src/HOL/Library/Formal_Power_Series.thy
changeset 65417 fc41a5650fb1
parent 65416 f707dbcf11e3
child 65418 c821f1f3d92d
child 65419 457e4fbed731
equal deleted inserted replaced
65416:f707dbcf11e3 65417:fc41a5650fb1
     1 (*  Title:      HOL/Library/Formal_Power_Series.thy
       
     2     Author:     Amine Chaieb, University of Cambridge
       
     3 *)
       
     4 
       
     5 section \<open>A formalization of formal power series\<close>
       
     6 
       
     7 theory Formal_Power_Series
       
     8 imports Complex_Main "~~/src/HOL/Number_Theory/Euclidean_Algorithm"
       
     9 begin
       
    10 
       
    11 
       
    12 subsection \<open>The type of formal power series\<close>
       
    13 
       
    14 typedef 'a fps = "{f :: nat \<Rightarrow> 'a. True}"
       
    15   morphisms fps_nth Abs_fps
       
    16   by simp
       
    17 
       
    18 notation fps_nth (infixl "$" 75)
       
    19 
       
    20 lemma expand_fps_eq: "p = q \<longleftrightarrow> (\<forall>n. p $ n = q $ n)"
       
    21   by (simp add: fps_nth_inject [symmetric] fun_eq_iff)
       
    22 
       
    23 lemma fps_ext: "(\<And>n. p $ n = q $ n) \<Longrightarrow> p = q"
       
    24   by (simp add: expand_fps_eq)
       
    25 
       
    26 lemma fps_nth_Abs_fps [simp]: "Abs_fps f $ n = f n"
       
    27   by (simp add: Abs_fps_inverse)
       
    28 
       
    29 text \<open>Definition of the basic elements 0 and 1 and the basic operations of addition,
       
    30   negation and multiplication.\<close>
       
    31 
       
    32 instantiation fps :: (zero) zero
       
    33 begin
       
    34   definition fps_zero_def: "0 = Abs_fps (\<lambda>n. 0)"
       
    35   instance ..
       
    36 end
       
    37 
       
    38 lemma fps_zero_nth [simp]: "0 $ n = 0"
       
    39   unfolding fps_zero_def by simp
       
    40 
       
    41 instantiation fps :: ("{one, zero}") one
       
    42 begin
       
    43   definition fps_one_def: "1 = Abs_fps (\<lambda>n. if n = 0 then 1 else 0)"
       
    44   instance ..
       
    45 end
       
    46 
       
    47 lemma fps_one_nth [simp]: "1 $ n = (if n = 0 then 1 else 0)"
       
    48   unfolding fps_one_def by simp
       
    49 
       
    50 instantiation fps :: (plus) plus
       
    51 begin
       
    52   definition fps_plus_def: "op + = (\<lambda>f g. Abs_fps (\<lambda>n. f $ n + g $ n))"
       
    53   instance ..
       
    54 end
       
    55 
       
    56 lemma fps_add_nth [simp]: "(f + g) $ n = f $ n + g $ n"
       
    57   unfolding fps_plus_def by simp
       
    58 
       
    59 instantiation fps :: (minus) minus
       
    60 begin
       
    61   definition fps_minus_def: "op - = (\<lambda>f g. Abs_fps (\<lambda>n. f $ n - g $ n))"
       
    62   instance ..
       
    63 end
       
    64 
       
    65 lemma fps_sub_nth [simp]: "(f - g) $ n = f $ n - g $ n"
       
    66   unfolding fps_minus_def by simp
       
    67 
       
    68 instantiation fps :: (uminus) uminus
       
    69 begin
       
    70   definition fps_uminus_def: "uminus = (\<lambda>f. Abs_fps (\<lambda>n. - (f $ n)))"
       
    71   instance ..
       
    72 end
       
    73 
       
    74 lemma fps_neg_nth [simp]: "(- f) $ n = - (f $ n)"
       
    75   unfolding fps_uminus_def by simp
       
    76 
       
    77 instantiation fps :: ("{comm_monoid_add, times}") times
       
    78 begin
       
    79   definition fps_times_def: "op * = (\<lambda>f g. Abs_fps (\<lambda>n. \<Sum>i=0..n. f $ i * g $ (n - i)))"
       
    80   instance ..
       
    81 end
       
    82 
       
    83 lemma fps_mult_nth: "(f * g) $ n = (\<Sum>i=0..n. f$i * g$(n - i))"
       
    84   unfolding fps_times_def by simp
       
    85 
       
    86 lemma fps_mult_nth_0 [simp]: "(f * g) $ 0 = f $ 0 * g $ 0"
       
    87   unfolding fps_times_def by simp
       
    88 
       
    89 declare atLeastAtMost_iff [presburger]
       
    90 declare Bex_def [presburger]
       
    91 declare Ball_def [presburger]
       
    92 
       
    93 lemma mult_delta_left:
       
    94   fixes x y :: "'a::mult_zero"
       
    95   shows "(if b then x else 0) * y = (if b then x * y else 0)"
       
    96   by simp
       
    97 
       
    98 lemma mult_delta_right:
       
    99   fixes x y :: "'a::mult_zero"
       
   100   shows "x * (if b then y else 0) = (if b then x * y else 0)"
       
   101   by simp
       
   102 
       
   103 lemma cond_value_iff: "f (if b then x else y) = (if b then f x else f y)"
       
   104   by auto
       
   105 
       
   106 lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)"
       
   107   by auto
       
   108 
       
   109 
       
   110 subsection \<open>Formal power series form a commutative ring with unity, if the range of sequences
       
   111   they represent is a commutative ring with unity\<close>
       
   112 
       
   113 instance fps :: (semigroup_add) semigroup_add
       
   114 proof
       
   115   fix a b c :: "'a fps"
       
   116   show "a + b + c = a + (b + c)"
       
   117     by (simp add: fps_ext add.assoc)
       
   118 qed
       
   119 
       
   120 instance fps :: (ab_semigroup_add) ab_semigroup_add
       
   121 proof
       
   122   fix a b :: "'a fps"
       
   123   show "a + b = b + a"
       
   124     by (simp add: fps_ext add.commute)
       
   125 qed
       
   126 
       
   127 lemma fps_mult_assoc_lemma:
       
   128   fixes k :: nat
       
   129     and f :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
       
   130   shows "(\<Sum>j=0..k. \<Sum>i=0..j. f i (j - i) (n - j)) =
       
   131          (\<Sum>j=0..k. \<Sum>i=0..k - j. f j i (n - j - i))"
       
   132   by (induct k) (simp_all add: Suc_diff_le sum.distrib add.assoc)
       
   133 
       
   134 instance fps :: (semiring_0) semigroup_mult
       
   135 proof
       
   136   fix a b c :: "'a fps"
       
   137   show "(a * b) * c = a * (b * c)"
       
   138   proof (rule fps_ext)
       
   139     fix n :: nat
       
   140     have "(\<Sum>j=0..n. \<Sum>i=0..j. a$i * b$(j - i) * c$(n - j)) =
       
   141           (\<Sum>j=0..n. \<Sum>i=0..n - j. a$j * b$i * c$(n - j - i))"
       
   142       by (rule fps_mult_assoc_lemma)
       
   143     then show "((a * b) * c) $ n = (a * (b * c)) $ n"
       
   144       by (simp add: fps_mult_nth sum_distrib_left sum_distrib_right mult.assoc)
       
   145   qed
       
   146 qed
       
   147 
       
   148 lemma fps_mult_commute_lemma:
       
   149   fixes n :: nat
       
   150     and f :: "nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
       
   151   shows "(\<Sum>i=0..n. f i (n - i)) = (\<Sum>i=0..n. f (n - i) i)"
       
   152   by (rule sum.reindex_bij_witness[where i="op - n" and j="op - n"]) auto
       
   153 
       
   154 instance fps :: (comm_semiring_0) ab_semigroup_mult
       
   155 proof
       
   156   fix a b :: "'a fps"
       
   157   show "a * b = b * a"
       
   158   proof (rule fps_ext)
       
   159     fix n :: nat
       
   160     have "(\<Sum>i=0..n. a$i * b$(n - i)) = (\<Sum>i=0..n. a$(n - i) * b$i)"
       
   161       by (rule fps_mult_commute_lemma)
       
   162     then show "(a * b) $ n = (b * a) $ n"
       
   163       by (simp add: fps_mult_nth mult.commute)
       
   164   qed
       
   165 qed
       
   166 
       
   167 instance fps :: (monoid_add) monoid_add
       
   168 proof
       
   169   fix a :: "'a fps"
       
   170   show "0 + a = a" by (simp add: fps_ext)
       
   171   show "a + 0 = a" by (simp add: fps_ext)
       
   172 qed
       
   173 
       
   174 instance fps :: (comm_monoid_add) comm_monoid_add
       
   175 proof
       
   176   fix a :: "'a fps"
       
   177   show "0 + a = a" by (simp add: fps_ext)
       
   178 qed
       
   179 
       
   180 instance fps :: (semiring_1) monoid_mult
       
   181 proof
       
   182   fix a :: "'a fps"
       
   183   show "1 * a = a"
       
   184     by (simp add: fps_ext fps_mult_nth mult_delta_left sum.delta)
       
   185   show "a * 1 = a"
       
   186     by (simp add: fps_ext fps_mult_nth mult_delta_right sum.delta')
       
   187 qed
       
   188 
       
   189 instance fps :: (cancel_semigroup_add) cancel_semigroup_add
       
   190 proof
       
   191   fix a b c :: "'a fps"
       
   192   show "b = c" if "a + b = a + c"
       
   193     using that by (simp add: expand_fps_eq)
       
   194   show "b = c" if "b + a = c + a"
       
   195     using that by (simp add: expand_fps_eq)
       
   196 qed
       
   197 
       
   198 instance fps :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add
       
   199 proof
       
   200   fix a b c :: "'a fps"
       
   201   show "a + b - a = b"
       
   202     by (simp add: expand_fps_eq)
       
   203   show "a - b - c = a - (b + c)"
       
   204     by (simp add: expand_fps_eq diff_diff_eq)
       
   205 qed
       
   206 
       
   207 instance fps :: (cancel_comm_monoid_add) cancel_comm_monoid_add ..
       
   208 
       
   209 instance fps :: (group_add) group_add
       
   210 proof
       
   211   fix a b :: "'a fps"
       
   212   show "- a + a = 0" by (simp add: fps_ext)
       
   213   show "a + - b = a - b" by (simp add: fps_ext)
       
   214 qed
       
   215 
       
   216 instance fps :: (ab_group_add) ab_group_add
       
   217 proof
       
   218   fix a b :: "'a fps"
       
   219   show "- a + a = 0" by (simp add: fps_ext)
       
   220   show "a - b = a + - b" by (simp add: fps_ext)
       
   221 qed
       
   222 
       
   223 instance fps :: (zero_neq_one) zero_neq_one
       
   224   by standard (simp add: expand_fps_eq)
       
   225 
       
   226 instance fps :: (semiring_0) semiring
       
   227 proof
       
   228   fix a b c :: "'a fps"
       
   229   show "(a + b) * c = a * c + b * c"
       
   230     by (simp add: expand_fps_eq fps_mult_nth distrib_right sum.distrib)
       
   231   show "a * (b + c) = a * b + a * c"
       
   232     by (simp add: expand_fps_eq fps_mult_nth distrib_left sum.distrib)
       
   233 qed
       
   234 
       
   235 instance fps :: (semiring_0) semiring_0
       
   236 proof
       
   237   fix a :: "'a fps"
       
   238   show "0 * a = 0"
       
   239     by (simp add: fps_ext fps_mult_nth)
       
   240   show "a * 0 = 0"
       
   241     by (simp add: fps_ext fps_mult_nth)
       
   242 qed
       
   243 
       
   244 instance fps :: (semiring_0_cancel) semiring_0_cancel ..
       
   245 
       
   246 instance fps :: (semiring_1) semiring_1 ..
       
   247 
       
   248 
       
   249 subsection \<open>Selection of the nth power of the implicit variable in the infinite sum\<close>
       
   250 
       
   251 lemma fps_square_nth: "(f^2) $ n = (\<Sum>k\<le>n. f $ k * f $ (n - k))"
       
   252   by (simp add: power2_eq_square fps_mult_nth atLeast0AtMost)
       
   253 
       
   254 lemma fps_nonzero_nth: "f \<noteq> 0 \<longleftrightarrow> (\<exists> n. f $n \<noteq> 0)"
       
   255   by (simp add: expand_fps_eq)
       
   256 
       
   257 lemma fps_nonzero_nth_minimal: "f \<noteq> 0 \<longleftrightarrow> (\<exists>n. f $ n \<noteq> 0 \<and> (\<forall>m < n. f $ m = 0))"
       
   258   (is "?lhs \<longleftrightarrow> ?rhs")
       
   259 proof
       
   260   let ?n = "LEAST n. f $ n \<noteq> 0"
       
   261   show ?rhs if ?lhs
       
   262   proof -
       
   263     from that have "\<exists>n. f $ n \<noteq> 0"
       
   264       by (simp add: fps_nonzero_nth)
       
   265     then have "f $ ?n \<noteq> 0"
       
   266       by (rule LeastI_ex)
       
   267     moreover have "\<forall>m<?n. f $ m = 0"
       
   268       by (auto dest: not_less_Least)
       
   269     ultimately have "f $ ?n \<noteq> 0 \<and> (\<forall>m<?n. f $ m = 0)" ..
       
   270     then show ?thesis ..
       
   271   qed
       
   272   show ?lhs if ?rhs
       
   273     using that by (auto simp add: expand_fps_eq)
       
   274 qed
       
   275 
       
   276 lemma fps_eq_iff: "f = g \<longleftrightarrow> (\<forall>n. f $ n = g $n)"
       
   277   by (rule expand_fps_eq)
       
   278 
       
   279 lemma fps_sum_nth: "sum f S $ n = sum (\<lambda>k. (f k) $ n) S"
       
   280 proof (cases "finite S")
       
   281   case True
       
   282   then show ?thesis by (induct set: finite) auto
       
   283 next
       
   284   case False
       
   285   then show ?thesis by simp
       
   286 qed
       
   287 
       
   288 
       
   289 subsection \<open>Injection of the basic ring elements and multiplication by scalars\<close>
       
   290 
       
   291 definition "fps_const c = Abs_fps (\<lambda>n. if n = 0 then c else 0)"
       
   292 
       
   293 lemma fps_nth_fps_const [simp]: "fps_const c $ n = (if n = 0 then c else 0)"
       
   294   unfolding fps_const_def by simp
       
   295 
       
   296 lemma fps_const_0_eq_0 [simp]: "fps_const 0 = 0"
       
   297   by (simp add: fps_ext)
       
   298 
       
   299 lemma fps_const_1_eq_1 [simp]: "fps_const 1 = 1"
       
   300   by (simp add: fps_ext)
       
   301 
       
   302 lemma fps_const_neg [simp]: "- (fps_const (c::'a::ring)) = fps_const (- c)"
       
   303   by (simp add: fps_ext)
       
   304 
       
   305 lemma fps_const_add [simp]: "fps_const (c::'a::monoid_add) + fps_const d = fps_const (c + d)"
       
   306   by (simp add: fps_ext)
       
   307 
       
   308 lemma fps_const_sub [simp]: "fps_const (c::'a::group_add) - fps_const d = fps_const (c - d)"
       
   309   by (simp add: fps_ext)
       
   310 
       
   311 lemma fps_const_mult[simp]: "fps_const (c::'a::ring) * fps_const d = fps_const (c * d)"
       
   312   by (simp add: fps_eq_iff fps_mult_nth sum.neutral)
       
   313 
       
   314 lemma fps_const_add_left: "fps_const (c::'a::monoid_add) + f =
       
   315     Abs_fps (\<lambda>n. if n = 0 then c + f$0 else f$n)"
       
   316   by (simp add: fps_ext)
       
   317 
       
   318 lemma fps_const_add_right: "f + fps_const (c::'a::monoid_add) =
       
   319     Abs_fps (\<lambda>n. if n = 0 then f$0 + c else f$n)"
       
   320   by (simp add: fps_ext)
       
   321 
       
   322 lemma fps_const_mult_left: "fps_const (c::'a::semiring_0) * f = Abs_fps (\<lambda>n. c * f$n)"
       
   323   unfolding fps_eq_iff fps_mult_nth
       
   324   by (simp add: fps_const_def mult_delta_left sum.delta)
       
   325 
       
   326 lemma fps_const_mult_right: "f * fps_const (c::'a::semiring_0) = Abs_fps (\<lambda>n. f$n * c)"
       
   327   unfolding fps_eq_iff fps_mult_nth
       
   328   by (simp add: fps_const_def mult_delta_right sum.delta')
       
   329 
       
   330 lemma fps_mult_left_const_nth [simp]: "(fps_const (c::'a::semiring_1) * f)$n = c* f$n"
       
   331   by (simp add: fps_mult_nth mult_delta_left sum.delta)
       
   332 
       
   333 lemma fps_mult_right_const_nth [simp]: "(f * fps_const (c::'a::semiring_1))$n = f$n * c"
       
   334   by (simp add: fps_mult_nth mult_delta_right sum.delta')
       
   335 
       
   336 
       
   337 subsection \<open>Formal power series form an integral domain\<close>
       
   338 
       
   339 instance fps :: (ring) ring ..
       
   340 
       
   341 instance fps :: (ring_1) ring_1
       
   342   by (intro_classes, auto simp add: distrib_right)
       
   343 
       
   344 instance fps :: (comm_ring_1) comm_ring_1
       
   345   by (intro_classes, auto simp add: distrib_right)
       
   346 
       
   347 instance fps :: (ring_no_zero_divisors) ring_no_zero_divisors
       
   348 proof
       
   349   fix a b :: "'a fps"
       
   350   assume "a \<noteq> 0" and "b \<noteq> 0"
       
   351   then obtain i j where i: "a $ i \<noteq> 0" "\<forall>k<i. a $ k = 0" and j: "b $ j \<noteq> 0" "\<forall>k<j. b $ k =0"
       
   352     unfolding fps_nonzero_nth_minimal
       
   353     by blast+
       
   354   have "(a * b) $ (i + j) = (\<Sum>k=0..i+j. a $ k * b $ (i + j - k))"
       
   355     by (rule fps_mult_nth)
       
   356   also have "\<dots> = (a $ i * b $ (i + j - i)) + (\<Sum>k\<in>{0..i+j} - {i}. a $ k * b $ (i + j - k))"
       
   357     by (rule sum.remove) simp_all
       
   358   also have "(\<Sum>k\<in>{0..i+j}-{i}. a $ k * b $ (i + j - k)) = 0"
       
   359   proof (rule sum.neutral [rule_format])
       
   360     fix k assume "k \<in> {0..i+j} - {i}"
       
   361     then have "k < i \<or> i+j-k < j"
       
   362       by auto
       
   363     then show "a $ k * b $ (i + j - k) = 0"
       
   364       using i j by auto
       
   365   qed
       
   366   also have "a $ i * b $ (i + j - i) + 0 = a $ i * b $ j"
       
   367     by simp
       
   368   also have "a $ i * b $ j \<noteq> 0"
       
   369     using i j by simp
       
   370   finally have "(a*b) $ (i+j) \<noteq> 0" .
       
   371   then show "a * b \<noteq> 0"
       
   372     unfolding fps_nonzero_nth by blast
       
   373 qed
       
   374 
       
   375 instance fps :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors ..
       
   376 
       
   377 instance fps :: (idom) idom ..
       
   378 
       
   379 lemma numeral_fps_const: "numeral k = fps_const (numeral k)"
       
   380   by (induct k) (simp_all only: numeral.simps fps_const_1_eq_1
       
   381     fps_const_add [symmetric])
       
   382 
       
   383 lemma neg_numeral_fps_const:
       
   384   "(- numeral k :: 'a :: ring_1 fps) = fps_const (- numeral k)"
       
   385   by (simp add: numeral_fps_const)
       
   386 
       
   387 lemma fps_numeral_nth: "numeral n $ i = (if i = 0 then numeral n else 0)"
       
   388   by (simp add: numeral_fps_const)
       
   389 
       
   390 lemma fps_numeral_nth_0 [simp]: "numeral n $ 0 = numeral n"
       
   391   by (simp add: numeral_fps_const)
       
   392 
       
   393 lemma fps_of_nat: "fps_const (of_nat c) = of_nat c"
       
   394   by (induction c) (simp_all add: fps_const_add [symmetric] del: fps_const_add)
       
   395 
       
   396 lemma numeral_neq_fps_zero [simp]: "(numeral f :: 'a :: field_char_0 fps) \<noteq> 0"
       
   397 proof
       
   398   assume "numeral f = (0 :: 'a fps)"
       
   399   from arg_cong[of _ _ "\<lambda>F. F $ 0", OF this] show False by simp
       
   400 qed 
       
   401 
       
   402 
       
   403 subsection \<open>The eXtractor series X\<close>
       
   404 
       
   405 lemma minus_one_power_iff: "(- (1::'a::comm_ring_1)) ^ n = (if even n then 1 else - 1)"
       
   406   by (induct n) auto
       
   407 
       
   408 definition "X = Abs_fps (\<lambda>n. if n = 1 then 1 else 0)"
       
   409 
       
   410 lemma X_mult_nth [simp]:
       
   411   "(X * (f :: 'a::semiring_1 fps)) $n = (if n = 0 then 0 else f $ (n - 1))"
       
   412 proof (cases "n = 0")
       
   413   case False
       
   414   have "(X * f) $n = (\<Sum>i = 0..n. X $ i * f $ (n - i))"
       
   415     by (simp add: fps_mult_nth)
       
   416   also have "\<dots> = f $ (n - 1)"
       
   417     using False by (simp add: X_def mult_delta_left sum.delta)
       
   418   finally show ?thesis
       
   419     using False by simp
       
   420 next
       
   421   case True
       
   422   then show ?thesis
       
   423     by (simp add: fps_mult_nth X_def)
       
   424 qed
       
   425 
       
   426 lemma X_mult_right_nth[simp]:
       
   427   "((a::'a::semiring_1 fps) * X) $ n = (if n = 0 then 0 else a $ (n - 1))"
       
   428 proof -
       
   429   have "(a * X) $ n = (\<Sum>i = 0..n. a $ i * (if n - i = Suc 0 then 1 else 0))"
       
   430     by (simp add: fps_times_def X_def)
       
   431   also have "\<dots> = (\<Sum>i = 0..n. if i = n - 1 then if n = 0 then 0 else a $ i else 0)"
       
   432     by (intro sum.cong) auto
       
   433   also have "\<dots> = (if n = 0 then 0 else a $ (n - 1))" by (simp add: sum.delta)
       
   434   finally show ?thesis .
       
