPair.map Free (parent_variants, parent_types);
       
  1775     val parent_len = length parents;
       
  1776     val parents_idx = (map #name parents) ~~ (0 upto (parent_len - 1));
       
  1777 
       
  1778     val fields = map (apfst full) bfields;
       
  1779     val names = map fst fields;
       
  1780     val extN = full bname;
       
  1781     val types = map snd fields;
       
  1782     val alphas_fields = List.foldr OldTerm.add_typ_tfree_names [] types;
       
  1783     val alphas_ext = alphas inter alphas_fields;
       
  1784     val len = length fields;
       
  1785     val variants =
       
  1786       Name.variant_list (moreN :: rN :: (rN ^ "'") :: wN :: parent_variants) (map fst bfields);
       
  1787     val vars = ListPair.map Free (variants, types);
       
  1788     val named_vars = names ~~ vars;
       
  1789     val idxs = 0 upto (len - 1);
       
  1790     val idxms = 0 upto len;
       
  1791 
       
  1792     val all_fields = parent_fields @ fields;
       
  1793     val all_names = parent_names @ names;
       
  1794     val all_types = parent_types @ types;
       
  1795     val all_len = parent_fields_len + len;
       
  1796     val all_variants = parent_variants @ variants;
       
  1797     val all_vars = parent_vars @ vars;
       
  1798     val all_named_vars = (parent_names ~~ parent_vars) @ named_vars;
       
  1799 
       
  1800 
       
  1801     val zeta = Name.variant alphas "'z";
       
  1802     val moreT = TFree (zeta, HOLogic.typeS);
       
  1803     val more = Free (moreN, moreT);
       
  1804     val full_moreN = full moreN;
       
  1805     val bfields_more = bfields @ [(moreN,moreT)];
       
  1806     val fields_more = fields @ [(full_moreN,moreT)];
       
  1807     val vars_more = vars @ [more];
       
  1808     val named_vars_more = named_vars @[(full_moreN,more)];
       
  1809     val all_vars_more = all_vars @ [more];
       
  1810     val all_named_vars_more = all_named_vars @ [(full_moreN,more)];
       
  1811 
       
  1812     (* 1st stage: extension_thy *)
       
  1813     val (extension_thy,extT,ext_induct,ext_inject,ext_dest_convs,ext_split,u_convs) =
       
  1814       thy
       
  1815       |> Sign.add_path bname
       
  1816       |> extension_definition full extN fields names alphas_ext zeta moreT more vars;
       
  1817 
       
  1818     val _ = timing_msg "record preparing definitions";
       
  1819     val Type extension_scheme = extT;
       
  1820     val extension_name = unsuffix ext_typeN (fst extension_scheme);
       
  1821     val extension = let val (n,Ts) = extension_scheme in (n,subst_last HOLogic.unitT Ts) end;
       
  1822     val extension_names =
       
  1823          (map ((unsuffix ext_typeN) o fst o #extension) parents) @ [extN];
       
  1824     val extension_id = Library.foldl (op ^) ("",extension_names);
       
  1825 
       
  1826 
       
  1827     fun rec_schemeT n = mk_recordT (map #extension (prune n parents)) extT;
       
  1828     val rec_schemeT0 = rec_schemeT 0;
       
  1829 
       
  1830     fun recT n =
       
  1831       let val (c,Ts) = extension
       
  1832       in mk_recordT (map #extension (prune n parents)) (Type (c,subst_last HOLogic.unitT Ts))
       
  1833       end;
       
  1834     val recT0 = recT 0;
       
  1835 
       
  1836     fun mk_rec args n =
       
  1837       let val (args',more) = chop_last args;
       
  1838           fun mk_ext' (((name,T),args),more) = mk_ext (name,T) (args@[more]);
       
  1839           fun build Ts =
       
  1840            List.foldr mk_ext' more (prune n (extension_names ~~ Ts ~~ (chunks parent_chunks args')))
       
  1841       in
       
  1842         if more = HOLogic.unit
       
  1843         then build (map recT (0 upto parent_len))
       
