src/HOL/Library/Fraction_Field.thy
changeset 54463 faad28e65b48
parent 54230 b1d955791529
child 54863 82acc20ded73
equal deleted inserted replaced
54462:c9bb76303348 54463:faad28e65b48
    39   finally have "b' * (a * b'') = b' * (a'' * b)" .
    39   finally have "b' * (a * b'') = b' * (a'' * b)" .
    40   moreover from B have "b' \<noteq> 0" by auto
    40   moreover from B have "b' \<noteq> 0" by auto
    41   ultimately have "a * b'' = a'' * b" by simp
    41   ultimately have "a * b'' = a'' * b" by simp
    42   with A B show "((a, b), (a'', b'')) \<in> fractrel" by auto
    42   with A B show "((a, b), (a'', b'')) \<in> fractrel" by auto
    43 qed
    43 qed
    44   
    44 
    45 lemma equiv_fractrel: "equiv {x. snd x \<noteq> 0} fractrel"
    45 lemma equiv_fractrel: "equiv {x. snd x \<noteq> 0} fractrel"
    46   by (rule equivI [OF refl_fractrel sym_fractrel trans_fractrel])
    46   by (rule equivI [OF refl_fractrel sym_fractrel trans_fractrel])
    47 
    47 
    48 lemmas UN_fractrel = UN_equiv_class [OF equiv_fractrel]
    48 lemmas UN_fractrel = UN_equiv_class [OF equiv_fractrel]
    49 lemmas UN_fractrel2 = UN_equiv_class2 [OF equiv_fractrel equiv_fractrel]
    49 lemmas UN_fractrel2 = UN_equiv_class2 [OF equiv_fractrel equiv_fractrel]
    50 
    50 
    51 lemma equiv_fractrel_iff [iff]: 
    51 lemma equiv_fractrel_iff [iff]:
    52   assumes "snd x \<noteq> 0" and "snd y \<noteq> 0"
    52   assumes "snd x \<noteq> 0" and "snd y \<noteq> 0"
    53   shows "fractrel `` {x} = fractrel `` {y} \<longleftrightarrow> (x, y) \<in> fractrel"
    53   shows "fractrel `` {x} = fractrel `` {y} \<longleftrightarrow> (x, y) \<in> fractrel"
    54   by (rule eq_equiv_class_iff, rule equiv_fractrel) (auto simp add: assms)
    54   by (rule eq_equiv_class_iff, rule equiv_fractrel) (auto simp add: assms)
    55 
    55 
    56 definition "fract = {(x::'a\<times>'a). snd x \<noteq> (0::'a::idom)} // fractrel"
    56 definition "fract = {(x::'a\<times>'a). snd x \<noteq> (0::'a::idom)} // fractrel"
    57 
    57 
    58 typedef 'a fract = "fract :: ('a * 'a::idom) set set"
    58 typedef 'a fract = "fract :: ('a * 'a::idom) set set"
    59   unfolding fract_def
    59   unfolding fract_def
    60 proof
    60 proof
    61   have "(0::'a, 1::'a) \<in> {x. snd x \<noteq> 0}" by simp
    61   have "(0::'a, 1::'a) \<in> {x. snd x \<noteq> 0}" by simp
    62   then show "fractrel `` {(0::'a, 1)} \<in> {x. snd x \<noteq> 0} // fractrel" by (rule quotientI)
    62   then show "fractrel `` {(0::'a, 1)} \<in> {x. snd x \<noteq> 0} // fractrel"
       