   435 qed
       
   436 
       
   437 lemma fps_mult_X_commute: "X * (a :: 'a :: semiring_1 fps) = a * X" 
       
   438   by (simp add: fps_eq_iff)
       
   439 
       
   440 lemma X_power_iff: "X^k = Abs_fps (\<lambda>n. if n = k then 1::'a::comm_ring_1 else 0)"
       
   441 proof (induct k)
       
   442   case 0
       
   443   then show ?case by (simp add: X_def fps_eq_iff)
       
   444 next
       
   445   case (Suc k)
       
   446   have "(X^Suc k) $ m = (if m = Suc k then 1::'a else 0)" for m
       
   447   proof -
       
   448     have "(X^Suc k) $ m = (if m = 0 then 0 else (X^k) $ (m - 1))"
       
   449       by (simp del: One_nat_def)
       
   450     then show ?thesis
       
   451       using Suc.hyps by (auto cong del: if_weak_cong)
       
   452   qed
       
   453   then show ?case
       
   454     by (simp add: fps_eq_iff)
       
   455 qed
       
   456 
       
   457 lemma X_nth[simp]: "X$n = (if n = 1 then 1 else 0)"
       
   458   by (simp add: X_def)
       
   459 
       
   460 lemma X_power_nth[simp]: "(X^k) $n = (if n = k then 1 else 0::'a::comm_ring_1)"
       
   461   by (simp add: X_power_iff)
       
   462 
       
   463 lemma X_power_mult_nth: "(X^k * (f :: 'a::comm_ring_1 fps)) $n = (if n < k then 0 else f $ (n - k))"
       
   464   apply (induct k arbitrary: n)
       
   465   apply simp
       
   466   unfolding power_Suc mult.assoc
       
   467   apply (case_tac n)
       
   468   apply auto
       
   469   done
       
   470 
       
   471 lemma X_power_mult_right_nth:
       
   472     "((f :: 'a::comm_ring_1 fps) * X^k) $n = (if n < k then 0 else f $ (n - k))"
       
   473   by (metis X_power_mult_nth mult.commute)
       
   474 
       
   475 
       
   476 lemma X_neq_fps_const [simp]: "(X :: 'a :: zero_neq_one fps) \<noteq> fps_const c"
       
   477 proof
       
   478   assume "(X::'a fps) = fps_const (c::'a)"
       
   479   hence "X$1 = (fps_const (c::'a))$1" by (simp only:)
       
   480   thus False by auto
       
   481 qed
       
   482 
       
   483 lemma X_neq_zero [simp]: "(X :: 'a :: zero_neq_one fps) \<noteq> 0"
       
   484   by (simp only: fps_const_0_eq_0[symmetric] X_neq_fps_const) simp
       
   485 
       
   486 lemma X_neq_one [simp]: "(X :: 'a :: zero_neq_one fps) \<noteq> 1"
       
   487   by (simp only: fps_const_1_eq_1[symmetric] X_neq_fps_const) simp
       
   488 
       
   489 lemma X_neq_numeral [simp]: "(X :: 'a :: {semiring_1,zero_neq_one} fps) \<noteq> numeral c"
       
   490   by (simp only: numeral_fps_const X_neq_fps_const) simp
       
   491 
       
   492 lemma X_pow_eq_X_pow_iff [simp]:
       
   493   "(X :: ('a :: {comm_ring_1}) fps) ^ m = X ^ n \<longleftrightarrow> m = n"
       
   494 proof
       
   495   assume "(X :: 'a fps) ^ m = X ^ n"
       
   496   hence "(X :: 'a fps) ^ m $ m = X ^ n $ m" by (simp only:)
       
   497   thus "m = n" by (simp split: if_split_asm)
       
   498 qed simp_all
       
   499 
       
   500 
       
   501 subsection \<open>Subdegrees\<close>
       
   502 
       
   503 definition subdegree :: "('a::zero) fps \<Rightarrow> nat" where
       
   504   "subdegree f = (if f = 0 then 0 else LEAST n. f$n \<noteq> 0)"
       
   505 
       
   506 lemma subdegreeI:
       
   507   assumes "f $ d \<noteq> 0" and "\<And>i. i < d \<Longrightarrow> f $ i = 0"
       
   508   shows   "subdegree f = d"
       
   509 proof-
       
   510   from assms(1) have "f \<noteq> 0" by auto
       
   511   moreover from assms(1) have "(LEAST i. f $ i \<noteq> 0) = d"
       
   512   proof (rule Least_equality)
       
   513     fix e assume "f $ e \<noteq> 0"
       
   514     with assms(2) have "\<not>(e < d)" by blast
       
   515     thus "e \<ge> d" by simp
       
   516   qed
       
   517   ultimately show ?thesis unfolding subdegree_def by simp
       
   518 qed
       
   519 
       
   520 lemma nth_subdegree_nonzero [simp,intro]: "f \<noteq> 0 \<Longrightarrow> f $ subdegree f \<noteq> 0"
       
   521 proof-
       
   522   assume "f \<noteq> 0"
       
   523   hence "subdegree f = (LEAST n. f $ n \<noteq> 0)" by (simp add: subdegree_def)
       
   524   also from \<open>f \<noteq> 0\<close> have "\<exists>n. f$n \<noteq> 0" using fps_nonzero_nth by blast
       
   525   from LeastI_ex[OF this] have "f $ (LEAST n. f $ n \<noteq> 0) \<noteq> 0" .
       
   526   finally show ?thesis .
       
   527 qed
       
   528 
       
   529 lemma nth_less_subdegree_zero [dest]: "n < subdegree f \<Longrightarrow> f $ n = 0"
       
   530 proof (cases "f = 0")
       
   531   assume "f \<noteq> 0" and less: "n < subdegree f"
       
   532   note less
       
   533   also from \<open>f \<noteq> 0\<close> have "subdegree f = (LEAST n. f $ n \<noteq> 0)" by (simp add: subdegree_def)
       
   534   finally show "f $ n = 0" using not_less_Least by blast
       
   535 qed simp_all
       
   536 
       
   537 lemma subdegree_geI:
       
   538   assumes "f \<noteq> 0" "\<And>i. i < n \<Longrightarrow> f$i = 0"
       
   539   shows   "subdegree f \<ge> n"
       
   540 proof (rule ccontr)
       
   541   assume "\<not>(subdegree f \<ge> n)"
       
   542   with assms(2) have "f $ subdegree f = 0" by simp
       
   543   moreover from assms(1) have "f $ subdegree f \<noteq> 0" by simp
       
   544   ultimately show False by contradiction
       
   545 qed
       
   546 
       
   547 lemma subdegree_greaterI:
       
   548   assumes "f \<noteq> 0" "\<And>i. i \<le> n \<Longrightarrow> f$i = 0"
       
   549   shows   "subdegree f > n"
       
   550 proof (rule ccontr)
       
   551   assume "\<not>(subdegree f > n)"
       
   552   with assms(2) have "f $ subdegree f = 0" by simp
       
   553   moreover from assms(1) have "f $ subdegree f \<noteq> 0" by simp
       
   554   ultimately show False by contradiction
       
   555 qed
       
   556 
       
   557 lemma subdegree_leI:
       
   558   "f $ n \<noteq> 0 \<Longrightarrow> subdegree f \<le> n"
       
   559   by (rule leI) auto
       
   560 
       
   561 
       
   562 lemma subdegree_0 [simp]: "subdegree 0 = 0"
       
   563   by (simp add: subdegree_def)
       
   564 
       
   565 lemma subdegree_1 [simp]: "subdegree (1 :: ('a :: zero_neq_one) fps) = 0"
       
   566   by (auto intro!: subdegreeI)
       
   567 
       
   568 lemma subdegree_X [simp]: "subdegree (X :: ('a :: zero_neq_one) fps) = 1"
       
   569   by (auto intro!: subdegreeI simp: X_def)
       
   570 
       
   571 lemma subdegree_fps_const [simp]: "subdegree (fps_const c) = 0"
       
   572   by (cases "c = 0") (auto intro!: subdegreeI)
       
   573 
       
   574 lemma subdegree_numeral [simp]: "subdegree (numeral n) = 0"
       
   575   by (simp add: numeral_fps_const)
       
   576 
       
   577 lemma subdegree_eq_0_iff: "subdegree f = 0 \<longleftrightarrow> f = 0 \<or> f $ 0 \<noteq> 0"
       
   578 proof (cases "f = 0")
       
   579   assume "f \<noteq> 0"
       
   580   thus ?thesis
       
   581     using nth_subdegree_nonzero[OF \<open>f \<noteq> 0\<close>] by (fastforce intro!: subdegreeI)
       
   582 qed simp_all
       
   583 
       
   584 lemma subdegree_eq_0 [simp]: "f $ 0 \<noteq> 0 \<Longrightarrow> subdegree f = 0"
       
   585   by (simp add: subdegree_eq_0_iff)
       
   586 
       
   587 lemma nth_subdegree_mult [simp]:
       
   588   fixes f g :: "('a :: {mult_zero,comm_monoid_add}) fps"
       
   589   shows "(f * g) $ (subdegree f + subdegree g) = f $ subdegree f * g $ subdegree g"
       
   590 proof-
       
   591   let ?n = "subdegree f + subdegree g"
       
   592   have "(f * g) $ ?n = (\<Sum>i=0..?n. f$i * g$(?n-i))"
       
   593     by (simp add: fps_mult_nth)
       
   594   also have "... = (\<Sum>i=0..?n. if i = subdegree f then f$i * g$(?n-i) else 0)"
       
   595   proof (intro sum.cong)
       
   596     fix x assume x: "x \<in> {0..?n}"
       
   597     hence "x = subdegree f \<or> x < subdegree f \<or> ?n - x < subdegree g" by auto
       
   598     thus "f $ x * g $ (?n - x) = (if x = subdegree f then f $ x * g $ (?n - x) else 0)"
       
   599       by (elim disjE conjE) auto
       
   600   qed auto
       
   601   also have "... = f $ subdegree f * g $ subdegree g" by (simp add: sum.delta)
       
   602   finally show ?thesis .
       
   603 qed
       
   604 
       
   605 lemma subdegree_mult [simp]:
       
   606   assumes "f \<noteq> 0" "g \<noteq> 0"
       
   607   shows "subdegree ((f :: ('a :: {ring_no_zero_divisors}) fps) * g) = subdegree f + subdegree g"
       
   608 proof (rule subdegreeI)
       
   609   let ?n = "subdegree f + subdegree g"
       
   610   have "(f * g) $ ?n = (\<Sum>i=0..?n. f$i * g$(?n-i))" by (simp add: fps_mult_nth)
       
   611   also have "... = (\<Sum>i=0..?n. if i = subdegree f then f$i * g$(?n-i) else 0)"
       
   612   proof (intro sum.cong)
       
   613     fix x assume x: "x \<in> {0..?n}"
       
   614     hence "x = subdegree f \<or> x < subdegree f \<or> ?n - x < subdegree g" by auto
       
   615     thus "f $ x * g $ (?n - x) = (if x = subdegree f then f $ x * g $ (?n - x) else 0)"
       
   616       by (elim disjE conjE) auto
       
   617   qed auto
       
   618   also have "... = f $ subdegree f * g $ subdegree g" by (simp add: sum.delta)
       
   619   also from assms have "... \<noteq> 0" by auto
       
   620   finally show "(f * g) $ (subdegree f + subdegree g) \<noteq> 0" .
       
   621 next
       
   622   fix m assume m: "m < subdegree f + subdegree g"
       
   623   have "(f * g) $ m = (\<Sum>i=0..m. f$i * g$(m-i))" by (simp add: fps_mult_nth)
       
   624   also have "... = (\<Sum>i=0..m. 0)"
       
   625   proof (rule sum.cong)
       
   626     fix i assume "i \<in> {0..m}"
       
   627     with m have "i < subdegree f \<or> m - i < subdegree g" by auto
       
   628     thus "f$i * g$(m-i) = 0" by (elim disjE) auto
       
   629   qed auto
       
   630   finally show "(f * g) $ m = 0" by simp
       
   631 qed
       
   632 
       
   633 lemma subdegree_power [simp]:
       
   634   "subdegree ((f :: ('a :: ring_1_no_zero_divisors) fps) ^ n) = n * subdegree f"
       
   635   by (cases "f = 0"; induction n) simp_all
       
   636 
       
   637 lemma subdegree_uminus [simp]:
       
   638   "subdegree (-(f::('a::group_add) fps)) = subdegree f"
       
   639   by (simp add: subdegree_def)
       
   640 
       
   641 lemma subdegree_minus_commute [simp]:
       
   642   "subdegree (f-(g::('a::group_add) fps)) = subdegree (g - f)"
       
   643 proof -
       
   644   have "f - g = -(g - f)" by simp
       
   645   also have "subdegree ... = subdegree (g - f)" by (simp only: subdegree_uminus)
       
   646   finally show ?thesis .
       
   647 qed
       
   648 
       
   649 lemma subdegree_add_ge:
       
   650   assumes "f \<noteq> -(g :: ('a :: {group_add}) fps)"
       
   651   shows   "subdegree (f + g) \<ge> min (subdegree f) (subdegree g)"
       
   652 proof (rule subdegree_geI)
       
   653   from assms show "f + g \<noteq> 0" by (subst (asm) eq_neg_iff_add_eq_0)
       
   654 next
       
   655   fix i assume "i < min (subdegree f) (subdegree g)"
       
   656   hence "f $ i = 0" and "g $ i = 0" by auto
       
   657   thus "(f + g) $ i = 0" by force
       
   658 qed
       
   659 
       
   660 lemma subdegree_add_eq1:
       
   661   assumes "f \<noteq> 0"
       
   662   assumes "subdegree f < subdegree (g :: ('a :: {group_add}) fps)"
       
   663   shows   "subdegree (f + g) = subdegree f"
       
   664 proof (rule antisym[OF subdegree_leI])
       
   665   from assms show "subdegree (f + g) \<ge> subdegree f"
       
   666     by (intro order.trans[OF min.boundedI subdegree_add_ge]) auto
       
   667   from assms have "f $ subdegree f \<noteq> 0" "g $ subdegree f = 0" by auto
       
   668   thus "(f + g) $ subdegree f \<noteq> 0" by simp
       
   669 qed
       
   670 
       
   671 lemma subdegree_add_eq2:
       
   672   assumes "g \<noteq> 0"
       
   673   assumes "subdegree g < subdegree (f :: ('a :: {ab_group_add}) fps)"
       
   674   shows   "subdegree (f + g) = subdegree g"
       
   675   using subdegree_add_eq1[OF assms] by (simp add: add.commute)
       
   676 
       
   677 lemma subdegree_diff_eq1:
       
   678   assumes "f \<noteq> 0"
       
   679   assumes "subdegree f < subdegree (g :: ('a :: {ab_group_add}) fps)"
       
   680   shows   "subdegree (f - g) = subdegree f"
       
   681   using subdegree_add_eq1[of f "-g"] assms by (simp add: add.commute)
       
   682 
       
   683 lemma subdegree_diff_eq2:
       
   684   assumes "g \<noteq> 0"
       
   685   assumes "subdegree g < subdegree (f :: ('a :: {ab_group_add}) fps)"
       
   686   shows   "subdegree (f - g) = subdegree g"
       
   687   using subdegree_add_eq2[of "-g" f] assms by (simp add: add.commute)
       
   688 
       
   689 lemma subdegree_diff_ge [simp]:
       
   690   assumes "f \<noteq> (g :: ('a :: {group_add}) fps)"
       
   691   shows   "subdegree (f - g) \<ge> min (subdegree f) (subdegree g)"
       
   692   using assms subdegree_add_ge[of f "-g"] by simp
       
   693 
       
   694 
       
   695 
       
   696 
       
   697 subsection \<open>Shifting and slicing\<close>
       
   698 
       
   699 definition fps_shift :: "nat \<Rightarrow> 'a fps \<Rightarrow> 'a fps" where
       
   700   "fps_shift n f = Abs_fps (\<lambda>i. f $ (i + n))"
       
   701 
       
   702 lemma fps_shift_nth [simp]: "fps_shift n f $ i = f $ (i + n)"
       
   703   by (simp add: fps_shift_def)
       
   704 
       
   705 lemma fps_shift_0 [simp]: "fps_shift 0 f = f"
       
   706   by (intro fps_ext) (simp add: fps_shift_def)
       
   707 
       
   708 lemma fps_shift_zero [simp]: "fps_shift n 0 = 0"
       
   709   by (intro fps_ext) (simp add: fps_shift_def)
       
   710 
       
   711 lemma fps_shift_one: "fps_shift n 1 = (if n = 0 then 1 else 0)"
       
   712   by (intro fps_ext) (simp add: fps_shift_def)
       
   713 
       
   714 lemma fps_shift_fps_const: "fps_shift n (fps_const c) = (if n = 0 then fps_const c else 0)"
       
   715   by (intro fps_ext) (simp add: fps_shift_def)
       
   716 
       
   717 lemma fps_shift_numeral: "fps_shift n (numeral c) = (if n = 0 then numeral c else 0)"
       
   718   by (simp add: numeral_fps_const fps_shift_fps_const)
       
   719 
       
   720 lemma fps_shift_X_power [simp]:
       
   721   "n \<le> m \<Longrightarrow> fps_shift n (X ^ m) = (X ^ (m - n) ::'a::comm_ring_1 fps)"
       
   722   by (intro fps_ext) (auto simp: fps_shift_def )
       
   723 
       
   724 lemma fps_shift_times_X_power:
       
   725   "n \<le> subdegree f \<Longrightarrow> fps_shift n f * X ^ n = (f :: 'a :: comm_ring_1 fps)"
       
   726   by (intro fps_ext) (auto simp: X_power_mult_right_nth nth_less_subdegree_zero)
       
   727 
       
   728 lemma fps_shift_times_X_power' [simp]:
       
   729   "fps_shift n (f * X^n) = (f :: 'a :: comm_ring_1 fps)"
       
   730   by (intro fps_ext) (auto simp: X_power_mult_right_nth nth_less_subdegree_zero)
       
   731 
       
   732 lemma fps_shift_times_X_power'':
       
   733   "m \<le> n \<Longrightarrow> fps_shift n (f * X^m) = fps_shift (n - m) (f :: 'a :: comm_ring_1 fps)"
       
   734   by (intro fps_ext) (auto simp: X_power_mult_right_nth nth_less_subdegree_zero)
       
   735 
       
   736 lemma fps_shift_subdegree [simp]:
       
   737   "n \<le> subdegree f \<Longrightarrow> subdegree (fps_shift n f) = subdegree (f :: 'a :: comm_ring_1 fps) - n"
       
   738   by (cases "f = 0") (force intro: nth_less_subdegree_zero subdegreeI)+
       
   739 
       
   740 lemma subdegree_decompose:
       
   741   "f = fps_shift (subdegree f) f * X ^ subdegree (f :: ('a :: comm_ring_1) fps)"
       
   742   by (rule fps_ext) (auto simp: X_power_mult_right_nth)
       
   743 
       
   744 lemma subdegree_decompose':
       
   745   "n \<le> subdegree (f :: ('a :: comm_ring_1) fps) \<Longrightarrow> f = fps_shift n f * X^n"
       
   746   by (rule fps_ext) (auto simp: X_power_mult_right_nth intro!: nth_less_subdegree_zero)
       
   747 
       
   748 lemma fps_shift_fps_shift:
       
   749   "fps_shift (m + n) f = fps_shift m (fps_shift n f)"
       
   750   by (rule fps_ext) (simp add: add_ac)
       
   751 
       
   752 lemma fps_shift_add:
       
   753   "fps_shift n (f + g) = fps_shift n f + fps_shift n g"
       
   754   by (simp add: fps_eq_iff)
       
   755 
       
   756 lemma fps_shift_mult:
       
   757   assumes "n \<le> subdegree (g :: 'b :: {comm_ring_1} fps)"
       
   758   shows   "fps_shift n (h*g) = h * fps_shift n g"
       
   759 proof -
       
   760   from assms have "g = fps_shift n g * X^n" by (rule subdegree_decompose')
       
   761   also have "h * ... = (h * fps_shift n g) * X^n" by simp
       
   762   also have "fps_shift n ... = h * fps_shift n g" by simp
       
   763   finally show ?thesis .
       
   764 qed
       
   765 
       
   766 lemma fps_shift_mult_right:
       
   767   assumes "n \<le> subdegree (g :: 'b :: {comm_ring_1} fps)"
       
   768   shows   "fps_shift n (g*h) = h * fps_shift n g"
       
   769   by (subst mult.commute, subst fps_shift_mult) (simp_all add: assms)
       
   770 
       
   771 lemma nth_subdegree_zero_iff [simp]: "f $ subdegree f = 0 \<longleftrightarrow> f = 0"
       
   772   by (cases "f = 0") auto
       
   773 
       
   774 lemma fps_shift_subdegree_zero_iff [simp]:
       
   775   "fps_shift (subdegree f) f = 0 \<longleftrightarrow> f = 0"
       
   776   by (subst (1) nth_subdegree_zero_iff[symmetric], cases "f = 0")
       
   777      (simp_all del: nth_subdegree_zero_iff)
       
   778 
       
   779 
       
   780 definition "fps_cutoff n f = Abs_fps (\<lambda>i. if i < n then f$i else 0)"
       
   781 
       
   782 lemma fps_cutoff_nth [simp]: "fps_cutoff n f $ i = (if i < n then f$i else 0)"
       
   783   unfolding fps_cutoff_def by simp
       
   784 
       
   785 lemma fps_cutoff_zero_iff: "fps_cutoff n f = 0 \<longleftrightarrow> (f = 0 \<or> n \<le> subdegree f)"
       
   786 proof
       
   787   assume A: "fps_cutoff n f = 0"
       
   788   thus "f = 0 \<or> n \<le> subdegree f"
       
   789   proof (cases "f = 0")
       
   790     assume "f \<noteq> 0"
       
   791     with A have "n \<le> subdegree f"
       
   792       by (intro subdegree_geI) (auto simp: fps_eq_iff split: if_split_asm)
       
   793     thus ?thesis ..
       