  1844         else build (map rec_schemeT (0 upto parent_len))
       
  1845       end;
       
  1846 
       
  1847     val r_rec0 = mk_rec all_vars_more 0;
       
  1848     val r_rec_unit0 = mk_rec (all_vars@[HOLogic.unit]) 0;
       
  1849 
       
  1850     fun r n = Free (rN, rec_schemeT n)
       
  1851     val r0 = r 0;
       
  1852     fun r_unit n = Free (rN, recT n)
       
  1853     val r_unit0 = r_unit 0;
       
  1854     val w = Free (wN, rec_schemeT 0)
       
  1855 
       
  1856     (* prepare print translation functions *)
       
  1857     val field_tr's =
       
  1858       print_translation (distinct (op =) (maps external_names (full_moreN :: names)));
       
  1859 
       
  1860     val adv_ext_tr's =
       
  1861     let
       
  1862       val trnames = external_names extN;
       
  1863     in map (gen_record_tr') trnames end;
       
  1864 
       
  1865     val adv_record_type_abbr_tr's =
       
  1866       let val trnames = external_names (hd extension_names);
       
  1867           val lastExt = unsuffix ext_typeN (fst extension);
       
  1868       in map (gen_record_type_abbr_tr' name alphas zeta lastExt rec_schemeT0) trnames
       
  1869       end;
       
  1870 
       
  1871     val adv_record_type_tr's =
       
  1872       let val trnames = if parent_len > 0 then external_names extN else [];
       
  1873                         (* avoid conflict with adv_record_type_abbr_tr's *)
       
  1874       in map (gen_record_type_tr') trnames
       
  1875       end;
       
  1876 
       
  1877 
       
  1878     (* prepare declarations *)
       
  1879 
       
  1880     val sel_decls = map (mk_selC rec_schemeT0) bfields_more;
       
  1881     val upd_decls = map (mk_updC updateN rec_schemeT0) bfields_more;
       
  1882     val make_decl = (makeN, all_types ---> recT0);
       
  1883     val fields_decl = (fields_selN, types ---> Type extension);
       
  1884     val extend_decl = (extendN, recT0 --> moreT --> rec_schemeT0);
       
  1885     val truncate_decl = (truncateN, rec_schemeT0 --> recT0);
       
  1886 
       
  1887     (* prepare definitions *)
       
  1888 
       
  1889     fun parent_more s =
       
  1890          if null parents then s
       
  1891          else mk_sel s (Long_Name.qualify (#name (List.last parents)) moreN, extT);
       
  1892 
       
  1893     fun parent_more_upd v s =
       
  1894       if null parents then v$s
       
  1895       else let val mp = Long_Name.qualify (#name (List.last parents)) moreN;
       
  1896            in mk_upd updateN mp v s end;
       
  1897 
       
  1898     (*record (scheme) type abbreviation*)
       
  1899     val recordT_specs =
       
  1900       [(Binding.name (suffix schemeN bname), alphas @ [zeta], rec_schemeT0, Syntax.NoSyn),
       
  1901         (Binding.name bname, alphas, recT0, Syntax.NoSyn)];
       
  1902 
       
  1903     (*selectors*)
       
  1904     fun mk_sel_spec (c,T) =
       
  1905          Const (mk_selC rec_schemeT0 (c,T))
       
  1906           :== (lambda r0 (Const (mk_selC extT (suffix ext_dest c,T))$parent_more r0));
       
  1907     val sel_specs = map mk_sel_spec fields_more;
       
  1908 
       
  1909     (*updates*)
       
  1910 
       
  1911     fun mk_upd_spec (c,T) =
       
  1912       let
       
  1913         val new = mk_upd' updN c (Free (base c,T-->T)) extT(*(parent_more r0)*);
       
  1914       in Const (mk_updC updateN rec_schemeT0 (c,T))$(Free (base c,T-->T))$r0
       
  1915           :== (parent_more_upd new r0)
       
  1916       end;
       
  1917     val upd_specs = map mk_upd_spec fields_more;
       
  1918 
       
  1919     (*derived operations*)
       