    63     by (rule quotientI)
    63 qed
    64 qed
    64 
    65 
    65 lemma fractrel_in_fract [simp]: "snd x \<noteq> 0 \<Longrightarrow> fractrel `` {x} \<in> fract"
    66 lemma fractrel_in_fract [simp]: "snd x \<noteq> 0 \<Longrightarrow> fractrel `` {x} \<in> fract"
    66   by (simp add: fract_def quotientI)
    67   by (simp add: fract_def quotientI)
    67 
    68 
    68 declare Abs_fract_inject [simp] Abs_fract_inverse [simp]
    69 declare Abs_fract_inject [simp] Abs_fract_inverse [simp]
    69 
    70 
    70 
    71 
    71 subsubsection {* Representation and basic operations *}
    72 subsubsection {* Representation and basic operations *}
    72 
    73 
    73 definition Fract :: "'a::idom \<Rightarrow> 'a \<Rightarrow> 'a fract" where
    74 definition Fract :: "'a::idom \<Rightarrow> 'a \<Rightarrow> 'a fract"
    74   "Fract a b = Abs_fract (fractrel `` {if b = 0 then (0, 1) else (a, b)})"
    75   where "Fract a b = Abs_fract (fractrel `` {if b = 0 then (0, 1) else (a, b)})"
    75 
    76 
    76 code_datatype Fract
    77 code_datatype Fract
    77 
    78 
    78 lemma Fract_cases [cases type: fract]:
    79 lemma Fract_cases [cases type: fract]:
    79   obtains (Fract) a b where "q = Fract a b" "b \<noteq> 0"
    80   obtains (Fract) a b where "q = Fract a b" "b \<noteq> 0"
    80   by (cases q) (clarsimp simp add: Fract_def fract_def quotient_def)
    81   by (cases q) (clarsimp simp add: Fract_def fract_def quotient_def)
    81 
    82 
    82 lemma Fract_induct [case_names Fract, induct type: fract]:
    83 lemma Fract_induct [case_names Fract, induct type: fract]:
    83   shows "(\<And>a b. b \<noteq> 0 \<Longrightarrow> P (Fract a b)) \<Longrightarrow> P q"
    84   "(\<And>a b. b \<noteq> 0 \<Longrightarrow> P (Fract a b)) \<Longrightarrow> P q"
    84   by (cases q) simp
    85   by (cases q) simp
    85 
    86 
    86 lemma eq_fract:
    87 lemma eq_fract:
    87   shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
    88   shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
    88     and "\<And>a. Fract a 0 = Fract 0 1"
    89     and "\<And>a. Fract a 0 = Fract 0 1"
   103 lemma add_fract [simp]:
   104 lemma add_fract [simp]:
   104   assumes "b \<noteq> (0::'a::idom)"
   105   assumes "b \<noteq> (0::'a::idom)"
   105     and "d \<noteq> 0"
   106     and "d \<noteq> 0"
   106   shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
   107   shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
   107 proof -
   108 proof -
   108   have "(\<lambda>x y. fractrel``{(fst x * snd y + fst y * snd x, snd x * snd y :: 'a)})
   109   have "(\<lambda>x y. fractrel``{(fst x * snd y + fst y * snd x, snd x * snd y :: 'a)}) respects2 fractrel"
   109     respects2 fractrel"
   110     by (rule equiv_fractrel [THEN congruent2_commuteI]) (simp_all add: algebra_simps)
   110     apply (rule equiv_fractrel [THEN congruent2_commuteI])
       
   111     apply (auto simp add: algebra_simps)
       
   112     unfolding mult_assoc[symmetric]
       
   113     done
       
   114   with assms show ?thesis by (simp add: Fract_def add_fract_def UN_fractrel2)
   111   with assms show ?thesis by (simp add: Fract_def add_fract_def UN_fractrel2)
   115 qed
   112 qed
   116 
   113 
   117 definition minus_fract_def:
   114 definition minus_fract_def:
   118   "- q = Abs_fract (\<Union>x \<in> Rep_fract q. fractrel `` {(- fst x, snd x)})"
   115   "- q = Abs_fract (\<Union>x \<in> Rep_fract q. fractrel `` {(- fst x, snd x)})"
   119 
   116 
   120 lemma minus_fract [simp, code]: "- Fract a b = Fract (- a) (b::'a::idom)"
   117 lemma minus_fract [simp, code]:
       
   118   fixes a b :: "'a::idom"
       
   119   shows "- Fract a b = Fract (- a) b"
   121 proof -
   120 proof -
   122   have "(\<lambda>x. fractrel `` {(- fst x, snd x :: 'a)}) respects fractrel"
   121   have "(\<lambda>x. fractrel `` {(- fst x, snd x :: 'a)}) respects fractrel"
   123     by (simp add: congruent_def split_paired_all)
   122     by (simp add: congruent_def split_paired_all)
   124   then show ?thesis by (simp add: Fract_def minus_fract_def UN_fractrel)
   123   then show ?thesis by (simp add: Fract_def minus_fract_def UN_fractrel)
   125 qed
   124 qed
   128   by (cases "b = 0") (simp_all add: eq_fract)
   127   by (cases "b = 0") (simp_all add: eq_fract)
   129 
   128 
   130 definition diff_fract_def: "q - r = q + - (r::'a fract)"
   129 definition diff_fract_def: "q - r = q + - (r::'a fract)"
   131 
   130 
   132 lemma diff_fract [simp]:
   131 lemma diff_fract [simp]:
   133   assumes "b \<noteq> 0" and "d \<noteq> 0"
   132   assumes "b \<noteq> 0"
       