   794   qed simp
       
   795 qed (auto simp: fps_eq_iff intro: nth_less_subdegree_zero)
       
   796 
       
   797 lemma fps_cutoff_0 [simp]: "fps_cutoff 0 f = 0"
       
   798   by (simp add: fps_eq_iff)
       
   799 
       
   800 lemma fps_cutoff_zero [simp]: "fps_cutoff n 0 = 0"
       
   801   by (simp add: fps_eq_iff)
       
   802 
       
   803 lemma fps_cutoff_one: "fps_cutoff n 1 = (if n = 0 then 0 else 1)"
       
   804   by (simp add: fps_eq_iff)
       
   805 
       
   806 lemma fps_cutoff_fps_const: "fps_cutoff n (fps_const c) = (if n = 0 then 0 else fps_const c)"
       
   807   by (simp add: fps_eq_iff)
       
   808 
       
   809 lemma fps_cutoff_numeral: "fps_cutoff n (numeral c) = (if n = 0 then 0 else numeral c)"
       
   810   by (simp add: numeral_fps_const fps_cutoff_fps_const)
       
   811 
       
   812 lemma fps_shift_cutoff:
       
   813   "fps_shift n (f :: ('a :: comm_ring_1) fps) * X^n + fps_cutoff n f = f"
       
   814   by (simp add: fps_eq_iff X_power_mult_right_nth)
       
   815 
       
   816 
       
   817 subsection \<open>Formal Power series form a metric space\<close>
       
   818 
       
   819 definition (in dist) "ball x r = {y. dist y x < r}"
       
   820 
       
   821 instantiation fps :: (comm_ring_1) dist
       
   822 begin
       
   823 
       
   824 definition
       
   825   dist_fps_def: "dist (a :: 'a fps) b = (if a = b then 0 else inverse (2 ^ subdegree (a - b)))"
       
   826 
       
   827 lemma dist_fps_ge0: "dist (a :: 'a fps) b \<ge> 0"
       
   828   by (simp add: dist_fps_def)
       
   829 
       
   830 lemma dist_fps_sym: "dist (a :: 'a fps) b = dist b a"
       
   831   by (simp add: dist_fps_def)
       
   832 
       
   833 instance ..
       
   834 
       
   835 end
       
   836 
       
   837 instantiation fps :: (comm_ring_1) metric_space
       
   838 begin
       
   839 
       
   840 definition uniformity_fps_def [code del]:
       
   841   "(uniformity :: ('a fps \<times> 'a fps) filter) = (INF e:{0 <..}. principal {(x, y). dist x y < e})"
       
   842 
       
   843 definition open_fps_def' [code del]:
       
   844   "open (U :: 'a fps set) \<longleftrightarrow> (\<forall>x\<in>U. eventually (\<lambda>(x', y). x' = x \<longrightarrow> y \<in> U) uniformity)"
       
   845 
       
   846 instance
       
   847 proof
       
   848   show th: "dist a b = 0 \<longleftrightarrow> a = b" for a b :: "'a fps"
       
   849     by (simp add: dist_fps_def split: if_split_asm)
       
   850   then have th'[simp]: "dist a a = 0" for a :: "'a fps" by simp
       
   851 
       
   852   fix a b c :: "'a fps"
       
   853   consider "a = b" | "c = a \<or> c = b" | "a \<noteq> b" "a \<noteq> c" "b \<noteq> c" by blast
       
   854   then show "dist a b \<le> dist a c + dist b c"
       
   855   proof cases
       
   856     case 1
       
   857     then show ?thesis by (simp add: dist_fps_def)
       
   858   next
       
   859     case 2
       
   860     then show ?thesis
       
   861       by (cases "c = a") (simp_all add: th dist_fps_sym)
       
   862   next
       
   863     case neq: 3
       
   864     have False if "dist a b > dist a c + dist b c"
       
   865     proof -
       
   866       let ?n = "subdegree (a - b)"
       
   867       from neq have "dist a b > 0" "dist b c > 0" and "dist a c > 0" by (simp_all add: dist_fps_def)
       
   868       with that have "dist a b > dist a c" and "dist a b > dist b c" by simp_all
       
   869       with neq have "?n < subdegree (a - c)" and "?n < subdegree (b - c)"
       
   870         by (simp_all add: dist_fps_def field_simps)
       
   871       hence "(a - c) $ ?n = 0" and "(b - c) $ ?n = 0"
       
   872         by (simp_all only: nth_less_subdegree_zero)
       
   873       hence "(a - b) $ ?n = 0" by simp
       
   874       moreover from neq have "(a - b) $ ?n \<noteq> 0" by (intro nth_subdegree_nonzero) simp_all
       
   875       ultimately show False by contradiction
       
   876     qed
       
   877     thus ?thesis by (auto simp add: not_le[symmetric])
       
   878   qed
       
   879 qed (rule open_fps_def' uniformity_fps_def)+
       
   880 
       
   881 end
       
   882 
       
   883 declare uniformity_Abort[where 'a="'a :: comm_ring_1 fps", code]
       
   884 
       
   885 lemma open_fps_def: "open (S :: 'a::comm_ring_1 fps set) = (\<forall>a \<in> S. \<exists>r. r >0 \<and> ball a r \<subseteq> S)"
       
   886   unfolding open_dist ball_def subset_eq by simp
       
   887 
       
   888 text \<open>The infinite sums and justification of the notation in textbooks.\<close>
       
   889 
       
   890 lemma reals_power_lt_ex:
       
   891   fixes x y :: real
       
   892   assumes xp: "x > 0"
       
   893     and y1: "y > 1"
       
   894   shows "\<exists>k>0. (1/y)^k < x"
       
   895 proof -
       
   896   have yp: "y > 0"
       
   897     using y1 by simp
       
   898   from reals_Archimedean2[of "max 0 (- log y x) + 1"]
       
   899   obtain k :: nat where k: "real k > max 0 (- log y x) + 1"
       
   900     by blast
       
   901   from k have kp: "k > 0"
       
   902     by simp
       
   903   from k have "real k > - log y x"
       
   904     by simp
       
   905   then have "ln y * real k > - ln x"
       
   906     unfolding log_def
       
   907     using ln_gt_zero_iff[OF yp] y1
       
   908     by (simp add: minus_divide_left field_simps del: minus_divide_left[symmetric])
       
   909   then have "ln y * real k + ln x > 0"
       
   910     by simp
       
   911   then have "exp (real k * ln y + ln x) > exp 0"
       
   912     by (simp add: ac_simps)
       
   913   then have "y ^ k * x > 1"
       
   914     unfolding exp_zero exp_add exp_real_of_nat_mult exp_ln [OF xp] exp_ln [OF yp]
       
   915     by simp
       
   916   then have "x > (1 / y)^k" using yp
       
   917     by (simp add: field_simps)
       
   918   then show ?thesis
       
   919     using kp by blast
       
   920 qed
       
   921 
       
   922 lemma fps_sum_rep_nth: "(sum (\<lambda>i. fps_const(a$i)*X^i) {0..m})$n =
       
   923     (if n \<le> m then a$n else 0::'a::comm_ring_1)"
       
   924   apply (auto simp add: fps_sum_nth cond_value_iff cong del: if_weak_cong)
       
   925   apply (simp add: sum.delta')
       
   926   done
       
   927 
       
   928 lemma fps_notation: "(\<lambda>n. sum (\<lambda>i. fps_const(a$i) * X^i) {0..n}) \<longlonglongrightarrow> a"
       
   929   (is "?s \<longlonglongrightarrow> a")
       
   930 proof -
       
   931   have "\<exists>n0. \<forall>n \<ge> n0. dist (?s n) a < r" if "r > 0" for r
       
   932   proof -
       
   933     obtain n0 where n0: "(1/2)^n0 < r" "n0 > 0"
       
   934       using reals_power_lt_ex[OF \<open>r > 0\<close>, of 2] by auto
       
   935     show ?thesis
       
   936     proof -
       
   937       have "dist (?s n) a < r" if nn0: "n \<ge> n0" for n
       
   938       proof -
       
   939         from that have thnn0: "(1/2)^n \<le> (1/2 :: real)^n0"
       
   940           by (simp add: divide_simps)
       
   941         show ?thesis
       
   942         proof (cases "?s n = a")
       
   943           case True
       
   944           then show ?thesis
       
   945             unfolding dist_eq_0_iff[of "?s n" a, symmetric]
       
   946             using \<open>r > 0\<close> by (simp del: dist_eq_0_iff)
       
   947         next
       
   948           case False
       
   949           from False have dth: "dist (?s n) a = (1/2)^subdegree (?s n - a)"
       
   950             by (simp add: dist_fps_def field_simps)
       
   951           from False have kn: "subdegree (?s n - a) > n"
       
   952             by (intro subdegree_greaterI) (simp_all add: fps_sum_rep_nth)
       
   953           then have "dist (?s n) a < (1/2)^n"
       
   954             by (simp add: field_simps dist_fps_def)
       
   955           also have "\<dots> \<le> (1/2)^n0"
       
   956             using nn0 by (simp add: divide_simps)
       
   957           also have "\<dots> < r"
       
   958             using n0 by simp
       
   959           finally show ?thesis .
       
   960         qed
       
   961       qed
       
   962       then show ?thesis by blast
       
   963     qed
       
   964   qed
       
   965   then show ?thesis
       
   966     unfolding lim_sequentially by blast
       
   967 qed
       
   968 
       
   969 
       
   970 subsection \<open>Inverses of formal power series\<close>
       
   971 
       
   972 declare sum.cong[fundef_cong]
       
   973 
       
   974 instantiation fps :: ("{comm_monoid_add,inverse,times,uminus}") inverse
       
   975 begin
       
   976 
       
   977 fun natfun_inverse:: "'a fps \<Rightarrow> nat \<Rightarrow> 'a"
       
   978 where
       
   979   "natfun_inverse f 0 = inverse (f$0)"
       
   980 | "natfun_inverse f n = - inverse (f$0) * sum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n}"
       
   981 
       
   982 definition fps_inverse_def: "inverse f = (if f $ 0 = 0 then 0 else Abs_fps (natfun_inverse f))"
       
   983 
       
   984 definition fps_divide_def:
       
   985   "f div g = (if g = 0 then 0 else
       
   986      let n = subdegree g; h = fps_shift n g
       
   987      in  fps_shift n (f * inverse h))"
       
   988 
       
   989 instance ..
       
   990 
       
   991 end
       
   992 
       
   993 lemma fps_inverse_zero [simp]:
       
   994   "inverse (0 :: 'a::{comm_monoid_add,inverse,times,uminus} fps) = 0"
       
   995   by (simp add: fps_ext fps_inverse_def)
       
   996 
       
   997 lemma fps_inverse_one [simp]: "inverse (1 :: 'a::{division_ring,zero_neq_one} fps) = 1"
       
   998   apply (auto simp add: expand_fps_eq fps_inverse_def)
       
   999   apply (case_tac n)
       
  1000   apply auto
       
  1001   done
       
  1002 
       
  1003 lemma inverse_mult_eq_1 [intro]:
       
  1004   assumes f0: "f$0 \<noteq> (0::'a::field)"
       
  1005   shows "inverse f * f = 1"
       
  1006 proof -
       
  1007   have c: "inverse f * f = f * inverse f"
       
  1008     by (simp add: mult.commute)
       
  1009   from f0 have ifn: "\<And>n. inverse f $ n = natfun_inverse f n"
       
  1010     by (simp add: fps_inverse_def)
       
  1011   from f0 have th0: "(inverse f * f) $ 0 = 1"
       
  1012     by (simp add: fps_mult_nth fps_inverse_def)
       
  1013   have "(inverse f * f)$n = 0" if np: "n > 0" for n
       
  1014   proof -
       
  1015     from np have eq: "{0..n} = {0} \<union> {1 .. n}"
       
  1016       by auto
       
  1017     have d: "{0} \<inter> {1 .. n} = {}"
       
  1018       by auto
       
  1019     from f0 np have th0: "- (inverse f $ n) =
       
  1020       (sum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n}) / (f$0)"
       
  1021       by (cases n) (simp_all add: divide_inverse fps_inverse_def)
       
  1022     from th0[symmetric, unfolded nonzero_divide_eq_eq[OF f0]]
       
  1023     have th1: "sum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n} = - (f$0) * (inverse f)$n"
       
  1024       by (simp add: field_simps)
       
  1025     have "(f * inverse f) $ n = (\<Sum>i = 0..n. f $i * natfun_inverse f (n - i))"
       
  1026       unfolding fps_mult_nth ifn ..
       
  1027     also have "\<dots> = f$0 * natfun_inverse f n + (\<Sum>i = 1..n. f$i * natfun_inverse f (n-i))"
       
  1028       by (simp add: eq)
       
  1029     also have "\<dots> = 0"
       
  1030       unfolding th1 ifn by simp
       
  1031     finally show ?thesis unfolding c .
       
  1032   qed
       
  1033   with th0 show ?thesis
       
  1034     by (simp add: fps_eq_iff)
       
  1035 qed
       
  1036 
       
  1037 lemma fps_inverse_0_iff[simp]: "(inverse f) $ 0 = (0::'a::division_ring) \<longleftrightarrow> f $ 0 = 0"
       
  1038   by (simp add: fps_inverse_def nonzero_imp_inverse_nonzero)
       
  1039 
       
  1040 lemma fps_inverse_nth_0 [simp]: "inverse f $ 0 = inverse (f $ 0 :: 'a :: division_ring)"
       
  1041   by (simp add: fps_inverse_def)
       
  1042 
       
  1043 lemma fps_inverse_eq_0_iff[simp]: "inverse f = (0:: ('a::division_ring) fps) \<longleftrightarrow> f $ 0 = 0"
       
  1044 proof
       
  1045   assume A: "inverse f = 0"
       
  1046   have "0 = inverse f $ 0" by (subst A) simp
       
  1047   thus "f $ 0 = 0" by simp
       
  1048 qed (simp add: fps_inverse_def)
       
  1049 
       
  1050 lemma fps_inverse_idempotent[intro, simp]:
       
  1051   assumes f0: "f$0 \<noteq> (0::'a::field)"
       
  1052   shows "inverse (inverse f) = f"
       
  1053 proof -
       
  1054   from f0 have if0: "inverse f $ 0 \<noteq> 0" by simp
       
  1055   from inverse_mult_eq_1[OF f0] inverse_mult_eq_1[OF if0]
       
  1056   have "inverse f * f = inverse f * inverse (inverse f)"
       
  1057     by (simp add: ac_simps)
       
  1058   then show ?thesis
       
  1059     using f0 unfolding mult_cancel_left by simp
       
  1060 qed
       
  1061 
       
  1062 lemma fps_inverse_unique:
       
  1063   assumes fg: "(f :: 'a :: field fps) * g = 1"
       
  1064   shows   "inverse f = g"
       
  1065 proof -
       
  1066   have f0: "f $ 0 \<noteq> 0"
       
  1067   proof
       
  1068     assume "f $ 0 = 0"
       
  1069     hence "0 = (f * g) $ 0" by simp
       
  1070     also from fg have "(f * g) $ 0 = 1" by simp
       
  1071     finally show False by simp
       
  1072   qed
       
  1073   from inverse_mult_eq_1[OF this] fg
       
  1074   have th0: "inverse f * f = g * f"
       
  1075     by (simp add: ac_simps)
       
  1076   then show ?thesis
       
  1077     using f0
       
  1078     unfolding mult_cancel_right
       
  1079     by (auto simp add: expand_fps_eq)
       
  1080 qed
       
  1081 
       
  1082 lemma fps_inverse_eq_0: "f$0 = 0 \<Longrightarrow> inverse (f :: 'a :: division_ring fps) = 0"
       
  1083   by simp
       
  1084   
       
  1085 lemma sum_zero_lemma:
       
  1086   fixes n::nat
       
  1087   assumes "0 < n"
       
  1088   shows "(\<Sum>i = 0..n. if n = i then 1 else if n - i = 1 then - 1 else 0) = (0::'a::field)"
       
  1089 proof -
       
  1090   let ?f = "\<lambda>i. if n = i then 1 else if n - i = 1 then - 1 else 0"
       
  1091   let ?g = "\<lambda>i. if i = n then 1 else if i = n - 1 then - 1 else 0"
       
  1092   let ?h = "\<lambda>i. if i=n - 1 then - 1 else 0"
       
  1093   have th1: "sum ?f {0..n} = sum ?g {0..n}"
       
  1094     by (rule sum.cong) auto
       
  1095   have th2: "sum ?g {0..n - 1} = sum ?h {0..n - 1}"
       
  1096     apply (rule sum.cong)
       
  1097     using assms
       
  1098     apply auto
       
  1099     done
       
  1100   have eq: "{0 .. n} = {0.. n - 1} \<union> {n}"
       
  1101     by auto
       
  1102   from assms have d: "{0.. n - 1} \<inter> {n} = {}"
       
  1103     by auto
       
  1104   have f: "finite {0.. n - 1}" "finite {n}"
       
  1105     by auto
       
  1106   show ?thesis
       
  1107     unfolding th1
       
  1108     apply (simp add: sum.union_disjoint[OF f d, unfolded eq[symmetric]] del: One_nat_def)
       
  1109     unfolding th2
       
  1110     apply (simp add: sum.delta)
       
  1111     done
       
  1112 qed
       
  1113 
       
  1114 lemma fps_inverse_mult: "inverse (f * g :: 'a::field fps) = inverse f * inverse g"
       
  1115 proof (cases "f$0 = 0 \<or> g$0 = 0")
       
  1116   assume "\<not>(f$0 = 0 \<or> g$0 = 0)"
       
  1117   hence [simp]: "f$0 \<noteq> 0" "g$0 \<noteq> 0" by simp_all
       
  1118   show ?thesis
       
  1119   proof (rule fps_inverse_unique)
       
  1120     have "f * g * (inverse f * inverse g) = (inverse f * f) * (inverse g * g)" by simp
       
  1121     also have "... = 1" by (subst (1 2) inverse_mult_eq_1) simp_all
       
  1122     finally show "f * g * (inverse f * inverse g) = 1" .
       
  1123   qed
       
  1124 next
       
  1125   assume A: "f$0 = 0 \<or> g$0 = 0"
       
  1126   hence "inverse (f * g) = 0" by simp
       
  1127   also from A have "... = inverse f * inverse g" by auto
       
  1128   finally show "inverse (f * g) = inverse f * inverse g" .
       