  1920     val make_spec = Const (full makeN, all_types ---> recT0) $$ all_vars :==
       
  1921       mk_rec (all_vars @ [HOLogic.unit]) 0;
       
  1922     val fields_spec = Const (full fields_selN, types ---> Type extension) $$ vars :==
       
  1923       mk_rec (all_vars @ [HOLogic.unit]) parent_len;
       
  1924     val extend_spec =
       
  1925       Const (full extendN, recT0-->moreT-->rec_schemeT0) $ r_unit0 $ more :==
       
  1926       mk_rec ((map (mk_sel r_unit0) all_fields) @ [more]) 0;
       
  1927     val truncate_spec = Const (full truncateN, rec_schemeT0 --> recT0) $ r0 :==
       
  1928       mk_rec ((map (mk_sel r0) all_fields) @ [HOLogic.unit]) 0;
       
  1929 
       
  1930     (* 2st stage: defs_thy *)
       
  1931 
       
  1932     fun mk_defs () =
       
  1933       extension_thy
       
  1934       |> Sign.add_trfuns
       
  1935           ([],[],field_tr's, [])
       
  1936       |> Sign.add_advanced_trfuns
       
  1937           ([],[],adv_ext_tr's @ adv_record_type_tr's @ adv_record_type_abbr_tr's,[])
       
  1938       |> Sign.parent_path
       
  1939       |> Sign.add_tyabbrs_i recordT_specs
       
  1940       |> Sign.add_path bname
       
  1941       |> Sign.add_consts_i
       
  1942           (map2 (fn (x, T) => fn mx => (Binding.name x, T, mx))
       
  1943             sel_decls (field_syntax @ [Syntax.NoSyn]))
       
  1944       |> (Sign.add_consts_i o map (fn (x, T) => (Binding.name x, T, Syntax.NoSyn)))
       
  1945           (upd_decls @ [make_decl, fields_decl, extend_decl, truncate_decl])
       
  1946       |> ((PureThy.add_defs false o map (Thm.no_attributes o apfst Binding.name)) sel_specs)
       
  1947       ||>> ((PureThy.add_defs false o map (Thm.no_attributes o apfst Binding.name)) upd_specs)
       
  1948       ||>> ((PureThy.add_defs false o map (Thm.no_attributes o apfst Binding.name))
       
  1949              [make_spec, fields_spec, extend_spec, truncate_spec])
       
  1950       |-> (fn defs as ((sel_defs, upd_defs), derived_defs) =>
       
  1951           fold Code.add_default_eqn sel_defs
       
  1952           #> fold Code.add_default_eqn upd_defs
       
  1953           #> fold Code.add_default_eqn derived_defs
       
  1954           #> pair defs)
       
  1955     val (((sel_defs, upd_defs), derived_defs), defs_thy) =
       
  1956       timeit_msg "record trfuns/tyabbrs/selectors/updates/make/fields/extend/truncate defs:"
       
  1957         mk_defs;
       
  1958 
       
  1959 
       
  1960     (* prepare propositions *)
       
  1961     val _ = timing_msg "record preparing propositions";
       
  1962     val P = Free (Name.variant all_variants "P", rec_schemeT0-->HOLogic.boolT);
       
  1963     val C = Free (Name.variant all_variants "C", HOLogic.boolT);
       
  1964     val P_unit = Free (Name.variant all_variants "P", recT0-->HOLogic.boolT);
       
  1965 
       
  1966     (*selectors*)
       
  1967     val sel_conv_props =
       
  1968        map (fn (c, x as Free (_,T)) => mk_sel r_rec0 (c,T) === x) named_vars_more;
       
  1969 
       
  1970     (*updates*)
       
  1971     fun mk_upd_prop (i,(c,T)) =
       
  1972       let val x' = Free (Name.variant all_variants (base c ^ "'"),T-->T);
       
  1973           val n = parent_fields_len + i;
       
  1974           val args' = nth_map n (K (x'$nth all_vars_more n)) all_vars_more
       
  1975       in mk_upd updateN c x' r_rec0 === mk_rec args' 0  end;
       