   133     and "d \<noteq> 0"
   134   shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
   134   shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
   135   using assms by (simp add: diff_fract_def)
   135   using assms by (simp add: diff_fract_def)
   136 
   136 
   137 definition mult_fract_def:
   137 definition mult_fract_def:
   138   "q * r = Abs_fract (\<Union>x \<in> Rep_fract q. \<Union>y \<in> Rep_fract r.
   138   "q * r = Abs_fract (\<Union>x \<in> Rep_fract q. \<Union>y \<in> Rep_fract r.
   139     fractrel``{(fst x * fst y, snd x * snd y)})"
   139     fractrel``{(fst x * fst y, snd x * snd y)})"
   140 
   140 
   141 lemma mult_fract [simp]: "Fract (a::'a::idom) b * Fract c d = Fract (a * c) (b * d)"
   141 lemma mult_fract [simp]: "Fract (a::'a::idom) b * Fract c d = Fract (a * c) (b * d)"
   142 proof -
   142 proof -
   143   have "(\<lambda>x y. fractrel `` {(fst x * fst y, snd x * snd y :: 'a)}) respects2 fractrel"
   143   have "(\<lambda>x y. fractrel `` {(fst x * fst y, snd x * snd y :: 'a)}) respects2 fractrel"
   144     apply (rule equiv_fractrel [THEN congruent2_commuteI])
   144     by (rule equiv_fractrel [THEN congruent2_commuteI]) (simp_all add: algebra_simps)
   145     apply (auto simp add: algebra_simps)
       
   146     done
       
   147   then show ?thesis by (simp add: Fract_def mult_fract_def UN_fractrel2)
   145   then show ?thesis by (simp add: Fract_def mult_fract_def UN_fractrel2)
   148 qed
   146 qed
   149 
   147 
   150 lemma mult_fract_cancel:
   148 lemma mult_fract_cancel:
   151   assumes "c \<noteq> (0::'a)"
   149   assumes "c \<noteq> (0::'a)"
   152   shows "Fract (c * a) (c * b) = Fract a b"
   150   shows "Fract (c * a) (c * b) = Fract a b"
   153 proof -
   151 proof -
   154   from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def)
   152   from assms have "Fract c c = Fract 1 1"
   155   then show ?thesis by (simp add: mult_fract [symmetric])
   153     by (simp add: Fract_def)
       