  1129 qed
       
  1130 
       
  1131 
       
  1132 lemma fps_inverse_gp: "inverse (Abs_fps(\<lambda>n. (1::'a::field))) =
       
  1133     Abs_fps (\<lambda>n. if n= 0 then 1 else if n=1 then - 1 else 0)"
       
  1134   apply (rule fps_inverse_unique)
       
  1135   apply (simp_all add: fps_eq_iff fps_mult_nth sum_zero_lemma)
       
  1136   done
       
  1137 
       
  1138 lemma subdegree_inverse [simp]: "subdegree (inverse (f::'a::field fps)) = 0"
       
  1139 proof (cases "f$0 = 0")
       
  1140   assume nz: "f$0 \<noteq> 0"
       
  1141   hence "subdegree (inverse f) + subdegree f = subdegree (inverse f * f)"
       
  1142     by (subst subdegree_mult) auto
       
  1143   also from nz have "subdegree f = 0" by (simp add: subdegree_eq_0_iff)
       
  1144   also from nz have "inverse f * f = 1" by (rule inverse_mult_eq_1)
       
  1145   finally show "subdegree (inverse f) = 0" by simp
       
  1146 qed (simp_all add: fps_inverse_def)
       
  1147 
       
  1148 lemma fps_is_unit_iff [simp]: "(f :: 'a :: field fps) dvd 1 \<longleftrightarrow> f $ 0 \<noteq> 0"
       
  1149 proof
       
  1150   assume "f dvd 1"
       
  1151   then obtain g where "1 = f * g" by (elim dvdE)
       
  1152   from this[symmetric] have "(f*g) $ 0 = 1" by simp
       
  1153   thus "f $ 0 \<noteq> 0" by auto
       
  1154 next
       
  1155   assume A: "f $ 0 \<noteq> 0"
       
  1156   thus "f dvd 1" by (simp add: inverse_mult_eq_1[OF A, symmetric])
       
  1157 qed
       
  1158 
       
  1159 lemma subdegree_eq_0' [simp]: "(f :: 'a :: field fps) dvd 1 \<Longrightarrow> subdegree f = 0"
       
  1160   by simp
       
  1161 
       
  1162 lemma fps_unit_dvd [simp]: "(f $ 0 :: 'a :: field) \<noteq> 0 \<Longrightarrow> f dvd g"
       
  1163   by (rule dvd_trans, subst fps_is_unit_iff) simp_all
       
  1164 
       
  1165 instantiation fps :: (field) normalization_semidom
       
  1166 begin
       
  1167 
       
  1168 definition fps_unit_factor_def [simp]:
       
  1169   "unit_factor f = fps_shift (subdegree f) f"
       
  1170 
       
  1171 definition fps_normalize_def [simp]:
       
  1172   "normalize f = (if f = 0 then 0 else X ^ subdegree f)"
       
  1173 
       
  1174 instance proof
       
  1175   fix f :: "'a fps"
       
  1176   show "unit_factor f * normalize f = f"
       
  1177     by (simp add: fps_shift_times_X_power)
       
  1178 next
       
  1179   fix f g :: "'a fps"
       
  1180   show "unit_factor (f * g) = unit_factor f * unit_factor g"
       
  1181   proof (cases "f = 0 \<or> g = 0")
       
  1182     assume "\<not>(f = 0 \<or> g = 0)"
       
  1183     thus "unit_factor (f * g) = unit_factor f * unit_factor g"
       
  1184     unfolding fps_unit_factor_def
       
  1185       by (auto simp: fps_shift_fps_shift fps_shift_mult fps_shift_mult_right)
       
  1186   qed auto
       
  1187 next
       
  1188   fix f g :: "'a fps"
       
  1189   assume "g \<noteq> 0"
       
  1190   then have "f * (fps_shift (subdegree g) g * inverse (fps_shift (subdegree g) g)) = f"
       
  1191     by (metis add_cancel_right_left fps_shift_nth inverse_mult_eq_1 mult.commute mult_cancel_left2 nth_subdegree_nonzero)
       
  1192   then have "fps_shift (subdegree g) (g * (f * inverse (fps_shift (subdegree g) g))) = f"
       
  1193     by (simp add: fps_shift_mult_right mult.commute)
       
  1194   with \<open>g \<noteq> 0\<close> show "f * g / g = f"
       
  1195     by (simp add: fps_divide_def Let_def ac_simps)
       
  1196 qed (auto simp add: fps_divide_def Let_def)
       
  1197 
       
  1198 end
       
  1199 
       
  1200 instantiation fps :: (field) ring_div
       
  1201 begin
       
  1202 
       
  1203 definition fps_mod_def:
       
  1204   "f mod g = (if g = 0 then f else
       
  1205      let n = subdegree g; h = fps_shift n g
       
  1206      in  fps_cutoff n (f * inverse h) * h)"
       
  1207 
       
  1208 lemma fps_mod_eq_zero:
       
  1209   assumes "g \<noteq> 0" and "subdegree f \<ge> subdegree g"
       
  1210   shows   "f mod g = 0"
       
  1211   using assms by (cases "f = 0") (auto simp: fps_cutoff_zero_iff fps_mod_def Let_def)
       
  1212 
       
  1213 lemma fps_times_divide_eq:
       
  1214   assumes "g \<noteq> 0" and "subdegree f \<ge> subdegree (g :: 'a fps)"
       
  1215   shows   "f div g * g = f"
       
  1216 proof (cases "f = 0")
       
  1217   assume nz: "f \<noteq> 0"
       
  1218   define n where "n = subdegree g"
       
  1219   define h where "h = fps_shift n g"
       
  1220   from assms have [simp]: "h $ 0 \<noteq> 0" unfolding h_def by (simp add: n_def)
       
  1221 
       
  1222   from assms nz have "f div g * g = fps_shift n (f * inverse h) * g"
       
  1223     by (simp add: fps_divide_def Let_def h_def n_def)
       
  1224   also have "... = fps_shift n (f * inverse h) * X^n * h" unfolding h_def n_def
       
  1225     by (subst subdegree_decompose[of g]) simp
       
  1226   also have "fps_shift n (f * inverse h) * X^n = f * inverse h"
       
  1227     by (rule fps_shift_times_X_power) (simp_all add: nz assms n_def)
       
  1228   also have "... * h = f * (inverse h * h)" by simp
       
  1229   also have "inverse h * h = 1" by (rule inverse_mult_eq_1) simp
       
  1230   finally show ?thesis by simp
       
  1231 qed (simp_all add: fps_divide_def Let_def)
       
  1232 
       
  1233 lemma
       
  1234   assumes "g$0 \<noteq> 0"
       
  1235   shows   fps_divide_unit: "f div g = f * inverse g" and fps_mod_unit [simp]: "f mod g = 0"
       
  1236 proof -
       
  1237   from assms have [simp]: "subdegree g = 0" by (simp add: subdegree_eq_0_iff)
       
  1238   from assms show "f div g = f * inverse g"
       
  1239     by (auto simp: fps_divide_def Let_def subdegree_eq_0_iff)
       
  1240   from assms show "f mod g = 0" by (intro fps_mod_eq_zero) auto
       
  1241 qed
       
  1242 
       
  1243 context
       
  1244 begin
       
  1245 private lemma fps_divide_cancel_aux1:
       
  1246   assumes "h$0 \<noteq> (0 :: 'a :: field)"
       
  1247   shows   "(h * f) div (h * g) = f div g"
       
  1248 proof (cases "g = 0")
       
  1249   assume "g \<noteq> 0"
       
  1250   from assms have "h \<noteq> 0" by auto
       
  1251   note nz [simp] = \<open>g \<noteq> 0\<close> \<open>h \<noteq> 0\<close>
       
  1252   from assms have [simp]: "subdegree h = 0" by (simp add: subdegree_eq_0_iff)
       
  1253 
       
  1254   have "(h * f) div (h * g) =
       
  1255           fps_shift (subdegree g) (h * f * inverse (fps_shift (subdegree g) (h*g)))"
       
  1256     by (simp add: fps_divide_def Let_def)
       
  1257   also have "h * f * inverse (fps_shift (subdegree g) (h*g)) =
       
  1258                (inverse h * h) * f * inverse (fps_shift (subdegree g) g)"
       
  1259     by (subst fps_shift_mult) (simp_all add: algebra_simps fps_inverse_mult)
       
  1260   also from assms have "inverse h * h = 1" by (rule inverse_mult_eq_1)
       
  1261   finally show "(h * f) div (h * g) = f div g" by (simp_all add: fps_divide_def Let_def)
       
  1262 qed (simp_all add: fps_divide_def)
       
  1263 
       
  1264 private lemma fps_divide_cancel_aux2:
       
  1265   "(f * X^m) div (g * X^m) = f div (g :: 'a :: field fps)"
       
  1266 proof (cases "g = 0")
       
  1267   assume [simp]: "g \<noteq> 0"
       
  1268   have "(f * X^m) div (g * X^m) =
       
  1269           fps_shift (subdegree g + m) (f*inverse (fps_shift (subdegree g + m) (g*X^m))*X^m)"
       
  1270     by (simp add: fps_divide_def Let_def algebra_simps)
       
  1271   also have "... = f div g"
       
  1272     by (simp add: fps_shift_times_X_power'' fps_divide_def Let_def)
       
  1273   finally show ?thesis .
       
  1274 qed (simp_all add: fps_divide_def)
       
  1275 
       
  1276 instance proof
       
  1277   fix f g :: "'a fps"
       
  1278   define n where "n = subdegree g"
       
  1279   define h where "h = fps_shift n g"
       
  1280 
       
  1281   show "f div g * g + f mod g = f"
       
  1282   proof (cases "g = 0 \<or> f = 0")
       
  1283     assume "\<not>(g = 0 \<or> f = 0)"
       
  1284     hence nz [simp]: "f \<noteq> 0" "g \<noteq> 0" by simp_all
       
  1285     show ?thesis
       
  1286     proof (rule disjE[OF le_less_linear])
       
  1287       assume "subdegree f \<ge> subdegree g"
       
  1288       with nz show ?thesis by (simp add: fps_mod_eq_zero fps_times_divide_eq)
       
  1289     next
       
  1290       assume "subdegree f < subdegree g"
       
  1291       have g_decomp: "g = h * X^n" unfolding h_def n_def by (rule subdegree_decompose)
       
  1292       have "f div g * g + f mod g =
       
  1293               fps_shift n (f * inverse h) * g + fps_cutoff n (f * inverse h) * h"
       
  1294         by (simp add: fps_mod_def fps_divide_def Let_def n_def h_def)
       
  1295       also have "... = h * (fps_shift n (f * inverse h) * X^n + fps_cutoff n (f * inverse h))"
       
  1296         by (subst g_decomp) (simp add: algebra_simps)
       
  1297       also have "... = f * (inverse h * h)"
       
  1298         by (subst fps_shift_cutoff) simp
       
  1299       also have "inverse h * h = 1" by (rule inverse_mult_eq_1) (simp add: h_def n_def)
       
  1300       finally show ?thesis by simp
       
  1301     qed
       
  1302   qed (auto simp: fps_mod_def fps_divide_def Let_def)
       
  1303 next
       
  1304 
       
  1305   fix f g h :: "'a fps"
       
  1306   assume "h \<noteq> 0"
       
  1307   show "(h * f) div (h * g) = f div g"
       
  1308   proof -
       
  1309     define m where "m = subdegree h"
       
  1310     define h' where "h' = fps_shift m h"
       
  1311     have h_decomp: "h = h' * X ^ m" unfolding h'_def m_def by (rule subdegree_decompose)
       
  1312     from \<open>h \<noteq> 0\<close> have [simp]: "h'$0 \<noteq> 0" by (simp add: h'_def m_def)
       
  1313     have "(h * f) div (h * g) = (h' * f * X^m) div (h' * g * X^m)"
       
  1314       by (simp add: h_decomp algebra_simps)
       
  1315     also have "... = f div g" by (simp add: fps_divide_cancel_aux1 fps_divide_cancel_aux2)
       
  1316     finally show ?thesis .
       
  1317   qed
       
  1318 
       
  1319 next
       
  1320   fix f g h :: "'a fps"
       
  1321   assume [simp]: "h \<noteq> 0"
       
  1322   define n h' where dfs: "n = subdegree h" "h' = fps_shift n h"
       
  1323   have "(f + g * h) div h = fps_shift n (f * inverse h') + fps_shift n (g * (h * inverse h'))"
       
  1324     by (simp add: fps_divide_def Let_def dfs[symmetric] algebra_simps fps_shift_add)
       
  1325   also have "h * inverse h' = (inverse h' * h') * X^n"
       
  1326     by (subst subdegree_decompose) (simp_all add: dfs)
       
  1327   also have "... = X^n" by (subst inverse_mult_eq_1) (simp_all add: dfs)
       
  1328   also have "fps_shift n (g * X^n) = g" by simp
       
  1329   also have "fps_shift n (f * inverse h') = f div h"
       
  1330     by (simp add: fps_divide_def Let_def dfs)
       
  1331   finally show "(f + g * h) div h = g + f div h" by simp
       
  1332 qed
       
  1333 
       
  1334 end
       
  1335 end
       
  1336 
       
  1337 lemma subdegree_mod:
       
  1338   assumes "f \<noteq> 0" "subdegree f < subdegree g"
       
  1339   shows   "subdegree (f mod g) = subdegree f"
       
  1340 proof (cases "f div g * g = 0")
       
  1341   assume "f div g * g \<noteq> 0"
       
  1342   hence [simp]: "f div g \<noteq> 0" "g \<noteq> 0" by auto
       
  1343   from div_mult_mod_eq[of f g] have "f mod g = f - f div g * g" by (simp add: algebra_simps)
       
  1344   also from assms have "subdegree ... = subdegree f"
       
  1345     by (intro subdegree_diff_eq1) simp_all
       
  1346   finally show ?thesis .
       
  1347 next
       
  1348   assume zero: "f div g * g = 0"
       
  1349   from div_mult_mod_eq[of f g] have "f mod g = f - f div g * g" by (simp add: algebra_simps)
       
  1350   also note zero
       
  1351   finally show ?thesis by simp
       
  1352 qed
       
  1353 
       
  1354 lemma fps_divide_nth_0 [simp]: "g $ 0 \<noteq> 0 \<Longrightarrow> (f div g) $ 0 = f $ 0 / (g $ 0 :: _ :: field)"
       
  1355   by (simp add: fps_divide_unit divide_inverse)
       
  1356 
       
  1357 
       
  1358 lemma dvd_imp_subdegree_le:
       
  1359   "(f :: 'a :: idom fps) dvd g \<Longrightarrow> g \<noteq> 0 \<Longrightarrow> subdegree f \<le> subdegree g"
       
  1360   by (auto elim: dvdE)
       
  1361 
       
  1362 lemma fps_dvd_iff:
       
  1363   assumes "(f :: 'a :: field fps) \<noteq> 0" "g \<noteq> 0"
       
  1364   shows   "f dvd g \<longleftrightarrow> subdegree f \<le> subdegree g"
       
  1365 proof
       
  1366   assume "subdegree f \<le> subdegree g"
       
  1367   with assms have "g mod f = 0"
       
  1368     by (simp add: fps_mod_def Let_def fps_cutoff_zero_iff)
       
  1369   thus "f dvd g" by (simp add: dvd_eq_mod_eq_0)
       
  1370 qed (simp add: assms dvd_imp_subdegree_le)
       
  1371 
       
  1372 lemma fps_shift_altdef:
       
  1373   "fps_shift n f = (f :: 'a :: field fps) div X^n"
       
  1374   by (simp add: fps_divide_def)
       
  1375   
       
  1376 lemma fps_div_X_power_nth: "((f :: 'a :: field fps) div X^n) $ k = f $ (k + n)"
       
  1377   by (simp add: fps_shift_altdef [symmetric])
       
  1378 
       
  1379 lemma fps_div_X_nth: "((f :: 'a :: field fps) div X) $ k = f $ Suc k"
       
  1380   using fps_div_X_power_nth[of f 1] by simp
       
  1381 
       
  1382 lemma fps_const_inverse: "inverse (fps_const (a::'a::field)) = fps_const (inverse a)"
       
  1383   by (cases "a \<noteq> 0", rule fps_inverse_unique) (auto simp: fps_eq_iff)
       
  1384 
       
  1385 lemma fps_const_divide: "fps_const (x :: _ :: field) / fps_const y = fps_const (x / y)"
       
  1386   by (cases "y = 0") (simp_all add: fps_divide_unit fps_const_inverse divide_inverse)
       
  1387 
       
  1388 lemma inverse_fps_numeral:
       
  1389   "inverse (numeral n :: ('a :: field_char_0) fps) = fps_const (inverse (numeral n))"
       
  1390   by (intro fps_inverse_unique fps_ext) (simp_all add: fps_numeral_nth)
       
  1391 
       
  1392 lemma fps_numeral_divide_divide:
       
  1393   "x / numeral b / numeral c = (x / numeral (b * c) :: 'a :: field fps)"
       
  1394   by (cases "numeral b = (0::'a)"; cases "numeral c = (0::'a)")
       
  1395       (simp_all add: fps_divide_unit fps_inverse_mult [symmetric] numeral_fps_const numeral_mult 
       
  1396                 del: numeral_mult [symmetric])
       
  1397 
       
  1398 lemma fps_numeral_mult_divide:
       
  1399   "numeral b * x / numeral c = (numeral b / numeral c * x :: 'a :: field fps)"
       
  1400   by (cases "numeral c = (0::'a)") (simp_all add: fps_divide_unit numeral_fps_const)
       
  1401 
       
  1402 lemmas fps_numeral_simps = 
       
  1403   fps_numeral_divide_divide fps_numeral_mult_divide inverse_fps_numeral neg_numeral_fps_const
       
  1404 
       
  1405 
       
  1406 subsection \<open>Formal power series form a Euclidean ring\<close>
       
  1407 
       
  1408 instantiation fps :: (field) euclidean_ring_cancel
       
  1409 begin
       
  1410 
       
  1411 definition fps_euclidean_size_def:
       
  1412   "euclidean_size f = (if f = 0 then 0 else 2 ^ subdegree f)"
       
  1413 
       
  1414 instance proof
       
  1415   fix f g :: "'a fps" assume [simp]: "g \<noteq> 0"
       
  1416   show "euclidean_size f \<le> euclidean_size (f * g)"
       
  1417     by (cases "f = 0") (auto simp: fps_euclidean_size_def)
       
  1418   show "euclidean_size (f mod g) < euclidean_size g"
       
  1419     apply (cases "f = 0", simp add: fps_euclidean_size_def)
       
  1420     apply (rule disjE[OF le_less_linear[of "subdegree g" "subdegree f"]])
       
  1421     apply (simp_all add: fps_mod_eq_zero fps_euclidean_size_def subdegree_mod)
       
  1422     done
       
  1423 qed (simp_all add: fps_euclidean_size_def)
       
  1424 
       
  1425 end
       
  1426 
       
  1427 instantiation fps :: (field) euclidean_ring_gcd
       
  1428 begin
       
  1429 definition fps_gcd_def: "(gcd :: 'a fps \<Rightarrow> _) = Euclidean_Algorithm.gcd"
       
  1430 definition fps_lcm_def: "(lcm :: 'a fps \<Rightarrow> _) = Euclidean_Algorithm.lcm"
       
  1431 definition fps_Gcd_def: "(Gcd :: 'a fps set \<Rightarrow> _) = Euclidean_Algorithm.Gcd"
       
  1432 definition fps_Lcm_def: "(Lcm :: 'a fps set \<Rightarrow> _) = Euclidean_Algorithm.Lcm"
       
  1433 instance by standard (simp_all add: fps_gcd_def fps_lcm_def fps_Gcd_def fps_Lcm_def)
       
  1434 end
       
  1435 
       
  1436 lemma fps_gcd:
       
  1437   assumes [simp]: "f \<noteq> 0" "g \<noteq> 0"
       
  1438   shows   "gcd f g = X ^ min (subdegree f) (subdegree g)"
       
  1439 proof -
       
  1440   let ?m = "min (subdegree f) (subdegree g)"
       
  1441   show "gcd f g = X ^ ?m"
       
  1442   proof (rule sym, rule gcdI)
       
  1443     fix d assume "d dvd f" "d dvd g"
       
  1444     thus "d dvd X ^ ?m" by (cases "d = 0") (auto simp: fps_dvd_iff)
       
  1445   qed (simp_all add: fps_dvd_iff)
       
  1446 qed
       
  1447 
       
  1448 lemma fps_gcd_altdef: "gcd (f :: 'a :: field fps) g =
       
  1449   (if f = 0 \<and> g = 0 then 0 else
       
  1450    if f = 0 then X ^ subdegree g else
       
  1451    if g = 0 then X ^ subdegree f else
       
  1452      X ^ min (subdegree f) (subdegree g))"
       
  1453   by (simp add: fps_gcd)
       
  1454 
       
  1455 lemma fps_lcm:
       
  1456   assumes [simp]: "f \<noteq> 0" "g \<noteq> 0"
       
  1457   shows   "lcm f g = X ^ max (subdegree f) (subdegree g)"
       
  1458 proof -
       
  1459   let ?m = "max (subdegree f) (subdegree g)"
       
  1460   show "lcm f g = X ^ ?m"
       
  1461   proof (rule sym, rule lcmI)
       
  1462     fix d assume "f dvd d" "g dvd d"
       
  1463     thus "X ^ ?m dvd d" by (cases "d = 0") (auto simp: fps_dvd_iff)
       
  1464   qed (simp_all add: fps_dvd_iff)
       
  1465 qed
       
  1466 
       
  1467 lemma fps_lcm_altdef: "lcm (f :: 'a :: field fps) g =
       
  1468   (if f = 0 \<or> g = 0 then 0 else X ^ max (subdegree f) (subdegree g))"
       
  1469   by (simp add: fps_lcm)
       
  1470 
       
  1471 lemma fps_Gcd:
       
  1472   assumes "A - {0} \<noteq> {}"
       
  1473   shows   "Gcd A = X ^ (INF f:A-{0}. subdegree f)"
       
  1474 proof (rule sym, rule GcdI)
       
  1475   fix f assume "f \<in> A"
       
  1476   thus "X ^ (INF f:A - {0}. subdegree f) dvd f"
       
  1477     by (cases "f = 0") (auto simp: fps_dvd_iff intro!: cINF_lower)
       
  1478 next
       
  1479   fix d assume d: "\<And>f. f \<in> A \<Longrightarrow> d dvd f"
       
  1480   from assms obtain f where "f \<in> A - {0}" by auto
       
  1481   with d[of f] have [simp]: "d \<noteq> 0" by auto
       
  1482   from d assms have "subdegree d \<le> (INF f:A-{0}. subdegree f)"
       
  1483     by (intro cINF_greatest) (auto simp: fps_dvd_iff[symmetric])
       
  1484   with d assms show "d dvd X ^ (INF f:A-{0}. subdegree f)" by (simp add: fps_dvd_iff)
       
  1485 qed simp_all
       
  1486 
       
  1487 lemma fps_Gcd_altdef: "Gcd (A :: 'a :: field fps set) =
       
  1488   (if A \<subseteq> {0} then 0 else X ^ (INF f:A-{0}. subdegree f))"
       
  1489   using fps_Gcd by auto
       
  1490 
       
  1491 lemma fps_Lcm:
       
  1492   assumes "A \<noteq> {}" "0 \<notin> A" "bdd_above (subdegree`A)"
       
  1493   shows   "Lcm A = X ^ (SUP f:A. subdegree f)"
       
  1494 proof (rule sym, rule LcmI)
       
  1495   fix f assume "f \<in> A"
       
  1496   moreover from assms(3) have "bdd_above (subdegree ` A)" by auto
       
  1497   ultimately show "f dvd X ^ (SUP f:A. subdegree f)" using assms(2)
       
  1498     by (cases "f = 0") (auto simp: fps_dvd_iff intro!: cSUP_upper)
       
  1499 next
       
  1500   fix d assume d: "\<And>f. f \<in> A \<Longrightarrow> f dvd d"
       
  1501   from assms obtain f where f: "f \<in> A" "f \<noteq> 0" by auto
       
  1502   show "X ^ (SUP f:A. subdegree f) dvd d"
       
  1503   proof (cases "d = 0")
       
  1504     assume "d \<noteq> 0"
       
  1505     moreover from d have "\<And>f. f \<in> A \<Longrightarrow> f \<noteq> 0 \<Longrightarrow> f dvd d" by blast
       
  1506     ultimately have "subdegree d \<ge> (SUP f:A. subdegree f)" using assms
       
  1507       by (intro cSUP_least) (auto simp: fps_dvd_iff)
       
  1508     with \<open>d \<noteq> 0\<close> show ?thesis by (simp add: fps_dvd_iff)
       
  1509   qed simp_all
       
  1510 qed simp_all
       
  1511 
       
  1512 lemma fps_Lcm_altdef:
       