  1976     val upd_conv_props = ListPair.map mk_upd_prop (idxms, fields_more);
       
  1977 
       
  1978     (*induct*)
       
  1979     val induct_scheme_prop =
       
  1980       All (map dest_Free all_vars_more) (Trueprop (P $ r_rec0)) ==> Trueprop (P $ r0);
       
  1981     val induct_prop =
       
  1982       (All (map dest_Free all_vars) (Trueprop (P_unit $ r_rec_unit0)),
       
  1983        Trueprop (P_unit $ r_unit0));
       
  1984 
       
  1985     (*surjective*)
       
  1986     val surjective_prop =
       
  1987       let val args = map (fn (c,Free (_,T)) => mk_sel r0 (c,T)) all_named_vars_more
       
  1988       in r0 === mk_rec args 0 end;
       
  1989 
       
  1990     (*cases*)
       
  1991     val cases_scheme_prop =
       
  1992       (All (map dest_Free all_vars_more)
       
  1993         (Trueprop (HOLogic.mk_eq (r0,r_rec0)) ==> Trueprop C))
       
  1994       ==> Trueprop C;
       
  1995 
       
  1996     val cases_prop =
       
  1997       (All (map dest_Free all_vars)
       
  1998         (Trueprop (HOLogic.mk_eq (r_unit0,r_rec_unit0)) ==> Trueprop C))
       
  1999        ==> Trueprop C;
       
  2000 
       
  2001     (*split*)
       
  2002     val split_meta_prop =
       
  2003       let val P = Free (Name.variant all_variants "P", rec_schemeT0-->Term.propT) in
       
  2004         Logic.mk_equals
       
  2005          (All [dest_Free r0] (P $ r0), All (map dest_Free all_vars_more) (P $ r_rec0))
       
  2006       end;
       
  2007 
       
  2008     val split_object_prop =
       
  2009       let fun ALL vs t = List.foldr (fn ((v,T),t) => HOLogic.mk_all (v,T,t)) t vs
       
  2010       in (ALL [dest_Free r0] (P $ r0)) === (ALL (map dest_Free all_vars_more) (P $ r_rec0))
       
  2011       end;
       
  2012 
       
  2013 
       
  2014     val split_ex_prop =
       
  2015       let fun EX vs t = List.foldr (fn ((v,T),t) => HOLogic.mk_exists (v,T,t)) t vs
       
  2016       in (EX [dest_Free r0] (P $ r0)) === (EX (map dest_Free all_vars_more) (P $ r_rec0))
       
  2017       end;
       
  2018 
       
  2019     (*equality*)
       
  2020     val equality_prop =
       
  2021       let
       
  2022         val s' = Free (rN ^ "'", rec_schemeT0)
       
  2023         fun mk_sel_eq (c,Free (_,T)) =  mk_sel r0 (c,T) === mk_sel s' (c,T)
       
  2024         val seleqs = map mk_sel_eq all_named_vars_more
       
  2025       in All (map dest_Free [r0,s']) (Logic.list_implies (seleqs,r0 === s')) end;
       
  2026 
       
  2027     (* 3rd stage: thms_thy *)
       
  2028 
       
  2029     fun prove stndrd = quick_and_dirty_prove stndrd defs_thy;
       
  2030     val prove_standard = quick_and_dirty_prove true defs_thy;
       
  2031 
       
  2032     fun prove_simp stndrd ss simps =
       
  2033       let val tac = simp_all_tac ss simps
       
  2034       in fn prop => prove stndrd [] prop (K tac) end;
       
  2035 
       
  2036     val ss = get_simpset defs_thy;
       
  2037 
       
  2038     fun sel_convs_prf () = map (prove_simp false ss
       
  2039                            (sel_defs@ext_dest_convs)) sel_conv_props;
       
  2040     val sel_convs = timeit_msg "record sel_convs proof:" sel_convs_prf;
       
  2041     fun sel_convs_standard_prf () = map standard sel_convs
       
  2042     val sel_convs_standard =
       
  2043           timeit_msg "record sel_convs_standard proof:" sel_convs_standard_prf;
       