   154   then show ?thesis
       
   155     by (simp add: mult_fract [symmetric])
   156 qed
   156 qed
   157 
   157 
   158 instance
   158 instance
   159 proof
   159 proof
   160   fix q r s :: "'a fract"
   160   fix q r s :: "'a fract"
   161   show "(q * r) * s = q * (r * s)" 
   161   show "(q * r) * s = q * (r * s)"
   162     by (cases q, cases r, cases s) (simp add: eq_fract algebra_simps)
   162     by (cases q, cases r, cases s) (simp add: eq_fract algebra_simps)
   163   show "q * r = r * q"
   163   show "q * r = r * q"
   164     by (cases q, cases r) (simp add: eq_fract algebra_simps)
   164     by (cases q, cases r) (simp add: eq_fract algebra_simps)
   165   show "1 * q = q"
   165   show "1 * q = q"
   166     by (cases q) (simp add: One_fract_def eq_fract)
   166     by (cases q) (simp add: One_fract_def eq_fract)
   199   "0 = Fract 0 1"
   199   "0 = Fract 0 1"
   200   "1 = Fract 1 1"
   200   "1 = Fract 1 1"
   201   by (simp_all add: fract_collapse)
   201   by (simp_all add: fract_collapse)
   202 
   202 
   203 lemma Fract_cases_nonzero:
   203 lemma Fract_cases_nonzero:
   204   obtains (Fract) a b where "q = Fract a b" "b \<noteq> 0" "a \<noteq> 0"
   204   obtains (Fract) a b where "q = Fract a b" and "b \<noteq> 0" and "a \<noteq> 0"
   205     | (0) "q = 0"
   205     | (0) "q = 0"
   206 proof (cases "q = 0")
   206 proof (cases "q = 0")
   207   case True
   207   case True
   208   then show thesis using 0 by auto
   208   then show thesis using 0 by auto
   209 next
   209 next
   211   then obtain a b where "q = Fract a b" and "b \<noteq> 0" by (cases q) auto
   211   then obtain a b where "q = Fract a b" and "b \<noteq> 0" by (cases q) auto
   212   with False have "0 \<noteq> Fract a b" by simp
   212   with False have "0 \<noteq> Fract a b" by simp
   213   with `b \<noteq> 0` have "a \<noteq> 0" by (simp add: Zero_fract_def eq_fract)
   213   with `b \<noteq> 0` have "a \<noteq> 0" by (simp add: Zero_fract_def eq_fract)
   214   with Fract `q = Fract a b` `b \<noteq> 0` show thesis by auto
   214   with Fract `q = Fract a b` `b \<noteq> 0` show thesis by auto
   215 qed
   215 qed
   216   
   216 
   217 
   217 
   218 subsubsection {* The field of rational numbers *}
   218 subsubsection {* The field of rational numbers *}
   219 
   219 
   220 context idom
   220 context idom
   221 begin
   221 begin
   231   "inverse q = Abs_fract (\<Union>x \<in> Rep_fract q.
   231   "inverse q = Abs_fract (\<Union>x \<in> Rep_fract q.
   232      fractrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
   232      fractrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
   233 
   233 
   234 lemma inverse_fract [simp]: "inverse (Fract a b) = Fract (b::'a::idom) a"
   234 lemma inverse_fract [simp]: "inverse (Fract a b) = Fract (b::'a::idom) a"
   235 proof -
   235 proof -
   236   have *: "\<And>x. (0::'a) = x \<longleftrightarrow> x = 0" by auto
   236   have *: "\<And>x. (0::'a) = x \<longleftrightarrow> x = 0"
       
   237     by auto
   237   have "(\<lambda>x. fractrel `` {if fst x = 0 then (0, 1) else (snd x, fst x :: 'a)}) respects fractrel"
   238   have "(\<lambda>x. fractrel `` {if fst x = 0 then (0, 1) else (snd x, fst x :: 'a)}) respects fractrel"
   238     by (auto simp add: congruent_def * algebra_simps)
   239     by (auto simp add: congruent_def * algebra_simps)
   239   then show ?thesis by (simp add: Fract_def inverse_fract_def UN_fractrel)
   240   then show ?thesis
       
   241     by (simp add: Fract_def inverse_fract_def UN_fractrel)
   240 qed
   242 qed
   241 
   243 
   242 definition divide_fract_def: "q / r = q * inverse (r:: 'a fract)"
   244 definition divide_fract_def: "q / r = q * inverse (r:: 'a fract)"
   243 
   245 
   244 lemma divide_fract [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
   246 lemma divide_fract [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
   274   assume eq1: "a * b' = a' * b"
   276   assume eq1: "a * b' = a' * b"
   275   assume eq2: "c * d' = c' * d"
   277   assume eq2: "c * d' = c' * d"
   276 
   278 
   277   let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
   279   let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
   278   {
   280   {
   279     fix a b c d x :: 'a assume x: "x \<noteq> 0"
   281     fix a b c d x :: 'a
       
   282     assume x: "x \<noteq> 0"
   280     have "?le a b c d = ?le (a * x) (b * x) c d"
   283     have "?le a b c d = ?le (a * x) (b * x) c d"
   281     proof -
   284     proof -
   282       from x have "0 < x * x" by (auto simp add: zero_less_mult_iff)
   285       from x have "0 < x * x"
       