  1513   "Lcm (A :: 'a :: field fps set) =
       
  1514      (if 0 \<in> A \<or> \<not>bdd_above (subdegree`A) then 0 else
       
  1515       if A = {} then 1 else X ^ (SUP f:A. subdegree f))"
       
  1516 proof (cases "bdd_above (subdegree`A)")
       
  1517   assume unbounded: "\<not>bdd_above (subdegree`A)"
       
  1518   have "Lcm A = 0"
       
  1519   proof (rule ccontr)
       
  1520     assume "Lcm A \<noteq> 0"
       
  1521     from unbounded obtain f where f: "f \<in> A" "subdegree (Lcm A) < subdegree f"
       
  1522       unfolding bdd_above_def by (auto simp: not_le)
       
  1523     moreover from f and \<open>Lcm A \<noteq> 0\<close> have "subdegree f \<le> subdegree (Lcm A)"
       
  1524       by (intro dvd_imp_subdegree_le dvd_Lcm) simp_all
       
  1525     ultimately show False by simp
       
  1526   qed
       
  1527   with unbounded show ?thesis by simp
       
  1528 qed (simp_all add: fps_Lcm Lcm_eq_0_I)
       
  1529 
       
  1530 
       
  1531 
       
  1532 subsection \<open>Formal Derivatives, and the MacLaurin theorem around 0\<close>
       
  1533 
       
  1534 definition "fps_deriv f = Abs_fps (\<lambda>n. of_nat (n + 1) * f $ (n + 1))"
       
  1535 
       
  1536 lemma fps_deriv_nth[simp]: "fps_deriv f $ n = of_nat (n +1) * f $ (n + 1)"
       
  1537   by (simp add: fps_deriv_def)
       
  1538 
       
  1539 lemma fps_0th_higher_deriv: 
       
  1540   "(fps_deriv ^^ n) f $ 0 = (fact n * f $ n :: 'a :: {comm_ring_1, semiring_char_0})"
       
  1541   by (induction n arbitrary: f) (simp_all del: funpow.simps add: funpow_Suc_right algebra_simps)
       
  1542 
       
  1543 lemma fps_deriv_linear[simp]:
       
  1544   "fps_deriv (fps_const (a::'a::comm_semiring_1) * f + fps_const b * g) =
       
  1545     fps_const a * fps_deriv f + fps_const b * fps_deriv g"
       
  1546   unfolding fps_eq_iff fps_add_nth  fps_const_mult_left fps_deriv_nth by (simp add: field_simps)
       
  1547 
       
  1548 lemma fps_deriv_mult[simp]:
       
  1549   fixes f :: "'a::comm_ring_1 fps"
       
  1550   shows "fps_deriv (f * g) = f * fps_deriv g + fps_deriv f * g"
       
  1551 proof -
       
  1552   let ?D = "fps_deriv"
       
  1553   have "(f * ?D g + ?D f * g) $ n = ?D (f*g) $ n" for n
       
  1554   proof -
       
  1555     let ?Zn = "{0 ..n}"
       
  1556     let ?Zn1 = "{0 .. n + 1}"
       
  1557     let ?g = "\<lambda>i. of_nat (i+1) * g $ (i+1) * f $ (n - i) +
       
  1558         of_nat (i+1)* f $ (i+1) * g $ (n - i)"
       
  1559     let ?h = "\<lambda>i. of_nat i * g $ i * f $ ((n+1) - i) +
       
  1560         of_nat i* f $ i * g $ ((n + 1) - i)"
       
  1561     have s0: "sum (\<lambda>i. of_nat i * f $ i * g $ (n + 1 - i)) ?Zn1 =
       
  1562       sum (\<lambda>i. of_nat (n + 1 - i) * f $ (n + 1 - i) * g $ i) ?Zn1"
       
  1563        by (rule sum.reindex_bij_witness[where i="op - (n + 1)" and j="op - (n + 1)"]) auto
       
  1564     have s1: "sum (\<lambda>i. f $ i * g $ (n + 1 - i)) ?Zn1 =
       
  1565       sum (\<lambda>i. f $ (n + 1 - i) * g $ i) ?Zn1"
       
  1566        by (rule sum.reindex_bij_witness[where i="op - (n + 1)" and j="op - (n + 1)"]) auto
       
  1567     have "(f * ?D g + ?D f * g)$n = (?D g * f + ?D f * g)$n"
       
  1568       by (simp only: mult.commute)
       
  1569     also have "\<dots> = (\<Sum>i = 0..n. ?g i)"
       
  1570       by (simp add: fps_mult_nth sum.distrib[symmetric])
       
  1571     also have "\<dots> = sum ?h {0..n+1}"
       
  1572       by (rule sum.reindex_bij_witness_not_neutral
       
  1573             [where S'="{}" and T'="{0}" and j="Suc" and i="\<lambda>i. i - 1"]) auto
       
  1574     also have "\<dots> = (fps_deriv (f * g)) $ n"
       
  1575       apply (simp only: fps_deriv_nth fps_mult_nth sum.distrib)
       
  1576       unfolding s0 s1
       
  1577       unfolding sum.distrib[symmetric] sum_distrib_left
       
  1578       apply (rule sum.cong)
       
  1579       apply (auto simp add: of_nat_diff field_simps)
       
  1580       done
       
  1581     finally show ?thesis .
       
  1582   qed
       
  1583   then show ?thesis
       
  1584     unfolding fps_eq_iff by auto
       
  1585 qed
       
  1586 
       
  1587 lemma fps_deriv_X[simp]: "fps_deriv X = 1"
       
  1588   by (simp add: fps_deriv_def X_def fps_eq_iff)
       
  1589 
       
  1590 lemma fps_deriv_neg[simp]:
       
  1591   "fps_deriv (- (f:: 'a::comm_ring_1 fps)) = - (fps_deriv f)"
       
  1592   by (simp add: fps_eq_iff fps_deriv_def)
       
  1593 
       
  1594 lemma fps_deriv_add[simp]:
       
  1595   "fps_deriv ((f:: 'a::comm_ring_1 fps) + g) = fps_deriv f + fps_deriv g"
       
  1596   using fps_deriv_linear[of 1 f 1 g] by simp
       
  1597 
       
  1598 lemma fps_deriv_sub[simp]:
       
  1599   "fps_deriv ((f:: 'a::comm_ring_1 fps) - g) = fps_deriv f - fps_deriv g"
       
  1600   using fps_deriv_add [of f "- g"] by simp
       
  1601 
       
  1602 lemma fps_deriv_const[simp]: "fps_deriv (fps_const c) = 0"
       
  1603   by (simp add: fps_ext fps_deriv_def fps_const_def)
       
  1604 
       
  1605 lemma fps_deriv_of_nat [simp]: "fps_deriv (of_nat n) = 0"
       
  1606   by (simp add: fps_of_nat [symmetric])
       
  1607 
       
  1608 lemma fps_deriv_numeral [simp]: "fps_deriv (numeral n) = 0"
       
  1609   by (simp add: numeral_fps_const)    
       
  1610 
       
  1611 lemma fps_deriv_mult_const_left[simp]:
       
  1612   "fps_deriv (fps_const (c::'a::comm_ring_1) * f) = fps_const c * fps_deriv f"
       
  1613   by simp
       
  1614 
       
  1615 lemma fps_deriv_0[simp]: "fps_deriv 0 = 0"
       
  1616   by (simp add: fps_deriv_def fps_eq_iff)
       
  1617 
       
  1618 lemma fps_deriv_1[simp]: "fps_deriv 1 = 0"
       
  1619   by (simp add: fps_deriv_def fps_eq_iff )
       
  1620 
       
  1621 lemma fps_deriv_mult_const_right[simp]:
       
  1622   "fps_deriv (f * fps_const (c::'a::comm_ring_1)) = fps_deriv f * fps_const c"
       
  1623   by simp
       
  1624 
       
  1625 lemma fps_deriv_sum:
       
  1626   "fps_deriv (sum f S) = sum (\<lambda>i. fps_deriv (f i :: 'a::comm_ring_1 fps)) S"
       
  1627 proof (cases "finite S")
       
  1628   case False
       
  1629   then show ?thesis by simp
       
  1630 next
       
  1631   case True
       
  1632   show ?thesis by (induct rule: finite_induct [OF True]) simp_all
       
  1633 qed
       
  1634 
       
  1635 lemma fps_deriv_eq_0_iff [simp]:
       
  1636   "fps_deriv f = 0 \<longleftrightarrow> f = fps_const (f$0 :: 'a::{idom,semiring_char_0})"
       
  1637   (is "?lhs \<longleftrightarrow> ?rhs")
       
  1638 proof
       
  1639   show ?lhs if ?rhs
       
  1640   proof -
       
  1641     from that have "fps_deriv f = fps_deriv (fps_const (f$0))"
       
  1642       by simp
       
  1643     then show ?thesis
       
  1644       by simp
       
  1645   qed
       
  1646   show ?rhs if ?lhs
       
  1647   proof -
       
  1648     from that have "\<forall>n. (fps_deriv f)$n = 0"
       
  1649       by simp
       
  1650     then have "\<forall>n. f$(n+1) = 0"
       
  1651       by (simp del: of_nat_Suc of_nat_add One_nat_def)
       
  1652     then show ?thesis
       
  1653       apply (clarsimp simp add: fps_eq_iff fps_const_def)
       
  1654       apply (erule_tac x="n - 1" in allE)
       
  1655       apply simp
       
  1656       done
       
  1657   qed
       
  1658 qed
       
  1659 
       
  1660 lemma fps_deriv_eq_iff:
       
  1661   fixes f :: "'a::{idom,semiring_char_0} fps"
       
  1662   shows "fps_deriv f = fps_deriv g \<longleftrightarrow> (f = fps_const(f$0 - g$0) + g)"
       
  1663 proof -
       
  1664   have "fps_deriv f = fps_deriv g \<longleftrightarrow> fps_deriv (f - g) = 0"
       
  1665     by simp
       
  1666   also have "\<dots> \<longleftrightarrow> f - g = fps_const ((f - g) $ 0)"
       
  1667     unfolding fps_deriv_eq_0_iff ..
       
  1668   finally show ?thesis
       
  1669     by (simp add: field_simps)
       
  1670 qed
       
  1671 
       
  1672 lemma fps_deriv_eq_iff_ex:
       
  1673   "(fps_deriv f = fps_deriv g) \<longleftrightarrow> (\<exists>c::'a::{idom,semiring_char_0}. f = fps_const c + g)"
       
  1674   by (auto simp: fps_deriv_eq_iff)
       
  1675 
       
  1676 
       
  1677 fun fps_nth_deriv :: "nat \<Rightarrow> 'a::semiring_1 fps \<Rightarrow> 'a fps"
       
  1678 where
       
  1679   "fps_nth_deriv 0 f = f"
       
  1680 | "fps_nth_deriv (Suc n) f = fps_nth_deriv n (fps_deriv f)"
       
  1681 
       
  1682 lemma fps_nth_deriv_commute: "fps_nth_deriv (Suc n) f = fps_deriv (fps_nth_deriv n f)"
       
  1683   by (induct n arbitrary: f) auto
       
  1684 
       
  1685 lemma fps_nth_deriv_linear[simp]:
       
  1686   "fps_nth_deriv n (fps_const (a::'a::comm_semiring_1) * f + fps_const b * g) =
       
  1687     fps_const a * fps_nth_deriv n f + fps_const b * fps_nth_deriv n g"
       
  1688   by (induct n arbitrary: f g) (auto simp add: fps_nth_deriv_commute)
       
  1689 
       
  1690 lemma fps_nth_deriv_neg[simp]:
       
  1691   "fps_nth_deriv n (- (f :: 'a::comm_ring_1 fps)) = - (fps_nth_deriv n f)"
       
  1692   by (induct n arbitrary: f) simp_all
       
  1693 
       
  1694 lemma fps_nth_deriv_add[simp]:
       
  1695   "fps_nth_deriv n ((f :: 'a::comm_ring_1 fps) + g) = fps_nth_deriv n f + fps_nth_deriv n g"
       
  1696   using fps_nth_deriv_linear[of n 1 f 1 g] by simp
       
  1697 
       
  1698 lemma fps_nth_deriv_sub[simp]:
       
  1699   "fps_nth_deriv n ((f :: 'a::comm_ring_1 fps) - g) = fps_nth_deriv n f - fps_nth_deriv n g"
       
  1700   using fps_nth_deriv_add [of n f "- g"] by simp
       
  1701 
       
  1702 lemma fps_nth_deriv_0[simp]: "fps_nth_deriv n 0 = 0"
       
  1703   by (induct n) simp_all
       
  1704 
       
  1705 lemma fps_nth_deriv_1[simp]: "fps_nth_deriv n 1 = (if n = 0 then 1 else 0)"
       
  1706   by (induct n) simp_all
       
  1707 
       
  1708 lemma fps_nth_deriv_const[simp]:
       
  1709   "fps_nth_deriv n (fps_const c) = (if n = 0 then fps_const c else 0)"
       
  1710   by (cases n) simp_all
       
  1711 
       
  1712 lemma fps_nth_deriv_mult_const_left[simp]:
       
  1713   "fps_nth_deriv n (fps_const (c::'a::comm_ring_1) * f) = fps_const c * fps_nth_deriv n f"
       
  1714   using fps_nth_deriv_linear[of n "c" f 0 0 ] by simp
       
  1715 
       
  1716 lemma fps_nth_deriv_mult_const_right[simp]:
       
  1717   "fps_nth_deriv n (f * fps_const (c::'a::comm_ring_1)) = fps_nth_deriv n f * fps_const c"
       
  1718   using fps_nth_deriv_linear[of n "c" f 0 0] by (simp add: mult.commute)
       
  1719 
       
  1720 lemma fps_nth_deriv_sum:
       
  1721   "fps_nth_deriv n (sum f S) = sum (\<lambda>i. fps_nth_deriv n (f i :: 'a::comm_ring_1 fps)) S"
       
  1722 proof (cases "finite S")
       
  1723   case True
       
  1724   show ?thesis by (induct rule: finite_induct [OF True]) simp_all
       
  1725 next
       
  1726   case False
       
  1727   then show ?thesis by simp
       
  1728 qed
       
  1729 
       
  1730 lemma fps_deriv_maclauren_0:
       
  1731   "(fps_nth_deriv k (f :: 'a::comm_semiring_1 fps)) $ 0 = of_nat (fact k) * f $ k"
       
  1732   by (induct k arbitrary: f) (auto simp add: field_simps)
       
  1733 
       
  1734 
       
  1735 subsection \<open>Powers\<close>
       
  1736 
       
  1737 lemma fps_power_zeroth_eq_one: "a$0 =1 \<Longrightarrow> a^n $ 0 = (1::'a::semiring_1)"
       
  1738   by (induct n) (auto simp add: expand_fps_eq fps_mult_nth)
       
  1739 
       
  1740 lemma fps_power_first_eq: "(a :: 'a::comm_ring_1 fps) $ 0 =1 \<Longrightarrow> a^n $ 1 = of_nat n * a$1"
       
  1741 proof (induct n)
       
  1742   case 0
       
  1743   then show ?case by simp
       
  1744 next
       
  1745   case (Suc n)
       
  1746   show ?case unfolding power_Suc fps_mult_nth
       
  1747     using Suc.hyps[OF \<open>a$0 = 1\<close>] \<open>a$0 = 1\<close> fps_power_zeroth_eq_one[OF \<open>a$0=1\<close>]
       
  1748     by (simp add: field_simps)
       
  1749 qed
       
  1750 
       
  1751 lemma startsby_one_power:"a $ 0 = (1::'a::comm_ring_1) \<Longrightarrow> a^n $ 0 = 1"
       
  1752   by (induct n) (auto simp add: fps_mult_nth)
       
  1753 
       
  1754 lemma startsby_zero_power:"a $0 = (0::'a::comm_ring_1) \<Longrightarrow> n > 0 \<Longrightarrow> a^n $0 = 0"
       
  1755   by (induct n) (auto simp add: fps_mult_nth)
       
  1756 
       
  1757 lemma startsby_power:"a $0 = (v::'a::comm_ring_1) \<Longrightarrow> a^n $0 = v^n"
       
  1758   by (induct n) (auto simp add: fps_mult_nth)
       
  1759 
       
  1760 lemma startsby_zero_power_iff[simp]: "a^n $0 = (0::'a::idom) \<longleftrightarrow> n \<noteq> 0 \<and> a$0 = 0"
       
  1761   apply (rule iffI)
       
  1762   apply (induct n)
       
  1763   apply (auto simp add: fps_mult_nth)
       
  1764   apply (rule startsby_zero_power, simp_all)
       
  1765   done
       
  1766 
       
  1767 lemma startsby_zero_power_prefix:
       
  1768   assumes a0: "a $ 0 = (0::'a::idom)"
       
  1769   shows "\<forall>n < k. a ^ k $ n = 0"
       
  1770   using a0
       
  1771 proof (induct k rule: nat_less_induct)
       
  1772   fix k
       
  1773   assume H: "\<forall>m<k. a $0 =  0 \<longrightarrow> (\<forall>n<m. a ^ m $ n = 0)" and a0: "a $ 0 = 0"
       
  1774   show "\<forall>m<k. a ^ k $ m = 0"
       
  1775   proof (cases k)
       
  1776     case 0
       
  1777     then show ?thesis by simp
       
  1778   next
       
  1779     case (Suc l)
       
  1780     have "a^k $ m = 0" if mk: "m < k" for m
       
  1781     proof (cases "m = 0")
       
  1782       case True
       
  1783       then show ?thesis
       
  1784         using startsby_zero_power[of a k] Suc a0 by simp
       
  1785     next
       
  1786       case False
       
  1787       have "a ^k $ m = (a^l * a) $m"
       
  1788         by (simp add: Suc mult.commute)
       
  1789       also have "\<dots> = (\<Sum>i = 0..m. a ^ l $ i * a $ (m - i))"
       
  1790         by (simp add: fps_mult_nth)
       
  1791       also have "\<dots> = 0"
       
  1792         apply (rule sum.neutral)
       
  1793         apply auto
       
  1794         apply (case_tac "x = m")
       
  1795         using a0 apply simp
       
  1796         apply (rule H[rule_format])
       
  1797         using a0 Suc mk apply auto
       
  1798         done
       
  1799       finally show ?thesis .
       
  1800     qed
       
  1801     then show ?thesis by blast
       
  1802   qed
       
  1803 qed
       
  1804 
       
  1805 lemma startsby_zero_sum_depends:
       
  1806   assumes a0: "a $0 = (0::'a::idom)"
       
  1807     and kn: "n \<ge> k"
       
  1808   shows "sum (\<lambda>i. (a ^ i)$k) {0 .. n} = sum (\<lambda>i. (a ^ i)$k) {0 .. k}"
       
  1809   apply (rule sum.mono_neutral_right)
       
  1810   using kn
       
  1811   apply auto
       
  1812   apply (rule startsby_zero_power_prefix[rule_format, OF a0])
       
  1813   apply arith
       
  1814   done
       
  1815 
       
  1816 lemma startsby_zero_power_nth_same:
       
  1817   assumes a0: "a$0 = (0::'a::idom)"
       
  1818   shows "a^n $ n = (a$1) ^ n"
       
  1819 proof (induct n)
       
  1820   case 0
       
  1821   then show ?case by simp
       
  1822 next
       
  1823   case (Suc n)
       
  1824   have "a ^ Suc n $ (Suc n) = (a^n * a)$(Suc n)"
       
  1825     by (simp add: field_simps)
       
  1826   also have "\<dots> = sum (\<lambda>i. a^n$i * a $ (Suc n - i)) {0.. Suc n}"
       
  1827     by (simp add: fps_mult_nth)
       
  1828   also have "\<dots> = sum (\<lambda>i. a^n$i * a $ (Suc n - i)) {n .. Suc n}"
       
  1829     apply (rule sum.mono_neutral_right)
       
  1830     apply simp
       
  1831     apply clarsimp
       
  1832     apply clarsimp
       
  1833     apply (rule startsby_zero_power_prefix[rule_format, OF a0])
       
  1834     apply arith
       
  1835     done
       
  1836   also have "\<dots> = a^n $ n * a$1"
       
  1837     using a0 by simp
       
  1838   finally show ?case
       
  1839     using Suc.hyps by simp
       
  1840 qed
       
  1841 
       
  1842 lemma fps_inverse_power:
       
  1843   fixes a :: "'a::field fps"
       
  1844   shows "inverse (a^n) = inverse a ^ n"
       
  1845   by (induction n) (simp_all add: fps_inverse_mult)
       
  1846 
       
  1847 lemma fps_deriv_power:
       
  1848   "fps_deriv (a ^ n) = fps_const (of_nat n :: 'a::comm_ring_1) * fps_deriv a * a ^ (n - 1)"
       
  1849   apply (induct n)
       
  1850   apply (auto simp add: field_simps fps_const_add[symmetric] simp del: fps_const_add)
       
  1851   apply (case_tac n)
       
  1852   apply (auto simp add: field_simps)
       
  1853   done
       
  1854 
       
  1855 lemma fps_inverse_deriv:
       
  1856   fixes a :: "'a::field fps"
       
  1857   assumes a0: "a$0 \<noteq> 0"
       
  1858   shows "fps_deriv (inverse a) = - fps_deriv a * (inverse a)\<^sup>2"
       
  1859 proof -
       
  1860   from inverse_mult_eq_1[OF a0]
       
  1861   have "fps_deriv (inverse a * a) = 0" by simp
       
  1862   then have "inverse a * fps_deriv a + fps_deriv (inverse a) * a = 0"
       
  1863     by simp
       
  1864   then have "inverse a * (inverse a * fps_deriv a + fps_deriv (inverse a) * a) = 0"
       
  1865     by simp
       
  1866   with inverse_mult_eq_1[OF a0]
       
  1867   have "(inverse a)\<^sup>2 * fps_deriv a + fps_deriv (inverse a) = 0"
       
  1868     unfolding power2_eq_square
       
  1869     apply (simp add: field_simps)
       