  2044 
       
  2045     fun upd_convs_prf () =
       
  2046           map (prove_simp true ss (upd_defs@u_convs)) upd_conv_props;
       
  2047 
       
  2048     val upd_convs = timeit_msg "record upd_convs proof:" upd_convs_prf;
       
  2049 
       
  2050     val parent_induct = if null parents then [] else [#induct (hd (rev parents))];
       
  2051 
       
  2052     fun induct_scheme_prf () = prove_standard [] induct_scheme_prop (fn _ =>
       
  2053           (EVERY [if null parent_induct
       
  2054                   then all_tac else try_param_tac rN (hd parent_induct) 1,
       
  2055                   try_param_tac rN ext_induct 1,
       
  2056                   asm_simp_tac HOL_basic_ss 1]));
       
  2057     val induct_scheme = timeit_msg "record induct_scheme proof:" induct_scheme_prf;
       
  2058 
       
  2059     fun induct_prf () =
       
  2060       let val (assm, concl) = induct_prop;
       
  2061       in
       
  2062         prove_standard [assm] concl (fn {prems, ...} =>
       
  2063           try_param_tac rN induct_scheme 1
       
  2064           THEN try_param_tac "more" @{thm unit.induct} 1
       
  2065           THEN resolve_tac prems 1)
       
  2066       end;
       
  2067     val induct = timeit_msg "record induct proof:" induct_prf;
       
  2068 
       
  2069     fun surjective_prf () =
       
  2070       prove_standard [] surjective_prop (fn prems =>
       
  2071           (EVERY [try_param_tac rN induct_scheme 1,
       
  2072                   simp_tac (ss addsimps sel_convs_standard) 1]))
       
  2073     val surjective = timeit_msg "record surjective proof:" surjective_prf;
       
  2074 
       
  2075     fun cases_scheme_prf_opt () =
       
  2076       let
       
  2077         val (_$(Pvar$_)) = concl_of induct_scheme;
       
  2078         val ind = cterm_instantiate
       
  2079                     [(cterm_of defs_thy Pvar, cterm_of defs_thy
       
  2080                             (lambda w (HOLogic.imp$HOLogic.mk_eq(r0,w)$C)))]
       
  2081                     induct_scheme;
       
  2082         in standard (ObjectLogic.rulify (mp OF [ind, refl])) end;
       
  2083 
       
  2084     fun cases_scheme_prf_noopt () =
       
  2085         prove_standard [] cases_scheme_prop (fn _ =>
       
  2086          EVERY [asm_full_simp_tac (HOL_basic_ss addsimps [atomize_all, atomize_imp]) 1,
       
  2087                try_param_tac rN induct_scheme 1,
       
  2088                rtac impI 1,
       
  2089                REPEAT (etac allE 1),
       
  2090                etac mp 1,
       
  2091                rtac refl 1])
       
  2092     val cases_scheme_prf = quick_and_dirty_prf cases_scheme_prf_noopt cases_scheme_prf_opt;
       
  2093     val cases_scheme = timeit_msg "record cases_scheme proof:" cases_scheme_prf;
       
  2094 
       
  2095     fun cases_prf () =
       
  2096       prove_standard [] cases_prop  (fn _ =>
       
  2097         try_param_tac rN cases_scheme 1
       
  2098         THEN simp_all_tac HOL_basic_ss [unit_all_eq1]);
       
  2099     val cases = timeit_msg "record cases proof:" cases_prf;
       
  2100 
       
  2101     fun split_meta_prf () =
       
  2102         prove false [] split_meta_prop (fn _ =>
       
  2103          EVERY [rtac equal_intr_rule 1, Goal.norm_hhf_tac 1,
       
  2104                 etac meta_allE 1, atac 1,
       
  2105                 rtac (prop_subst OF [surjective]) 1,
       
  2106                 REPEAT (etac meta_allE 1), atac 1]);
       
  2107     val split_meta = timeit_msg "record split_meta proof:" split_meta_prf;
       
  2108     val split_meta_standard = standard split_meta;
       