   286         by (auto simp add: zero_less_mult_iff)
   283       then have "?le a b c d =
   287       then have "?le a b c d =
   284           ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
   288           ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
   285         by (simp add: mult_le_cancel_right)
   289         by (simp add: mult_le_cancel_right)
   286       also have "... = ?le (a * x) (b * x) c d"
   290       also have "... = ?le (a * x) (b * x) c d"
   287         by (simp add: mult_ac)
   291         by (simp add: mult_ac)
   313     {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})"
   317     {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})"
   314 
   318 
   315 definition less_fract_def: "z < (w::'a fract) \<longleftrightarrow> z \<le> w \<and> \<not> w \<le> z"
   319 definition less_fract_def: "z < (w::'a fract) \<longleftrightarrow> z \<le> w \<and> \<not> w \<le> z"
   316 
   320 
   317 lemma le_fract [simp]:
   321 lemma le_fract [simp]:
   318   assumes "b \<noteq> 0" and "d \<noteq> 0"
   322   assumes "b \<noteq> 0"
       
   323     and "d \<noteq> 0"
   319   shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
   324   shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
   320   by (simp add: Fract_def le_fract_def le_congruent2 UN_fractrel2 assms)
   325   by (simp add: Fract_def le_fract_def le_congruent2 UN_fractrel2 assms)
   321 
   326 
   322 lemma less_fract [simp]:
   327 lemma less_fract [simp]:
   323   assumes "b \<noteq> 0" and "d \<noteq> 0"
   328   assumes "b \<noteq> 0"
       
   329     and "d \<noteq> 0"
   324   shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
   330   shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
   325   by (simp add: less_fract_def less_le_not_le mult_ac assms)
   331   by (simp add: less_fract_def less_le_not_le mult_ac assms)
   326 
   332 
   327 instance
   333 instance
   328 proof
   334 proof
   329   fix q r s :: "'a fract"
   335   fix q r s :: "'a fract"
   330   assume "q \<le> r" and "r \<le> s" thus "q \<le> s"
   336   assume "q \<le> r" and "r \<le> s"
       
   337   then show "q \<le> s"
   331   proof (induct q, induct r, induct s)
   338   proof (induct q, induct r, induct s)
   332     fix a b c d e f :: 'a
   339     fix a b c d e f :: 'a
   333     assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
   340     assume neq: "b \<noteq> 0" "d \<noteq> 0" "f \<noteq> 0"
   334     assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract e f"
   341     assume 1: "Fract a b \<le> Fract c d"
       
   342     assume 2: "Fract c d \<le> Fract e f"
   335     show "Fract a b \<le> Fract e f"
   343     show "Fract a b \<le> Fract e f"
   336     proof -
   344     proof -
   337       from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
   345       from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
   338         by (auto simp add: zero_less_mult_iff linorder_neq_iff)
   346         by (auto simp add: zero_less_mult_iff linorder_neq_iff)
   339       have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
   347       have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
   357       with neq show ?thesis by simp
   365       with neq show ?thesis by simp
   358     qed
   366     qed
   359   qed
   367   qed
   360 next
   368 next
   361   fix q r :: "'a fract"
   369   fix q r :: "'a fract"
   362   assume "q \<le> r" and "r \<le> q" thus "q = r"
   370   assume "q \<le> r" and "r \<le> q"
       
   371   then show "q = r"
   363   proof (induct q, induct r)
   372   proof (induct q, induct r)
   364     fix a b c d :: 'a
   373     fix a b c d :: 'a
   365     assume neq: "b \<noteq> 0"  "d \<noteq> 0"
   374     assume neq: "b \<noteq> 0" "d \<noteq> 0"
   366     assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract a b"
   375     assume 1: "Fract a b \<le> Fract c d"
       