  1870     apply (simp add: mult.assoc[symmetric])
       
  1871     done
       
  1872   then have "(inverse a)\<^sup>2 * fps_deriv a + fps_deriv (inverse a) - fps_deriv a * (inverse a)\<^sup>2 =
       
  1873       0 - fps_deriv a * (inverse a)\<^sup>2"
       
  1874     by simp
       
  1875   then show "fps_deriv (inverse a) = - fps_deriv a * (inverse a)\<^sup>2"
       
  1876     by (simp add: field_simps)
       
  1877 qed
       
  1878 
       
  1879 lemma fps_inverse_deriv':
       
  1880   fixes a :: "'a::field fps"
       
  1881   assumes a0: "a $ 0 \<noteq> 0"
       
  1882   shows "fps_deriv (inverse a) = - fps_deriv a / a\<^sup>2"
       
  1883   using fps_inverse_deriv[OF a0] a0
       
  1884   by (simp add: fps_divide_unit power2_eq_square fps_inverse_mult)
       
  1885 
       
  1886 lemma inverse_mult_eq_1':
       
  1887   assumes f0: "f$0 \<noteq> (0::'a::field)"
       
  1888   shows "f * inverse f = 1"
       
  1889   by (metis mult.commute inverse_mult_eq_1 f0)
       
  1890 
       
  1891 lemma fps_inverse_minus [simp]: "inverse (-f) = -inverse (f :: 'a :: field fps)"
       
  1892   by (cases "f$0 = 0") (auto intro: fps_inverse_unique simp: inverse_mult_eq_1' fps_inverse_eq_0)
       
  1893   
       
  1894 lemma divide_fps_const [simp]: "f / fps_const (c :: 'a :: field) = fps_const (inverse c) * f"
       
  1895   by (cases "c = 0") (simp_all add: fps_divide_unit fps_const_inverse)
       
  1896 
       
  1897 (* FIXME: The last part of this proof should go through by simp once we have a proper
       
  1898    theorem collection for simplifying division on rings *)
       
  1899 lemma fps_divide_deriv:
       
  1900   assumes "b dvd (a :: 'a :: field fps)"
       
  1901   shows   "fps_deriv (a / b) = (fps_deriv a * b - a * fps_deriv b) / b^2"
       
  1902 proof -
       
  1903   have eq_divide_imp: "c \<noteq> 0 \<Longrightarrow> a * c = b \<Longrightarrow> a = b div c" for a b c :: "'a :: field fps"
       
  1904     by (drule sym) (simp add: mult.assoc)
       
  1905   from assms have "a = a / b * b" by simp
       
  1906   also have "fps_deriv (a / b * b) = fps_deriv (a / b) * b + a / b * fps_deriv b" by simp
       
  1907   finally have "fps_deriv (a / b) * b^2 = fps_deriv a * b - a * fps_deriv b" using assms
       
  1908     by (simp add: power2_eq_square algebra_simps)
       
  1909   thus ?thesis by (cases "b = 0") (auto simp: eq_divide_imp)
       
  1910 qed
       
  1911 
       
  1912 lemma fps_inverse_gp': "inverse (Abs_fps (\<lambda>n. 1::'a::field)) = 1 - X"
       
  1913   by (simp add: fps_inverse_gp fps_eq_iff X_def)
       
  1914 
       
  1915 lemma fps_one_over_one_minus_X_squared:
       
  1916   "inverse ((1 - X)^2 :: 'a :: field fps) = Abs_fps (\<lambda>n. of_nat (n+1))"
       
  1917 proof -
       
  1918   have "inverse ((1 - X)^2 :: 'a fps) = fps_deriv (inverse (1 - X))"
       
  1919     by (subst fps_inverse_deriv) (simp_all add: fps_inverse_power)
       
  1920   also have "inverse (1 - X :: 'a fps) = Abs_fps (\<lambda>_. 1)"
       
  1921     by (subst fps_inverse_gp' [symmetric]) simp
       
  1922   also have "fps_deriv \<dots> = Abs_fps (\<lambda>n. of_nat (n + 1))"
       
  1923     by (simp add: fps_deriv_def)
       
  1924   finally show ?thesis .
       
  1925 qed
       
  1926 
       
  1927 lemma fps_nth_deriv_X[simp]: "fps_nth_deriv n X = (if n = 0 then X else if n=1 then 1 else 0)"
       
  1928   by (cases n) simp_all
       
  1929 
       
  1930 lemma fps_inverse_X_plus1: "inverse (1 + X) = Abs_fps (\<lambda>n. (- (1::'a::field)) ^ n)"
       
  1931   (is "_ = ?r")
       
  1932 proof -
       
  1933   have eq: "(1 + X) * ?r = 1"
       
  1934     unfolding minus_one_power_iff
       
  1935     by (auto simp add: field_simps fps_eq_iff)
       
  1936   show ?thesis
       
  1937     by (auto simp add: eq intro: fps_inverse_unique)
       
  1938 qed
       
  1939 
       
  1940 
       
  1941 subsection \<open>Integration\<close>
       
  1942 
       
  1943 definition fps_integral :: "'a::field_char_0 fps \<Rightarrow> 'a \<Rightarrow> 'a fps"
       
  1944   where "fps_integral a a0 = Abs_fps (\<lambda>n. if n = 0 then a0 else (a$(n - 1) / of_nat n))"
       
  1945 
       
  1946 lemma fps_deriv_fps_integral: "fps_deriv (fps_integral a a0) = a"
       
  1947   unfolding fps_integral_def fps_deriv_def
       
  1948   by (simp add: fps_eq_iff del: of_nat_Suc)
       
  1949 
       
  1950 lemma fps_integral_linear:
       
  1951   "fps_integral (fps_const a * f + fps_const b * g) (a*a0 + b*b0) =
       
  1952     fps_const a * fps_integral f a0 + fps_const b * fps_integral g b0"
       
  1953   (is "?l = ?r")
       
  1954 proof -
       
  1955   have "fps_deriv ?l = fps_deriv ?r"
       
  1956     by (simp add: fps_deriv_fps_integral)
       
  1957   moreover have "?l$0 = ?r$0"
       
  1958     by (simp add: fps_integral_def)
       
  1959   ultimately show ?thesis
       
  1960     unfolding fps_deriv_eq_iff by auto
       
  1961 qed
       
  1962 
       
  1963 
       
  1964 subsection \<open>Composition of FPSs\<close>
       
  1965 
       
  1966 definition fps_compose :: "'a::semiring_1 fps \<Rightarrow> 'a fps \<Rightarrow> 'a fps"  (infixl "oo" 55)
       
  1967   where "a oo b = Abs_fps (\<lambda>n. sum (\<lambda>i. a$i * (b^i$n)) {0..n})"
       
  1968 
       
  1969 lemma fps_compose_nth: "(a oo b)$n = sum (\<lambda>i. a$i * (b^i$n)) {0..n}"
       
  1970   by (simp add: fps_compose_def)
       
  1971 
       
  1972 lemma fps_compose_nth_0 [simp]: "(f oo g) $ 0 = f $ 0"
       
  1973   by (simp add: fps_compose_nth)
       
  1974 
       
  1975 lemma fps_compose_X[simp]: "a oo X = (a :: 'a::comm_ring_1 fps)"
       
  1976   by (simp add: fps_ext fps_compose_def mult_delta_right sum.delta')
       
  1977 
       
  1978 lemma fps_const_compose[simp]: "fps_const (a::'a::comm_ring_1) oo b = fps_const a"
       
  1979   by (simp add: fps_eq_iff fps_compose_nth mult_delta_left sum.delta)
       
  1980 
       
  1981 lemma numeral_compose[simp]: "(numeral k :: 'a::comm_ring_1 fps) oo b = numeral k"
       
  1982   unfolding numeral_fps_const by simp
       
  1983 
       
  1984 lemma neg_numeral_compose[simp]: "(- numeral k :: 'a::comm_ring_1 fps) oo b = - numeral k"
       
  1985   unfolding neg_numeral_fps_const by simp
       
  1986 
       
  1987 lemma X_fps_compose_startby0[simp]: "a$0 = 0 \<Longrightarrow> X oo a = (a :: 'a::comm_ring_1 fps)"
       
  1988   by (simp add: fps_eq_iff fps_compose_def mult_delta_left sum.delta not_le)
       
  1989 
       
  1990 
       
  1991 subsection \<open>Rules from Herbert Wilf's Generatingfunctionology\<close>
       
  1992 
       
  1993 subsubsection \<open>Rule 1\<close>
       
  1994   (* {a_{n+k}}_0^infty Corresponds to (f - sum (\<lambda>i. a_i * x^i))/x^h, for h>0*)
       
  1995 
       
  1996 lemma fps_power_mult_eq_shift:
       
  1997   "X^Suc k * Abs_fps (\<lambda>n. a (n + Suc k)) =
       
  1998     Abs_fps a - sum (\<lambda>i. fps_const (a i :: 'a::comm_ring_1) * X^i) {0 .. k}"
       
  1999   (is "?lhs = ?rhs")
       
  2000 proof -
       
  2001   have "?lhs $ n = ?rhs $ n" for n :: nat
       
  2002   proof -
       
  2003     have "?lhs $ n = (if n < Suc k then 0 else a n)"
       
  2004       unfolding X_power_mult_nth by auto
       
  2005     also have "\<dots> = ?rhs $ n"
       
  2006     proof (induct k)
       
  2007       case 0
       
  2008       then show ?case
       
  2009         by (simp add: fps_sum_nth)
       
  2010     next
       
  2011       case (Suc k)
       
  2012       have "(Abs_fps a - sum (\<lambda>i. fps_const (a i :: 'a) * X^i) {0 .. Suc k})$n =
       
  2013         (Abs_fps a - sum (\<lambda>i. fps_const (a i :: 'a) * X^i) {0 .. k} -
       
  2014           fps_const (a (Suc k)) * X^ Suc k) $ n"
       
  2015         by (simp add: field_simps)
       
  2016       also have "\<dots> = (if n < Suc k then 0 else a n) - (fps_const (a (Suc k)) * X^ Suc k)$n"
       
  2017         using Suc.hyps[symmetric] unfolding fps_sub_nth by simp
       
  2018       also have "\<dots> = (if n < Suc (Suc k) then 0 else a n)"
       
  2019         unfolding X_power_mult_right_nth
       
  2020         apply (auto simp add: not_less fps_const_def)
       
  2021         apply (rule cong[of a a, OF refl])
       
  2022         apply arith
       
  2023         done
       
  2024       finally show ?case
       
  2025         by simp
       
  2026     qed
       
  2027     finally show ?thesis .
       
  2028   qed
       
  2029   then show ?thesis
       
  2030     by (simp add: fps_eq_iff)
       
  2031 qed
       
  2032 
       
  2033 
       
  2034 subsubsection \<open>Rule 2\<close>
       
  2035 
       
  2036   (* We can not reach the form of Wilf, but still near to it using rewrite rules*)
       
  2037   (* If f reprents {a_n} and P is a polynomial, then
       
  2038         P(xD) f represents {P(n) a_n}*)
       
  2039 
       
  2040 definition "XD = op * X \<circ> fps_deriv"
       
  2041 
       
  2042 lemma XD_add[simp]:"XD (a + b) = XD a + XD (b :: 'a::comm_ring_1 fps)"
       
  2043   by (simp add: XD_def field_simps)
       
  2044 
       
  2045 lemma XD_mult_const[simp]:"XD (fps_const (c::'a::comm_ring_1) * a) = fps_const c * XD a"
       
  2046   by (simp add: XD_def field_simps)
       
  2047 
       
  2048 lemma XD_linear[simp]: "XD (fps_const c * a + fps_const d * b) =
       
  2049     fps_const c * XD a + fps_const d * XD (b :: 'a::comm_ring_1 fps)"
       
  2050   by simp
       
  2051 
       
  2052 lemma XDN_linear:
       
  2053   "(XD ^^ n) (fps_const c * a + fps_const d * b) =
       
  2054     fps_const c * (XD ^^ n) a + fps_const d * (XD ^^ n) (b :: 'a::comm_ring_1 fps)"
       
  2055   by (induct n) simp_all
       
  2056 
       
  2057 lemma fps_mult_X_deriv_shift: "X* fps_deriv a = Abs_fps (\<lambda>n. of_nat n* a$n)"
       
  2058   by (simp add: fps_eq_iff)
       
  2059 
       
  2060 lemma fps_mult_XD_shift:
       
  2061   "(XD ^^ k) (a :: 'a::comm_ring_1 fps) = Abs_fps (\<lambda>n. (of_nat n ^ k) * a$n)"
       
  2062   by (induct k arbitrary: a) (simp_all add: XD_def fps_eq_iff field_simps del: One_nat_def)
       
  2063 
       
  2064 
       
  2065 subsubsection \<open>Rule 3\<close>
       
  2066 
       
  2067 text \<open>Rule 3 is trivial and is given by \<open>fps_times_def\<close>.\<close>
       
  2068 
       
  2069 
       
  2070 subsubsection \<open>Rule 5 --- summation and "division" by (1 - X)\<close>
       
  2071 
       
  2072 lemma fps_divide_X_minus1_sum_lemma:
       
  2073   "a = ((1::'a::comm_ring_1 fps) - X) * Abs_fps (\<lambda>n. sum (\<lambda>i. a $ i) {0..n})"
       
  2074 proof -
       
  2075   let ?sa = "Abs_fps (\<lambda>n. sum (\<lambda>i. a $ i) {0..n})"
       
  2076   have th0: "\<And>i. (1 - (X::'a fps)) $ i = (if i = 0 then 1 else if i = 1 then - 1 else 0)"
       
  2077     by simp
       
  2078   have "a$n = ((1 - X) * ?sa) $ n" for n
       
  2079   proof (cases "n = 0")
       
  2080     case True
       
  2081     then show ?thesis
       
  2082       by (simp add: fps_mult_nth)
       
  2083   next
       
  2084     case False
       
  2085     then have u: "{0} \<union> ({1} \<union> {2..n}) = {0..n}" "{1} \<union> {2..n} = {1..n}"
       
  2086       "{0..n - 1} \<union> {n} = {0..n}"
       
  2087       by (auto simp: set_eq_iff)
       
  2088     have d: "{0} \<inter> ({1} \<union> {2..n}) = {}" "{1} \<inter> {2..n} = {}" "{0..n - 1} \<inter> {n} = {}"
       
  2089       using False by simp_all
       
  2090     have f: "finite {0}" "finite {1}" "finite {2 .. n}"
       
  2091       "finite {0 .. n - 1}" "finite {n}" by simp_all
       
  2092     have "((1 - X) * ?sa) $ n = sum (\<lambda>i. (1 - X)$ i * ?sa $ (n - i)) {0 .. n}"
       
  2093       by (simp add: fps_mult_nth)
       
  2094     also have "\<dots> = a$n"
       
  2095       unfolding th0
       
  2096       unfolding sum.union_disjoint[OF f(1) finite_UnI[OF f(2,3)] d(1), unfolded u(1)]
       
  2097       unfolding sum.union_disjoint[OF f(2) f(3) d(2)]
       
  2098       apply (simp)
       
  2099       unfolding sum.union_disjoint[OF f(4,5) d(3), unfolded u(3)]
       
  2100       apply simp
       
  2101       done
       
  2102     finally show ?thesis
       
  2103       by simp
       
  2104   qed
       
  2105   then show ?thesis
       
  2106     unfolding fps_eq_iff by blast
       
  2107 qed
       
  2108 
       
  2109 lemma fps_divide_X_minus1_sum:
       
  2110   "a /((1::'a::field fps) - X) = Abs_fps (\<lambda>n. sum (\<lambda>i. a $ i) {0..n})"
       
  2111 proof -
       
  2112   let ?X = "1 - (X::'a fps)"
       
  2113   have th0: "?X $ 0 \<noteq> 0"
       
  2114     by simp
       
  2115   have "a /?X = ?X *  Abs_fps (\<lambda>n::nat. sum (op $ a) {0..n}) * inverse ?X"
       
  2116     using fps_divide_X_minus1_sum_lemma[of a, symmetric] th0
       
  2117     by (simp add: fps_divide_def mult.assoc)
       
  2118   also have "\<dots> = (inverse ?X * ?X) * Abs_fps (\<lambda>n::nat. sum (op $ a) {0..n}) "
       
  2119     by (simp add: ac_simps)
       
  2120   finally show ?thesis
       
  2121     by (simp add: inverse_mult_eq_1[OF th0])
       
  2122 qed
       
  2123 
       
  2124 
       
  2125 subsubsection \<open>Rule 4 in its more general form: generalizes Rule 3 for an arbitrary
       
  2126   finite product of FPS, also the relvant instance of powers of a FPS\<close>
       
  2127 
       
  2128 definition "natpermute n k = {l :: nat list. length l = k \<and> sum_list l = n}"
       
  2129 
       
  2130 lemma natlist_trivial_1: "natpermute n 1 = {[n]}"
       
  2131   apply (auto simp add: natpermute_def)
       
  2132   apply (case_tac x)
       
  2133   apply auto
       
  2134   done
       
  2135 
       
  2136 lemma append_natpermute_less_eq:
       
  2137   assumes "xs @ ys \<in> natpermute n k"
       
  2138   shows "sum_list xs \<le> n"
       
  2139     and "sum_list ys \<le> n"
       
  2140 proof -
       
  2141   from assms have "sum_list (xs @ ys) = n"
       
  2142     by (simp add: natpermute_def)
       
  2143   then have "sum_list xs + sum_list ys = n"
       
  2144     by simp
       
  2145   then show "sum_list xs \<le> n" and "sum_list ys \<le> n"
       
  2146     by simp_all
       
  2147 qed
       
  2148 
       
  2149 lemma natpermute_split:
       
  2150   assumes "h \<le> k"
       
  2151   shows "natpermute n k =
       
  2152     (\<Union>m \<in>{0..n}. {l1 @ l2 |l1 l2. l1 \<in> natpermute m h \<and> l2 \<in> natpermute (n - m) (k - h)})"
       
  2153   (is "?L = ?R" is "_ = (\<Union>m \<in>{0..n}. ?S m)")
       
  2154 proof
       
  2155   show "?R \<subseteq> ?L"
       
  2156   proof
       
  2157     fix l
       
  2158     assume l: "l \<in> ?R"
       
  2159     from l obtain m xs ys where h: "m \<in> {0..n}"
       
  2160       and xs: "xs \<in> natpermute m h"
       
  2161       and ys: "ys \<in> natpermute (n - m) (k - h)"
       
  2162       and leq: "l = xs@ys" by blast
       
  2163     from xs have xs': "sum_list xs = m"
       
  2164       by (simp add: natpermute_def)
       
  2165     from ys have ys': "sum_list ys = n - m"
       
  2166       by (simp add: natpermute_def)
       
  2167     show "l \<in> ?L" using leq xs ys h
       
  2168       apply (clarsimp simp add: natpermute_def)
       
  2169       unfolding xs' ys'
       
  2170       using assms xs ys
       
  2171       unfolding natpermute_def
       
  2172       apply simp
       
  2173       done
       
  2174   qed
       
  2175   show "?L \<subseteq> ?R"
       
  2176   proof
       
  2177     fix l
       
  2178     assume l: "l \<in> natpermute n k"
       
  2179     let ?xs = "take h l"
       
  2180     let ?ys = "drop h l"
       
  2181     let ?m = "sum_list ?xs"
       
  2182     from l have ls: "sum_list (?xs @ ?ys) = n"
       
  2183       by (simp add: natpermute_def)
       
  2184     have xs: "?xs \<in> natpermute ?m h" using l assms
       
  2185       by (simp add: natpermute_def)
       
  2186     have l_take_drop: "sum_list l = sum_list (take h l @ drop h l)"
       
  2187       by simp
       
  2188     then have ys: "?ys \<in> natpermute (n - ?m) (k - h)"
       
  2189       using l assms ls by (auto simp add: natpermute_def simp del: append_take_drop_id)
       
  2190     from ls have m: "?m \<in> {0..n}"
       
  2191       by (simp add: l_take_drop del: append_take_drop_id)
       
  2192     from xs ys ls show "l \<in> ?R"
       
  2193       apply auto
       
  2194       apply (rule bexI [where x = "?m"])
       
  2195       apply (rule exI [where x = "?xs"])
       
  2196       apply (rule exI [where x = "?ys"])
       
  2197       using ls l
       
  2198       apply (auto simp add: natpermute_def l_take_drop simp del: append_take_drop_id)
       
  2199       apply simp
       
  2200       done
       
  2201   qed
       
  2202 qed
       
  2203 
       
  2204 lemma natpermute_0: "natpermute n 0 = (if n = 0 then {[]} else {})"
       
  2205   by (auto simp add: natpermute_def)
       
  2206 
       
  2207 lemma natpermute_0'[simp]: "natpermute 0 k = (if k = 0 then {[]} else {replicate k 0})"
       
  2208   apply (auto simp add: set_replicate_conv_if natpermute_def)
       
  2209   apply (rule nth_equalityI)
       
  2210   apply simp_all
       
  2211   done
       
  2212 
       
  2213 lemma natpermute_finite: "finite (natpermute n k)"
       
  2214 proof (induct k arbitrary: n)
       
  2215   case 0
       
  2216   then show ?case
       
  2217     apply (subst natpermute_split[of 0 0, simplified])
       
  2218     apply (simp add: natpermute_0)
       
  2219     done
       
  2220 next
       
  2221   case (Suc k)
       
  2222   then show ?case unfolding natpermute_split [of k "Suc k", simplified]
       
  2223     apply -
       
  2224     apply (rule finite_UN_I)
       
  2225     apply simp
       
  2226     unfolding One_nat_def[symmetric] natlist_trivial_1
       
  2227     apply simp
       
  2228     done
       
  2229 qed
       
  2230 
       
  2231 lemma natpermute_contain_maximal:
       
  2232   "{xs \<in> natpermute n (k + 1). n \<in> set xs} = (\<Union>i\<in>{0 .. k}. {(replicate (k + 1) 0) [i:=n]})"
       
  2233   (is "?A = ?B")
       
  2234 proof
       
  2235   show "?A \<subseteq> ?B"
       
  2236   proof
       
  2237     fix xs
       
  2238     assume "xs \<in> ?A"
       
  2239     then have H: "xs \<in> natpermute n (k + 1)" and n: "n \<in> set xs"
       
  2240       by blast+
       
  2241     then obtain i where i: "i \<in> {0.. k}" "xs!i = n"
       
  2242       unfolding in_set_conv_nth by (auto simp add: less_Suc_eq_le natpermute_def)
       
  2243     have eqs: "({0..k} - {i}) \<union> {i} = {0..k}"
       
  2244       using i by auto
       
  2245     have f: "finite({0..k} - {i})" "finite {i}"
       
  2246       by auto
       
  2247     have d: "({0..k} - {i}) \<inter> {i} = {}"
       
  2248       using i by auto
       
  2249     from H have "n = sum (nth xs) {0..k}"
       
  2250       apply (simp add: natpermute_def)
       
  2251       apply (auto simp add: atLeastLessThanSuc_atLeastAtMost sum_list_sum_nth)
       
  2252       done
       
  2253     also have "\<dots> = n + sum (nth xs) ({0..k} - {i})"
       
  2254       unfolding sum.union_disjoint[OF f d, unfolded eqs] using i by simp
       
  2255     finally have zxs: "\<forall> j\<in> {0..k} - {i}. xs!j = 0"
       
  2256       by auto
       
  2257     from H have xsl: "length xs = k+1"
       
  2258       by (simp add: natpermute_def)
       
  2259     from i have i': "i < length (replicate (k+1) 0)"   "i < k+1"
       
  2260       unfolding length_replicate by presburger+
       
  2261     have "xs = replicate (k+1) 0 [i := n]"
       
  2262       apply (rule nth_equalityI)
       
  2263       unfolding xsl length_list_update length_replicate
       
  2264       apply simp
       
  2265       apply clarify
       
  2266       unfolding nth_list_update[OF i'(1)]
       
  2267       using i zxs
       
  2268       apply (case_tac "ia = i")
       
  2269       apply (auto simp del: replicate.simps)
       
  2270       done
       
  2271     then show "xs \<in> ?B" using i by blast
       
  2272   qed
       
  2273   show "?B \<subseteq> ?A"
       
  2274   proof
       
  2275     fix xs
       
  2276     assume "xs \<in> ?B"
       
  2277     then obtain i where i: "i \<in> {0..k}" and xs: "xs = replicate (k + 1) 0 [i:=n]"
       
  2278       by auto
       
  2279     have nxs: "n \<in> set xs"
       
  2280       unfolding xs
       
  2281       apply (rule set_update_memI)
       
  2282       using i apply simp
       
  2283       done
       
  2284     have xsl: "length xs = k + 1"
       
  2285       by (simp only: xs length_replicate length_list_update)
       
  2286     have "sum_list xs = sum (nth xs) {0..<k+1}"
       
  2287       unfolding sum_list_sum_nth xsl ..
       