  2109 
       
  2110     fun split_object_prf_opt () =
       
  2111       let
       
  2112         val cPI= cterm_of defs_thy (lambda r0 (Trueprop (P$r0)));
       
  2113         val (_$Abs(_,_,P$_)) = fst (Logic.dest_equals (concl_of split_meta_standard));
       
  2114         val cP = cterm_of defs_thy P;
       
  2115         val split_meta' = cterm_instantiate [(cP,cPI)] split_meta_standard;
       
  2116         val (l,r) = HOLogic.dest_eq (HOLogic.dest_Trueprop split_object_prop);
       
  2117         val cl = cterm_of defs_thy (HOLogic.mk_Trueprop l);
       
  2118         val cr = cterm_of defs_thy (HOLogic.mk_Trueprop r);
       
  2119         val thl = assume cl                 (*All r. P r*) (* 1 *)
       
  2120                 |> obj_to_meta_all          (*!!r. P r*)
       
  2121                 |> equal_elim split_meta'   (*!!n m more. P (ext n m more)*)
       
  2122                 |> meta_to_obj_all          (*All n m more. P (ext n m more)*) (* 2*)
       
  2123                 |> implies_intr cl          (* 1 ==> 2 *)
       
  2124         val thr = assume cr                           (*All n m more. P (ext n m more)*)
       
  2125                 |> obj_to_meta_all                    (*!!n m more. P (ext n m more)*)
       
  2126                 |> equal_elim (symmetric split_meta') (*!!r. P r*)
       
  2127                 |> meta_to_obj_all                    (*All r. P r*)
       
  2128                 |> implies_intr cr                    (* 2 ==> 1 *)
       
  2129      in standard (thr COMP (thl COMP iffI)) end;
       
  2130 
       
  2131     fun split_object_prf_noopt () =
       
  2132         prove_standard [] split_object_prop (fn _ =>
       
  2133          EVERY [rtac iffI 1,
       
  2134                 REPEAT (rtac allI 1), etac allE 1, atac 1,
       
  2135                 rtac allI 1, rtac induct_scheme 1,REPEAT (etac allE 1),atac 1]);
       
  2136 
       
  2137     val split_object_prf = quick_and_dirty_prf split_object_prf_noopt split_object_prf_opt;
       
  2138     val split_object = timeit_msg "record split_object proof:" split_object_prf;
       
  2139 
       
  2140 
       
  2141     fun split_ex_prf () =
       
  2142         prove_standard [] split_ex_prop (fn _ =>
       
  2143           EVERY [rtac iffI 1,
       
  2144                    etac exE 1,
       
  2145                    simp_tac (HOL_basic_ss addsimps [split_meta_standard]) 1,
       
  2146                    ex_inst_tac 1,
       
  2147                    (*REPEAT (rtac exI 1),*)
       
  2148                    atac 1,
       
  2149                  REPEAT (etac exE 1),
       
  2150                  rtac exI 1,
       
  2151                  atac 1]);
       
  2152     val split_ex = timeit_msg "record split_ex proof:" split_ex_prf;
       
  2153 
       
  2154     fun equality_tac thms =
       
  2155       let val (s'::s::eqs) = rev thms;
       
  2156           val ss' = ss addsimps (s'::s::sel_convs_standard);
       
  2157           val eqs' = map (simplify ss') eqs;
       
  2158       in simp_tac (HOL_basic_ss addsimps (s'::s::eqs')) 1 end;
       
  2159 
       
  2160    fun equality_prf () = prove_standard [] equality_prop (fn {context, ...} =>
       
  2161       fn st => let val [s, s'] = map #1 (rev (Tactic.innermost_params 1 st)) in
       
  2162         st |> (res_inst_tac context [((rN, 0), s)] cases_scheme 1
       
  2163         THEN res_inst_tac context [((rN, 0), s')] cases_scheme 1
       
  2164         THEN (METAHYPS equality_tac 1))
       
  2165              (* simp_all_tac ss (sel_convs) would also work but is less efficient *)
       
  2166       end);
       
  2167      val equality = timeit_msg "record equality proof:" equality_prf;
       