   376     assume 2: "Fract c d \<le> Fract a b"
   367     show "Fract a b = Fract c d"
   377     show "Fract a b = Fract c d"
   368     proof -
   378     proof -
   369       from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
   379       from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
   370         by simp
   380         by simp
   371       also have "... \<le> (a * d) * (b * d)"
   381       also have "... \<le> (a * d) * (b * d)"
   372       proof -
   382       proof -
   373         from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
   383         from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
   374           by simp
   384           by simp
   375         thus ?thesis by (simp only: mult_ac)
   385         then show ?thesis by (simp only: mult_ac)
   376       qed
   386       qed
   377       finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
   387       finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
   378       moreover from neq have "b * d \<noteq> 0" by simp
   388       moreover from neq have "b * d \<noteq> 0" by simp
   379       ultimately have "a * d = c * b" by simp
   389       ultimately have "a * d = c * b" by simp
   380       with neq show ?thesis by (simp add: eq_fract)
   390       with neq show ?thesis by (simp add: eq_fract)
   391        (simp add: mult_commute, rule linorder_linear)
   401        (simp add: mult_commute, rule linorder_linear)
   392 qed
   402 qed
   393 
   403 
   394 end
   404 end
   395 
   405 
   396 instantiation fract :: (linordered_idom) "{distrib_lattice, abs_if, sgn_if}"
   406 instantiation fract :: (linordered_idom) "{distrib_lattice,abs_if,sgn_if}"
   397 begin
   407 begin
   398 
   408 
   399 definition abs_fract_def: "\<bar>q\<bar> = (if q < 0 then -q else (q::'a fract))"
   409 definition abs_fract_def: "\<bar>q\<bar> = (if q < 0 then -q else (q::'a fract))"
   400 
   410 
   401 definition sgn_fract_def:
   411 definition sgn_fract_def:
   402   "sgn (q::'a fract) = (if q=0 then 0 else if 0<q then 1 else - 1)"
   412   "sgn (q::'a fract) = (if q = 0 then 0 else if 0 < q then 1 else - 1)"
   403 
   413 
   404 theorem abs_fract [simp]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
   414 theorem abs_fract [simp]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
   405   by (auto simp add: abs_fract_def Zero_fract_def le_less
   415   by (auto simp add: abs_fract_def Zero_fract_def le_less
   406       eq_fract zero_less_mult_iff mult_less_0_iff split: abs_split)
   416       eq_fract zero_less_mult_iff mult_less_0_iff split: abs_split)
   407 
   417 
   442   fix q r s :: "'a fract"
   452   fix q r s :: "'a fract"
   443   assume "q < r" and "0 < s"
   453   assume "q < r" and "0 < s"
   444   then show "s * q < s * r"
   454   then show "s * q < s * r"
   445   proof (induct q, induct r, induct s)
   455   proof (induct q, induct r, induct s)
   446     fix a b c d e f :: 'a
   456     fix a b c d e f :: 'a
   447     assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
   457     assume neq: "b \<noteq> 0" "d \<noteq> 0" "f \<noteq> 0"
   448     assume le: "Fract a b < Fract c d"
   458     assume le: "Fract a b < Fract c d"
   449     assume gt: "0 < Fract e f"
   459     assume gt: "0 < Fract e f"
   450     show "Fract e f * Fract a b < Fract e f * Fract c d"
   460     show "Fract e f * Fract a b < Fract e f * Fract c d"
   451     proof -
   461     proof -
   452       let ?E = "e * f" and ?F = "f * f"
   462       let ?E = "e * f" and ?F = "f * f"
   467 lemma fract_induct_pos [case_names Fract]:
   477 lemma fract_induct_pos [case_names Fract]:
   468   fixes P :: "'a::linordered_idom fract \<Rightarrow> bool"
   478   fixes P :: "'a::linordered_idom fract \<Rightarrow> bool"
   469   assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
   479   assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
   470   shows "P q"
   480   shows "P q"
   471 proof (cases q)
   481 proof (cases q)
   472   have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
   482   case (Fract a b)
   473   proof -
   483   {
   474     fix a::'a and b::'a
   484     fix a b :: 'a
   475     assume b: "b < 0"
   485     assume b: "b < 0"
   476     then have "0 < -b" by simp
   486     have "P (Fract a b)"
   477     then have "P (Fract (-a) (-b))" by (rule step)
   487     proof -
   478     thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
   488       from b have "0 < - b" by simp
   479   qed
   489       then have "P (Fract (- a) (- b))"
   480   case (Fract a b)
   490         by (rule step)
   481   thus "P q" by (force simp add: linorder_neq_iff step step')
   491       then show "P (Fract a b)"
       
   492         by (simp add: order_less_imp_not_eq [OF b])
       
   493     qed
       
   494   }
       
   495   with Fract show "P q"
       
   496     by (auto simp add: linorder_neq_iff step)
   482 qed
   497 qed
   483 
   498 
   484 lemma zero_less_Fract_iff: "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
   499 lemma zero_less_Fract_iff: "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
   485   by (auto simp add: Zero_fract_def zero_less_mult_iff)
   500   by (auto simp add: Zero_fract_def zero_less_mult_iff)
   486 
   501