  2288     also have "\<dots> = sum (\<lambda>j. if j = i then n else 0) {0..< k+1}"
       
  2289       by (rule sum.cong) (simp_all add: xs del: replicate.simps)
       
  2290     also have "\<dots> = n" using i by (simp add: sum.delta)
       
  2291     finally have "xs \<in> natpermute n (k + 1)"
       
  2292       using xsl unfolding natpermute_def mem_Collect_eq by blast
       
  2293     then show "xs \<in> ?A"
       
  2294       using nxs by blast
       
  2295   qed
       
  2296 qed
       
  2297 
       
  2298 text \<open>The general form.\<close>
       
  2299 lemma fps_prod_nth:
       
  2300   fixes m :: nat
       
  2301     and a :: "nat \<Rightarrow> 'a::comm_ring_1 fps"
       
  2302   shows "(prod a {0 .. m}) $ n =
       
  2303     sum (\<lambda>v. prod (\<lambda>j. (a j) $ (v!j)) {0..m}) (natpermute n (m+1))"
       
  2304   (is "?P m n")
       
  2305 proof (induct m arbitrary: n rule: nat_less_induct)
       
  2306   fix m n assume H: "\<forall>m' < m. \<forall>n. ?P m' n"
       
  2307   show "?P m n"
       
  2308   proof (cases m)
       
  2309     case 0
       
  2310     then show ?thesis
       
  2311       apply simp
       
  2312       unfolding natlist_trivial_1[where n = n, unfolded One_nat_def]
       
  2313       apply simp
       
  2314       done
       
  2315   next
       
  2316     case (Suc k)
       
  2317     then have km: "k < m" by arith
       
  2318     have u0: "{0 .. k} \<union> {m} = {0..m}"
       
  2319       using Suc by (simp add: set_eq_iff) presburger
       
  2320     have f0: "finite {0 .. k}" "finite {m}" by auto
       
  2321     have d0: "{0 .. k} \<inter> {m} = {}" using Suc by auto
       
  2322     have "(prod a {0 .. m}) $ n = (prod a {0 .. k} * a m) $ n"
       
  2323       unfolding prod.union_disjoint[OF f0 d0, unfolded u0] by simp
       
  2324     also have "\<dots> = (\<Sum>i = 0..n. (\<Sum>v\<in>natpermute i (k + 1). \<Prod>j\<in>{0..k}. a j $ v ! j) * a m $ (n - i))"
       
  2325       unfolding fps_mult_nth H[rule_format, OF km] ..
       
  2326     also have "\<dots> = (\<Sum>v\<in>natpermute n (m + 1). \<Prod>j\<in>{0..m}. a j $ v ! j)"
       
  2327       apply (simp add: Suc)
       
  2328       unfolding natpermute_split[of m "m + 1", simplified, of n,
       
  2329         unfolded natlist_trivial_1[unfolded One_nat_def] Suc]
       
  2330       apply (subst sum.UNION_disjoint)
       
  2331       apply simp
       
  2332       apply simp
       
  2333       unfolding image_Collect[symmetric]
       
  2334       apply clarsimp
       
  2335       apply (rule finite_imageI)
       
  2336       apply (rule natpermute_finite)
       
  2337       apply (clarsimp simp add: set_eq_iff)
       
  2338       apply auto
       
  2339       apply (rule sum.cong)
       
  2340       apply (rule refl)
       
  2341       unfolding sum_distrib_right
       
  2342       apply (rule sym)
       
  2343       apply (rule_tac l = "\<lambda>xs. xs @ [n - x]" in sum.reindex_cong)
       
  2344       apply (simp add: inj_on_def)
       
  2345       apply auto
       
  2346       unfolding prod.union_disjoint[OF f0 d0, unfolded u0, unfolded Suc]
       
  2347       apply (clarsimp simp add: natpermute_def nth_append)
       
  2348       done
       
  2349     finally show ?thesis .
       
  2350   qed
       
  2351 qed
       
  2352 
       
  2353 text \<open>The special form for powers.\<close>
       
  2354 lemma fps_power_nth_Suc:
       
  2355   fixes m :: nat
       
  2356     and a :: "'a::comm_ring_1 fps"
       
  2357   shows "(a ^ Suc m)$n = sum (\<lambda>v. prod (\<lambda>j. a $ (v!j)) {0..m}) (natpermute n (m+1))"
       
  2358 proof -
       
  2359   have th0: "a^Suc m = prod (\<lambda>i. a) {0..m}"
       
  2360     by (simp add: prod_constant)
       
  2361   show ?thesis unfolding th0 fps_prod_nth ..
       
  2362 qed
       
  2363 
       
  2364 lemma fps_power_nth:
       
  2365   fixes m :: nat
       
  2366     and a :: "'a::comm_ring_1 fps"
       
  2367   shows "(a ^m)$n =
       
  2368     (if m=0 then 1$n else sum (\<lambda>v. prod (\<lambda>j. a $ (v!j)) {0..m - 1}) (natpermute n m))"
       
  2369   by (cases m) (simp_all add: fps_power_nth_Suc del: power_Suc)
       
  2370 
       
  2371 lemma fps_nth_power_0:
       
  2372   fixes m :: nat
       
  2373     and a :: "'a::comm_ring_1 fps"
       
  2374   shows "(a ^m)$0 = (a$0) ^ m"
       
  2375 proof (cases m)
       
  2376   case 0
       
  2377   then show ?thesis by simp
       
  2378 next
       
  2379   case (Suc n)
       
  2380   then have c: "m = card {0..n}" by simp
       
  2381   have "(a ^m)$0 = prod (\<lambda>i. a$0) {0..n}"
       
  2382     by (simp add: Suc fps_power_nth del: replicate.simps power_Suc)
       
  2383   also have "\<dots> = (a$0) ^ m"
       
  2384    unfolding c by (rule prod_constant)
       
  2385  finally show ?thesis .
       
  2386 qed
       
  2387 
       
  2388 lemma natpermute_max_card:
       
  2389   assumes n0: "n \<noteq> 0"
       
  2390   shows "card {xs \<in> natpermute n (k + 1). n \<in> set xs} = k + 1"
       
  2391   unfolding natpermute_contain_maximal
       
  2392 proof -
       
  2393   let ?A = "\<lambda>i. {replicate (k + 1) 0[i := n]}"
       
  2394   let ?K = "{0 ..k}"
       
  2395   have fK: "finite ?K"
       
  2396     by simp
       
  2397   have fAK: "\<forall>i\<in>?K. finite (?A i)"
       
  2398     by auto
       
  2399   have d: "\<forall>i\<in> ?K. \<forall>j\<in> ?K. i \<noteq> j \<longrightarrow>
       
  2400     {replicate (k + 1) 0[i := n]} \<inter> {replicate (k + 1) 0[j := n]} = {}"
       
  2401   proof clarify
       
  2402     fix i j
       
  2403     assume i: "i \<in> ?K" and j: "j \<in> ?K" and ij: "i \<noteq> j"
       
  2404     have False if eq: "replicate (k+1) 0 [i:=n] = replicate (k+1) 0 [j:= n]"
       
  2405     proof -
       
  2406       have "(replicate (k+1) 0 [i:=n] ! i) = n"
       
  2407         using i by (simp del: replicate.simps)
       
  2408       moreover
       
  2409       have "(replicate (k+1) 0 [j:=n] ! i) = 0"
       
  2410         using i ij by (simp del: replicate.simps)
       
  2411       ultimately show ?thesis
       
  2412         using eq n0 by (simp del: replicate.simps)
       
  2413     qed
       
  2414     then show "{replicate (k + 1) 0[i := n]} \<inter> {replicate (k + 1) 0[j := n]} = {}"
       
  2415       by auto
       
  2416   qed
       
  2417   from card_UN_disjoint[OF fK fAK d]
       
  2418   show "card (\<Union>i\<in>{0..k}. {replicate (k + 1) 0[i := n]}) = k + 1"
       
  2419     by simp
       
  2420 qed
       
  2421 
       
  2422 lemma fps_power_Suc_nth:
       
  2423   fixes f :: "'a :: comm_ring_1 fps"
       
  2424   assumes k: "k > 0"
       
  2425   shows "(f ^ Suc m) $ k = 
       
  2426            of_nat (Suc m) * (f $ k * (f $ 0) ^ m) +
       
  2427            (\<Sum>v\<in>{v\<in>natpermute k (m+1). k \<notin> set v}. \<Prod>j = 0..m. f $ v ! j)"
       
  2428 proof -
       
  2429   define A B 
       
  2430     where "A = {v\<in>natpermute k (m+1). k \<in> set v}" 
       
  2431       and  "B = {v\<in>natpermute k (m+1). k \<notin> set v}"
       
  2432   have [simp]: "finite A" "finite B" "A \<inter> B = {}" by (auto simp: A_def B_def natpermute_finite)
       
  2433 
       
  2434   from natpermute_max_card[of k m] k have card_A: "card A = m + 1" by (simp add: A_def)
       
  2435   {
       
  2436     fix v assume v: "v \<in> A"
       
  2437     from v have [simp]: "length v = Suc m" by (simp add: A_def natpermute_def)
       
  2438     from v have "\<exists>j. j \<le> m \<and> v ! j = k" 
       
  2439       by (auto simp: set_conv_nth A_def natpermute_def less_Suc_eq_le)
       
  2440     then guess j by (elim exE conjE) note j = this
       
  2441     
       
  2442     from v have "k = sum_list v" by (simp add: A_def natpermute_def)
       
  2443     also have "\<dots> = (\<Sum>i=0..m. v ! i)"
       
  2444       by (simp add: sum_list_sum_nth atLeastLessThanSuc_atLeastAtMost del: sum_op_ivl_Suc)
       
  2445     also from j have "{0..m} = insert j ({0..m}-{j})" by auto
       
  2446     also from j have "(\<Sum>i\<in>\<dots>. v ! i) = k + (\<Sum>i\<in>{0..m}-{j}. v ! i)"
       
  2447       by (subst sum.insert) simp_all
       
  2448     finally have "(\<Sum>i\<in>{0..m}-{j}. v ! i) = 0" by simp
       
  2449     hence zero: "v ! i = 0" if "i \<in> {0..m}-{j}" for i using that
       
  2450       by (subst (asm) sum_eq_0_iff) auto
       
  2451       
       
  2452     from j have "{0..m} = insert j ({0..m} - {j})" by auto
       
  2453     also from j have "(\<Prod>i\<in>\<dots>. f $ (v ! i)) = f $ k * (\<Prod>i\<in>{0..m} - {j}. f $ (v ! i))"
       
  2454       by (subst prod.insert) auto
       
  2455     also have "(\<Prod>i\<in>{0..m} - {j}. f $ (v ! i)) = (\<Prod>i\<in>{0..m} - {j}. f $ 0)"
       
  2456       by (intro prod.cong) (simp_all add: zero)
       
  2457     also from j have "\<dots> = (f $ 0) ^ m" by (subst prod_constant) simp_all
       
  2458     finally have "(\<Prod>j = 0..m. f $ (v ! j)) = f $ k * (f $ 0) ^ m" .
       
  2459   } note A = this
       
  2460   
       
  2461   have "(f ^ Suc m) $ k = (\<Sum>v\<in>natpermute k (m + 1). \<Prod>j = 0..m. f $ v ! j)"
       
  2462     by (rule fps_power_nth_Suc)
       
  2463   also have "natpermute k (m+1) = A \<union> B" unfolding A_def B_def by blast
       
  2464   also have "(\<Sum>v\<in>\<dots>. \<Prod>j = 0..m. f $ (v ! j)) = 
       
  2465                (\<Sum>v\<in>A. \<Prod>j = 0..m. f $ (v ! j)) + (\<Sum>v\<in>B. \<Prod>j = 0..m. f $ (v ! j))"
       
  2466     by (intro sum.union_disjoint) simp_all   
       
  2467   also have "(\<Sum>v\<in>A. \<Prod>j = 0..m. f $ (v ! j)) = of_nat (Suc m) * (f $ k * (f $ 0) ^ m)"
       
  2468     by (simp add: A card_A)
       
  2469   finally show ?thesis by (simp add: B_def)
       
  2470 qed 
       
  2471   
       
  2472 lemma fps_power_Suc_eqD:
       
  2473   fixes f g :: "'a :: {idom,semiring_char_0} fps"
       
  2474   assumes "f ^ Suc m = g ^ Suc m" "f $ 0 = g $ 0" "f $ 0 \<noteq> 0"
       
  2475   shows   "f = g"
       
  2476 proof (rule fps_ext)
       
  2477   fix k :: nat
       
  2478   show "f $ k = g $ k"
       
  2479   proof (induction k rule: less_induct)
       
  2480     case (less k)
       
  2481     show ?case
       
  2482     proof (cases "k = 0")
       
  2483       case False
       
  2484       let ?h = "\<lambda>f. (\<Sum>v | v \<in> natpermute k (m + 1) \<and> k \<notin> set v. \<Prod>j = 0..m. f $ v ! j)"
       
  2485       from False fps_power_Suc_nth[of k f m] fps_power_Suc_nth[of k g m]
       
  2486         have "f $ k * (of_nat (Suc m) * (f $ 0) ^ m) + ?h f =
       
  2487                 g $ k * (of_nat (Suc m) * (f $ 0) ^ m) + ?h g" using assms 
       
  2488         by (simp add: mult_ac del: power_Suc of_nat_Suc)
       
  2489       also have "v ! i < k" if "v \<in> {v\<in>natpermute k (m+1). k \<notin> set v}" "i \<le> m" for v i
       
  2490         using that elem_le_sum_list_nat[of i v] unfolding natpermute_def
       
  2491         by (auto simp: set_conv_nth dest!: spec[of _ i])
       
  2492       hence "?h f = ?h g"
       
  2493         by (intro sum.cong refl prod.cong less lessI) (auto simp: natpermute_def)
       
  2494       finally have "f $ k * (of_nat (Suc m) * (f $ 0) ^ m) = g $ k * (of_nat (Suc m) * (f $ 0) ^ m)"
       
  2495         by simp
       
  2496       with assms show "f $ k = g $ k" 
       
  2497         by (subst (asm) mult_right_cancel) (auto simp del: of_nat_Suc)
       
  2498     qed (simp_all add: assms)
       
  2499   qed
       
  2500 qed
       
  2501 
       
  2502 lemma fps_power_Suc_eqD':
       
  2503   fixes f g :: "'a :: {idom,semiring_char_0} fps"
       
  2504   assumes "f ^ Suc m = g ^ Suc m" "f $ subdegree f = g $ subdegree g"
       
  2505   shows   "f = g"
       
  2506 proof (cases "f = 0")
       
  2507   case False
       
  2508   have "Suc m * subdegree f = subdegree (f ^ Suc m)"
       
  2509     by (rule subdegree_power [symmetric])
       
  2510   also have "f ^ Suc m = g ^ Suc m" by fact
       
  2511   also have "subdegree \<dots> = Suc m * subdegree g" by (rule subdegree_power)
       
  2512   finally have [simp]: "subdegree f = subdegree g"
       
  2513     by (subst (asm) Suc_mult_cancel1)
       
  2514   have "fps_shift (subdegree f) f * X ^ subdegree f = f"
       
  2515     by (rule subdegree_decompose [symmetric])
       
  2516   also have "\<dots> ^ Suc m = g ^ Suc m" by fact
       
  2517   also have "g = fps_shift (subdegree g) g * X ^ subdegree g"
       
  2518     by (rule subdegree_decompose)
       
  2519   also have "subdegree f = subdegree g" by fact
       
  2520   finally have "fps_shift (subdegree g) f ^ Suc m = fps_shift (subdegree g) g ^ Suc m"
       
  2521     by (simp add: algebra_simps power_mult_distrib del: power_Suc)
       
  2522   hence "fps_shift (subdegree g) f = fps_shift (subdegree g) g"
       
  2523     by (rule fps_power_Suc_eqD) (insert assms False, auto)
       
  2524   with subdegree_decompose[of f] subdegree_decompose[of g] show ?thesis by simp
       
  2525 qed (insert assms, simp_all)
       
  2526 
       
  2527 lemma fps_power_eqD':
       
  2528   fixes f g :: "'a :: {idom,semiring_char_0} fps"
       
  2529   assumes "f ^ m = g ^ m" "f $ subdegree f = g $ subdegree g" "m > 0"
       
  2530   shows   "f = g"
       
  2531   using fps_power_Suc_eqD'[of f "m-1" g] assms by simp
       
  2532 
       
  2533 lemma fps_power_eqD:
       
  2534   fixes f g :: "'a :: {idom,semiring_char_0} fps"
       
  2535   assumes "f ^ m = g ^ m" "f $ 0 = g $ 0" "f $ 0 \<noteq> 0" "m > 0"
       
  2536   shows   "f = g"
       
  2537   by (rule fps_power_eqD'[of f m g]) (insert assms, simp_all)
       
  2538 
       
  2539 lemma fps_compose_inj_right:
       
  2540   assumes a0: "a$0 = (0::'a::idom)"
       
  2541     and a1: "a$1 \<noteq> 0"
       
  2542   shows "(b oo a = c oo a) \<longleftrightarrow> b = c"
       
  2543   (is "?lhs \<longleftrightarrow>?rhs")
       
  2544 proof
       
  2545   show ?lhs if ?rhs using that by simp
       
  2546   show ?rhs if ?lhs
       
  2547   proof -
       
  2548     have "b$n = c$n" for n
       
  2549     proof (induct n rule: nat_less_induct)
       
  2550       fix n
       
  2551       assume H: "\<forall>m<n. b$m = c$m"
       
  2552       show "b$n = c$n"
       
  2553       proof (cases n)
       
  2554         case 0
       
  2555         from \<open>?lhs\<close> have "(b oo a)$n = (c oo a)$n"
       
  2556           by simp
       
  2557         then show ?thesis
       
  2558           using 0 by (simp add: fps_compose_nth)
       
  2559       next
       
  2560         case (Suc n1)
       
  2561         have f: "finite {0 .. n1}" "finite {n}" by simp_all
       
  2562         have eq: "{0 .. n1} \<union> {n} = {0 .. n}" using Suc by auto
       
  2563         have d: "{0 .. n1} \<inter> {n} = {}" using Suc by auto
       
  2564         have seq: "(\<Sum>i = 0..n1. b $ i * a ^ i $ n) = (\<Sum>i = 0..n1. c $ i * a ^ i $ n)"
       
  2565           apply (rule sum.cong)
       
  2566           using H Suc
       
  2567           apply auto
       
  2568           done
       
  2569         have th0: "(b oo a) $n = (\<Sum>i = 0..n1. c $ i * a ^ i $ n) + b$n * (a$1)^n"
       
  2570           unfolding fps_compose_nth sum.union_disjoint[OF f d, unfolded eq] seq
       
  2571           using startsby_zero_power_nth_same[OF a0]
       
  2572           by simp
       
  2573         have th1: "(c oo a) $n = (\<Sum>i = 0..n1. c $ i * a ^ i $ n) + c$n * (a$1)^n"
       
  2574           unfolding fps_compose_nth sum.union_disjoint[OF f d, unfolded eq]
       