  2168 
       
  2169     val ((([sel_convs',upd_convs',sel_defs',upd_defs',[split_meta',split_object',split_ex'],derived_defs'],
       
  2170             [surjective',equality']),[induct_scheme',induct',cases_scheme',cases']), thms_thy) =
       
  2171       defs_thy
       
  2172       |> (PureThy.add_thmss o map (Thm.no_attributes o apfst Binding.name))
       
  2173          [("select_convs", sel_convs_standard),
       
  2174           ("update_convs", upd_convs),
       
  2175           ("select_defs", sel_defs),
       
  2176           ("update_defs", upd_defs),
       
  2177           ("splits", [split_meta_standard,split_object,split_ex]),
       
  2178           ("defs", derived_defs)]
       
  2179       ||>> (PureThy.add_thms o map (Thm.no_attributes o apfst Binding.name))
       
  2180           [("surjective", surjective),
       
  2181            ("equality", equality)]
       
  2182       ||>> (PureThy.add_thms o (map o apfst o apfst) Binding.name)
       
  2183         [(("induct_scheme", induct_scheme), induct_type_global (suffix schemeN name)),
       
  2184          (("induct", induct), induct_type_global name),
       
  2185          (("cases_scheme", cases_scheme), cases_type_global (suffix schemeN name)),
       
  2186          (("cases", cases), cases_type_global name)];
       
  2187 
       
  2188 
       
  2189     val sel_upd_simps = sel_convs' @ upd_convs';
       
  2190     val iffs = [ext_inject]
       
  2191     val final_thy =
       
  2192       thms_thy
       
  2193       |> (snd oo PureThy.add_thmss)
       
  2194           [((Binding.name "simps", sel_upd_simps),
       
  2195             [Simplifier.simp_add, Nitpick_Const_Simp_Thms.add]),
       
  2196            ((Binding.name "iffs", iffs), [iff_add])]
       
  2197       |> put_record name (make_record_info args parent fields extension induct_scheme')
       
  2198       |> put_sel_upd (names @ [full_moreN]) sel_upd_simps
       
  2199       |> add_record_equalities extension_id equality'
       
  2200       |> add_extinjects ext_inject
       
  2201       |> add_extsplit extension_name ext_split
       
  2202       |> add_record_splits extension_id (split_meta',split_object',split_ex',induct_scheme')
       
  2203       |> add_extfields extension_name (fields @ [(full_moreN,moreT)])
       
  2204       |> add_fieldext (extension_name,snd extension) (names @ [full_moreN])
       
  2205       |> Sign.parent_path;
       
  2206 
       
  2207   in final_thy
       
  2208   end;
       
  2209 
       
  2210 
       
  2211 (* add_record *)
       
  2212 
       
  2213 (*we do all preparations and error checks here, deferring the real
       
  2214   work to record_definition*)
       
  2215 fun gen_add_record prep_typ prep_raw_parent quiet_mode (params, bname) raw_parent raw_fields thy =
       
  2216   let
       
  2217     val _ = Theory.requires thy "Record" "record definitions";
       
  2218     val _ = if quiet_mode then () else writeln ("Defining record " ^ quote bname ^ " ...");
       
  2219 
       
  2220     val ctxt = ProofContext.init thy;
       
  2221 
       
  2222 
       
  2223     (* parents *)
       
  2224 
       
  2225     fun prep_inst T = fst (cert_typ ctxt T []);
       
  2226 
       
  2227     val parent = Option.map (apfst (map prep_inst) o prep_raw_parent ctxt) raw_parent
       
  2228       handle ERROR msg => cat_error msg ("The error(s) above in parent record specification");
       
  2229     val parents = add_parents thy parent [];
       
  2230 
       
  2231     val init_env =
       
  2232       (case parent of
       
  2233         NONE => []
       
  2234       | SOME (types, _) => List.foldr OldTerm.add_typ_tfrees [] types);
       
  2235 
       
  2236 
       
  2237     (* fields *)
       
  2238 
       
  2239     fun prep_field (c, raw_T, mx) env =
       
  2240       let val (T, env') = prep_typ ctxt raw_T env handle ERROR msg =>
       
  2241         cat_error msg ("The error(s) above occured in record field " ^ quote c)
       
  2242       in ((c, T, mx), env') end;
       
  2243 
       
  2244     val (bfields, envir) = fold_map prep_field raw_fields init_env;
       
  2245     val envir_names = map fst envir;
       
  2246 
       
  2247 
       
  2248     (* args *)
       
  2249 
       
  2250     val defaultS = Sign.defaultS thy;
       
  2251     val args = map (fn x => (x, AList.lookup (op =) envir x |> the_default defaultS)) params;
       
  2252 
       
  2253 
       
  2254     (* errors *)
       
  2255 
       
  2256     val name = Sign.full_bname thy bname;
       
  2257     val err_dup_record =
       
  2258       if is_none (get_record thy name) then []
       
  2259       else ["Duplicate definition of record " ^ quote name];
       
  2260 
       
  2261     val err_dup_parms =
       
  2262       (case duplicates (op =) params of
       
  2263         [] => []
       
  2264       | dups => ["Duplicate parameter(s) " ^ commas dups]);
       
  2265 
       
  2266     val err_extra_frees =
       
  2267       (case subtract (op =) params envir_names of
       
  2268         [] => []
       
  2269       | extras => ["Extra free type variable(s) " ^ commas extras]);
       
  2270 
       
  2271     val err_no_fields = if null bfields then ["No fields present"] else [];
       
  2272 
       
  2273     val err_dup_fields =
       
  2274       (case duplicates (op =) (map #1 bfields) of
       
  2275         [] => []
       
  2276       | dups => ["Duplicate field(s) " ^ commas_quote dups]);
       
  2277 
       
  2278     val err_bad_fields =
       
  2279       if forall (not_equal moreN o #1) bfields then []
       
  2280       else ["Illegal field name " ^ quote moreN];
       
  2281 
       
  2282     val err_dup_sorts =
       
  2283       (case duplicates (op =) envir_names of
       
  2284         [] => []
       
  2285       | dups => ["Inconsistent sort constraints for " ^ commas dups]);
       
  2286 
       
  2287     val errs =
       
  2288       err_dup_record @ err_dup_parms @ err_extra_frees @ err_no_fields @
       
  2289       err_dup_fields @ err_bad_fields @ err_dup_sorts;
       
  2290   in
       
  2291     if null errs then () else error (cat_lines errs)  ;
       
  2292     thy |> record_definition (args, bname) parent parents bfields
       
  2293   end
       
  2294   handle ERROR msg => cat_error msg ("Failed to define record " ^ quote bname);
       
  2295 
       
  2296 val add_record = gen_add_record read_typ read_raw_parent;
       
  2297 val add_record_i = gen_add_record cert_typ (K I);
       
  2298 
       
  2299 (* setup theory *)
       
  2300 
       
  2301 val setup =
       
  2302   Sign.add_trfuns ([], parse_translation, [], []) #>
       
  2303   Sign.add_advanced_trfuns ([], adv_parse_translation, [], []) #>
       
  2304   Simplifier.map_simpset (fn ss =>
       
  2305     ss addsimprocs [record_simproc, record_upd_simproc, record_eq_simproc]);
       
  2306 
       
  2307 (* outer syntax *)
       
  2308 
       
  2309 local structure P = OuterParse and K = OuterKeyword in
       
  2310 
       
  2311 val record_decl =
       
  2312   P.type_args -- P.name --
       
  2313     (P.$$$ "=" |-- Scan.option (P.typ --| P.$$$ "+") -- Scan.repeat1 P.const);
       
  2314 
       
  2315 val _ =
       
  2316   OuterSyntax.command "record" "define extensible record" K.thy_decl
       
  2317     (record_decl >> (fn (x, (y, z)) => Toplevel.theory (add_record false x y z)));
       
  2318 
       
  2319 end;
       
  2320 
       
  2321 end;
       
  2322 
       
  2323 
       
  2324 structure BasicRecordPackage: BASIC_RECORD_PACKAGE = RecordPackage;
       
  2325 open BasicRecordPackage;