  2575           using startsby_zero_power_nth_same[OF a0]
       
  2576           by simp
       
  2577         from \<open>?lhs\<close>[unfolded fps_eq_iff, rule_format, of n] th0 th1 a1
       
  2578         show ?thesis by auto
       
  2579       qed
       
  2580     qed
       
  2581     then show ?rhs by (simp add: fps_eq_iff)
       
  2582   qed
       
  2583 qed
       
  2584 
       
  2585 
       
  2586 subsection \<open>Radicals\<close>
       
  2587 
       
  2588 declare prod.cong [fundef_cong]
       
  2589 
       
  2590 function radical :: "(nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a::field fps \<Rightarrow> nat \<Rightarrow> 'a"
       
  2591 where
       
  2592   "radical r 0 a 0 = 1"
       
  2593 | "radical r 0 a (Suc n) = 0"
       
  2594 | "radical r (Suc k) a 0 = r (Suc k) (a$0)"
       
  2595 | "radical r (Suc k) a (Suc n) =
       
  2596     (a$ Suc n - sum (\<lambda>xs. prod (\<lambda>j. radical r (Suc k) a (xs ! j)) {0..k})
       
  2597       {xs. xs \<in> natpermute (Suc n) (Suc k) \<and> Suc n \<notin> set xs}) /
       
  2598     (of_nat (Suc k) * (radical r (Suc k) a 0)^k)"
       
  2599   by pat_completeness auto
       
  2600 
       
  2601 termination radical
       
  2602 proof
       
  2603   let ?R = "measure (\<lambda>(r, k, a, n). n)"
       
  2604   {
       
  2605     show "wf ?R" by auto
       
  2606   next
       
  2607     fix r k a n xs i
       
  2608     assume xs: "xs \<in> {xs \<in> natpermute (Suc n) (Suc k). Suc n \<notin> set xs}" and i: "i \<in> {0..k}"
       
  2609     have False if c: "Suc n \<le> xs ! i"
       
  2610     proof -
       
  2611       from xs i have "xs !i \<noteq> Suc n"
       
  2612         by (auto simp add: in_set_conv_nth natpermute_def)
       
  2613       with c have c': "Suc n < xs!i" by arith
       
  2614       have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}"
       
  2615         by simp_all
       
  2616       have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}"
       
  2617         by auto
       
  2618       have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})"
       
  2619         using i by auto
       
  2620       from xs have "Suc n = sum_list xs"
       
  2621         by (simp add: natpermute_def)
       
  2622       also have "\<dots> = sum (nth xs) {0..<Suc k}" using xs
       
  2623         by (simp add: natpermute_def sum_list_sum_nth)
       
  2624       also have "\<dots> = xs!i + sum (nth xs) {0..<i} + sum (nth xs) {i+1..<Suc k}"
       
  2625         unfolding eqs  sum.union_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)]
       
  2626         unfolding sum.union_disjoint[OF fths(2) fths(3) d(2)]
       
  2627         by simp
       
  2628       finally show ?thesis using c' by simp
       
  2629     qed
       
  2630     then show "((r, Suc k, a, xs!i), r, Suc k, a, Suc n) \<in> ?R"
       
  2631       apply auto
       
  2632       apply (metis not_less)
       
  2633       done
       
  2634   next
       
  2635     fix r k a n
       
  2636     show "((r, Suc k, a, 0), r, Suc k, a, Suc n) \<in> ?R" by simp
       
  2637   }
       
  2638 qed
       
  2639 
       
  2640 definition "fps_radical r n a = Abs_fps (radical r n a)"
       
  2641 
       
  2642 lemma fps_radical0[simp]: "fps_radical r 0 a = 1"
       
  2643   apply (auto simp add: fps_eq_iff fps_radical_def)
       
  2644   apply (case_tac n)
       
  2645   apply auto
       
  2646   done
       
  2647 
       
  2648 lemma fps_radical_nth_0[simp]: "fps_radical r n a $ 0 = (if n = 0 then 1 else r n (a$0))"
       
  2649   by (cases n) (simp_all add: fps_radical_def)
       
  2650 
       
  2651 lemma fps_radical_power_nth[simp]:
       
  2652   assumes r: "(r k (a$0)) ^ k = a$0"
       
  2653   shows "fps_radical r k a ^ k $ 0 = (if k = 0 then 1 else a$0)"
       
  2654 proof (cases k)
       
  2655   case 0
       
  2656   then show ?thesis by simp
       
  2657 next
       
  2658   case (Suc h)
       
  2659   have eq1: "fps_radical r k a ^ k $ 0 = (\<Prod>j\<in>{0..h}. fps_radical r k a $ (replicate k 0) ! j)"
       
  2660     unfolding fps_power_nth Suc by simp
       
  2661   also have "\<dots> = (\<Prod>j\<in>{0..h}. r k (a$0))"
       
  2662     apply (rule prod.cong)
       
  2663     apply simp
       
  2664     using Suc
       
  2665     apply (subgoal_tac "replicate k 0 ! x = 0")
       
  2666     apply (auto intro: nth_replicate simp del: replicate.simps)
       
  2667     done
       
  2668   also have "\<dots> = a$0"
       
  2669     using r Suc by (simp add: prod_constant)
       
  2670   finally show ?thesis
       
  2671     using Suc by simp
       
  2672 qed
       
  2673 
       
  2674 lemma power_radical:
       
  2675   fixes a:: "'a::field_char_0 fps"
       
  2676   assumes a0: "a$0 \<noteq> 0"
       
  2677   shows "(r (Suc k) (a$0)) ^ Suc k = a$0 \<longleftrightarrow> (fps_radical r (Suc k) a) ^ (Suc k) = a"
       
  2678     (is "?lhs \<longleftrightarrow> ?rhs")
       
  2679 proof
       
  2680   let ?r = "fps_radical r (Suc k) a"
       
  2681   show ?rhs if r0: ?lhs
       
  2682   proof -
       
  2683     from a0 r0 have r00: "r (Suc k) (a$0) \<noteq> 0" by auto
       
  2684     have "?r ^ Suc k $ z = a$z" for z
       
  2685     proof (induct z rule: nat_less_induct)
       
  2686       fix n
       
  2687       assume H: "\<forall>m<n. ?r ^ Suc k $ m = a$m"
       
  2688       show "?r ^ Suc k $ n = a $n"
       
  2689       proof (cases n)
       
  2690         case 0
       
  2691         then show ?thesis
       
  2692           using fps_radical_power_nth[of r "Suc k" a, OF r0] by simp
       
  2693       next
       
  2694         case (Suc n1)
       
  2695         then have "n \<noteq> 0" by simp
       
  2696         let ?Pnk = "natpermute n (k + 1)"
       
  2697         let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
       
  2698         let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
       
  2699         have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
       
  2700         have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
       
  2701         have f: "finite ?Pnkn" "finite ?Pnknn"
       
  2702           using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
       
  2703           by (metis natpermute_finite)+
       
  2704         let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
       
  2705         have "sum ?f ?Pnkn = sum (\<lambda>v. ?r $ n * r (Suc k) (a $ 0) ^ k) ?Pnkn"
       
  2706         proof (rule sum.cong)
       
  2707           fix v assume v: "v \<in> {xs \<in> natpermute n (k + 1). n \<in> set xs}"
       
  2708           let ?ths = "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) =
       
  2709             fps_radical r (Suc k) a $ n * r (Suc k) (a $ 0) ^ k"
       
  2710           from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
       
  2711             unfolding natpermute_contain_maximal by auto
       
  2712           have "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) =
       
  2713               (\<Prod>j\<in>{0..k}. if j = i then fps_radical r (Suc k) a $ n else r (Suc k) (a$0))"
       
  2714             apply (rule prod.cong, simp)
       
  2715             using i r0
       
  2716             apply (simp del: replicate.simps)
       
  2717             done
       
  2718           also have "\<dots> = (fps_radical r (Suc k) a $ n) * r (Suc k) (a$0) ^ k"
       
  2719             using i r0 by (simp add: prod_gen_delta)
       
  2720           finally show ?ths .
       
  2721         qed rule
       
  2722         then have "sum ?f ?Pnkn = of_nat (k+1) * ?r $ n * r (Suc k) (a $ 0) ^ k"
       
  2723           by (simp add: natpermute_max_card[OF \<open>n \<noteq> 0\<close>, simplified])
       
  2724         also have "\<dots> = a$n - sum ?f ?Pnknn"
       
  2725           unfolding Suc using r00 a0 by (simp add: field_simps fps_radical_def del: of_nat_Suc)
       
  2726         finally have fn: "sum ?f ?Pnkn = a$n - sum ?f ?Pnknn" .
       
  2727         have "(?r ^ Suc k)$n = sum ?f ?Pnkn + sum ?f ?Pnknn"
       
  2728           unfolding fps_power_nth_Suc sum.union_disjoint[OF f d, unfolded eq] ..
       
  2729         also have "\<dots> = a$n" unfolding fn by simp
       
  2730         finally show ?thesis .
       
  2731       qed
       
  2732     qed
       
  2733     then show ?thesis using r0 by (simp add: fps_eq_iff)
       
  2734   qed
       
  2735   show ?lhs if ?rhs
       
  2736   proof -
       
  2737     from that have "((fps_radical r (Suc k) a) ^ (Suc k))$0 = a$0"
       
  2738       by simp
       
  2739     then show ?thesis
       
  2740       unfolding fps_power_nth_Suc
       
  2741       by (simp add: prod_constant del: replicate.simps)
       
  2742   qed
       
  2743 qed
       
  2744 
       
  2745 (*
       
  2746 lemma power_radical:
       
  2747   fixes a:: "'a::field_char_0 fps"
       
  2748   assumes r0: "(r (Suc k) (a$0)) ^ Suc k = a$0" and a0: "a$0 \<noteq> 0"
       
  2749   shows "(fps_radical r (Suc k) a) ^ (Suc k) = a"
       
  2750 proof-
       
  2751   let ?r = "fps_radical r (Suc k) a"
       
  2752   from a0 r0 have r00: "r (Suc k) (a$0) \<noteq> 0" by auto
       
  2753   {fix z have "?r ^ Suc k $ z = a$z"
       
  2754     proof(induct z rule: nat_less_induct)
       
  2755       fix n assume H: "\<forall>m<n. ?r ^ Suc k $ m = a$m"
       
  2756       {assume "n = 0" then have "?r ^ Suc k $ n = a $n"
       
  2757           using fps_radical_power_nth[of r "Suc k" a, OF r0] by simp}
       
  2758       moreover
       
  2759       {fix n1 assume n1: "n = Suc n1"
       
  2760         have fK: "finite {0..k}" by simp
       
  2761         have nz: "n \<noteq> 0" using n1 by arith
       
  2762         let ?Pnk = "natpermute n (k + 1)"
       
  2763         let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
       
  2764         let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
       
  2765         have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
       
  2766         have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
       
  2767         have f: "finite ?Pnkn" "finite ?Pnknn"
       
  2768           using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
       
  2769           by (metis natpermute_finite)+
       
  2770         let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
       
  2771         have "sum ?f ?Pnkn = sum (\<lambda>v. ?r $ n * r (Suc k) (a $ 0) ^ k) ?Pnkn"
       
  2772         proof(rule sum.cong2)
       
  2773           fix v assume v: "v \<in> {xs \<in> natpermute n (k + 1). n \<in> set xs}"
       
  2774           let ?ths = "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) = fps_radical r (Suc k) a $ n * r (Suc k) (a $ 0) ^ k"
       
  2775           from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
       
  2776             unfolding natpermute_contain_maximal by auto
       
  2777           have "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then fps_radical r (Suc k) a $ n else r (Suc k) (a$0))"
       
  2778             apply (rule prod.cong, simp)
       
  2779             using i r0 by (simp del: replicate.simps)
       
  2780           also have "\<dots> = (fps_radical r (Suc k) a $ n) * r (Suc k) (a$0) ^ k"
       
  2781             unfolding prod_gen_delta[OF fK] using i r0 by simp
       
  2782           finally show ?ths .
       
  2783         qed
       
  2784         then have "sum ?f ?Pnkn = of_nat (k+1) * ?r $ n * r (Suc k) (a $ 0) ^ k"
       
  2785           by (simp add: natpermute_max_card[OF nz, simplified])
       
  2786         also have "\<dots> = a$n - sum ?f ?Pnknn"
       
  2787           unfolding n1 using r00 a0 by (simp add: field_simps fps_radical_def del: of_nat_Suc )
       
  2788         finally have fn: "sum ?f ?Pnkn = a$n - sum ?f ?Pnknn" .
       
  2789         have "(?r ^ Suc k)$n = sum ?f ?Pnkn + sum ?f ?Pnknn"
       
  2790           unfolding fps_power_nth_Suc sum.union_disjoint[OF f d, unfolded eq] ..
       
  2791         also have "\<dots> = a$n" unfolding fn by simp
       
  2792         finally have "?r ^ Suc k $ n = a $n" .}
       
  2793       ultimately  show "?r ^ Suc k $ n = a $n" by (cases n, auto)
       
  2794   qed }
       
  2795   then show ?thesis by (simp add: fps_eq_iff)
       
  2796 qed
       
  2797 
       
  2798 *)
       
  2799 lemma eq_divide_imp':
       
  2800   fixes c :: "'a::field"
       
  2801   shows "c \<noteq> 0 \<Longrightarrow> a * c = b \<Longrightarrow> a = b / c"
       
  2802   by (simp add: field_simps)
       
  2803 
       
  2804 lemma radical_unique:
       
  2805   assumes r0: "(r (Suc k) (b$0)) ^ Suc k = b$0"
       
  2806     and a0: "r (Suc k) (b$0 ::'a::field_char_0) = a$0"
       
  2807     and b0: "b$0 \<noteq> 0"
       
  2808   shows "a^(Suc k) = b \<longleftrightarrow> a = fps_radical r (Suc k) b"
       
  2809     (is "?lhs \<longleftrightarrow> ?rhs" is "_ \<longleftrightarrow> a = ?r")
       
  2810 proof
       
  2811   show ?lhs if ?rhs
       
  2812     using that using power_radical[OF b0, of r k, unfolded r0] by simp
       
  2813   show ?rhs if ?lhs
       
  2814   proof -
       
  2815     have r00: "r (Suc k) (b$0) \<noteq> 0" using b0 r0 by auto
       
  2816     have ceq: "card {0..k} = Suc k" by simp
       
  2817     from a0 have a0r0: "a$0 = ?r$0" by simp
       
  2818     have "a $ n = ?r $ n" for n
       
  2819     proof (induct n rule: nat_less_induct)
       
  2820       fix n
       
  2821       assume h: "\<forall>m<n. a$m = ?r $m"
       
  2822       show "a$n = ?r $ n"
       
  2823       proof (cases n)
       
  2824         case 0
       
  2825         then show ?thesis using a0 by simp
       
  2826       next
       
  2827         case (Suc n1)
       
  2828         have fK: "finite {0..k}" by simp
       
  2829         have nz: "n \<noteq> 0" using Suc by simp
       
  2830         let ?Pnk = "natpermute n (Suc k)"
       
  2831         let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
       
  2832         let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
       
  2833         have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
       
  2834         have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
       
  2835         have f: "finite ?Pnkn" "finite ?Pnknn"
       
  2836           using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
       
  2837           by (metis natpermute_finite)+
       
  2838         let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
       
  2839         let ?g = "\<lambda>v. \<Prod>j\<in>{0..k}. a $ v ! j"
       
  2840         have "sum ?g ?Pnkn = sum (\<lambda>v. a $ n * (?r$0)^k) ?Pnkn"
       
  2841         proof (rule sum.cong)
       
  2842           fix v
       
  2843           assume v: "v \<in> {xs \<in> natpermute n (Suc k). n \<in> set xs}"
       
  2844           let ?ths = "(\<Prod>j\<in>{0..k}. a $ v ! j) = a $ n * (?r$0)^k"
       
  2845           from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
       
  2846             unfolding Suc_eq_plus1 natpermute_contain_maximal
       
  2847             by (auto simp del: replicate.simps)
       
  2848           have "(\<Prod>j\<in>{0..k}. a $ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then a $ n else r (Suc k) (b$0))"
       
  2849             apply (rule prod.cong, simp)
       
  2850             using i a0
       
  2851             apply (simp del: replicate.simps)
       
  2852             done
       
  2853           also have "\<dots> = a $ n * (?r $ 0)^k"
       
  2854             using i by (simp add: prod_gen_delta)
       
  2855           finally show ?ths .
       
  2856         qed rule
       
  2857         then have th0: "sum ?g ?Pnkn = of_nat (k+1) * a $ n * (?r $ 0)^k"
       
  2858           by (simp add: natpermute_max_card[OF nz, simplified])
       
  2859         have th1: "sum ?g ?Pnknn = sum ?f ?Pnknn"
       
  2860         proof (rule sum.cong, rule refl, rule prod.cong, simp)
       
  2861           fix xs i
       
  2862           assume xs: "xs \<in> ?Pnknn" and i: "i \<in> {0..k}"
       
  2863           have False if c: "n \<le> xs ! i"
       
  2864           proof -
       
  2865             from xs i have "xs ! i \<noteq> n"
       
  2866               by (auto simp add: in_set_conv_nth natpermute_def)
       
  2867             with c have c': "n < xs!i" by arith
       
  2868             have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}"
       
  2869               by simp_all
       
  2870             have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}"
       
  2871               by auto
       
  2872             have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})"
       
  2873               using i by auto
       
  2874             from xs have "n = sum_list xs"
       
  2875               by (simp add: natpermute_def)
       
  2876             also have "\<dots> = sum (nth xs) {0..<Suc k}"
       
  2877               using xs by (simp add: natpermute_def sum_list_sum_nth)
       
  2878             also have "\<dots> = xs!i + sum (nth xs) {0..<i} + sum (nth xs) {i+1..<Suc k}"
       
  2879               unfolding eqs  sum.union_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)]
       
  2880               unfolding sum.union_disjoint[OF fths(2) fths(3) d(2)]
       
  2881               by simp
       
  2882             finally show ?thesis using c' by simp
       
  2883           qed
       
  2884           then have thn: "xs!i < n" by presburger
       
  2885           from h[rule_format, OF thn] show "a$(xs !i) = ?r$(xs!i)" .
       
  2886         qed
       
  2887         have th00: "\<And>x::'a. of_nat (Suc k) * (x * inverse (of_nat (Suc k))) = x"
       
  2888           by (simp add: field_simps del: of_nat_Suc)
       
  2889         from \<open>?lhs\<close> have "b$n = a^Suc k $ n"
       
  2890           by (simp add: fps_eq_iff)
       
  2891         also have "a ^ Suc k$n = sum ?g ?Pnkn + sum ?g ?Pnknn"
       
  2892           unfolding fps_power_nth_Suc
       
  2893           using sum.union_disjoint[OF f d, unfolded Suc_eq_plus1[symmetric],
       
  2894             unfolded eq, of ?g] by simp
       
  2895         also have "\<dots> = of_nat (k+1) * a $ n * (?r $ 0)^k + sum ?f ?Pnknn"
       
  2896           unfolding th0 th1 ..
       
  2897         finally have "of_nat (k+1) * a $ n * (?r $ 0)^k = b$n - sum ?f ?Pnknn"
       
  2898           by simp
       
  2899         then have "a$n = (b$n - sum ?f ?Pnknn) / (of_nat (k+1) * (?r $ 0)^k)"
       
  2900           apply -
       
  2901           apply (rule eq_divide_imp')
       
  2902           using r00
       
  2903           apply (simp del: of_nat_Suc)
       
  2904           apply (simp add: ac_simps)
       
  2905           done
       
  2906         then show ?thesis
       
  2907           apply (simp del: of_nat_Suc)
       
  2908           unfolding fps_radical_def Suc
       
  2909           apply (simp add: field_simps Suc th00 del: of_nat_Suc)
       
  2910           done
       
  2911       qed
       
  2912     qed
       
  2913     then show ?rhs by (simp add: fps_eq_iff)
       
  2914   qed
       
  2915 qed
       
  2916 
       
  2917 
       
  2918 lemma radical_power:
       
  2919   assumes r0: "r (Suc k) ((a$0) ^ Suc k) = a$0"
       
  2920     and a0: "(a$0 :: 'a::field_char_0) \<noteq> 0"
       
  2921   shows "(fps_radical r (Suc k) (a ^ Suc k)) = a"
       
  2922 proof -
       
  2923   let ?ak = "a^ Suc k"
       
  2924   have ak0: "?ak $ 0 = (a$0) ^ Suc k"
       
  2925     by (simp add: fps_nth_power_0 del: power_Suc)
       
  2926   from r0 have th0: "r (Suc k) (a ^ Suc k $ 0) ^ Suc k = a ^ Suc k $ 0"
       
  2927     using ak0 by auto
       
  2928   from r0 ak0 have th1: "r (Suc k) (a ^ Suc k $ 0) = a $ 0"
       
  2929     by auto
       
  2930   from ak0 a0 have ak00: "?ak $ 0 \<noteq>0 "
       
  2931     by auto
       
  2932   from radical_unique[of r k ?ak a, OF th0 th1 ak00] show ?thesis
       
  2933     by metis
       
  2934 qed
       
  2935 
       
  2936 lemma fps_deriv_radical:
       
  2937   fixes a :: "'a::field_char_0 fps"
       
  2938   assumes r0: "(r (Suc k) (a$0)) ^ Suc k = a$0"
       
  2939     and a0: "a$0 \<noteq> 0"
       
  2940   shows "fps_deriv (fps_radical r (Suc k) a) =
       
  2941     fps_deriv a / (fps_const (of_nat (Suc k)) * (fps_radical r (Suc k) a) ^ k)"
       
  2942 proof -
       
  2943   let ?r = "fps_radical r (Suc k) a"
       
  2944   let ?w = "(fps_const (of_nat (Suc k)) * ?r ^ k)"
       
  2945   from a0 r0 have r0': "r (Suc k) (a$0) \<noteq> 0"
       
  2946     by auto
       
  2947   from r0' have w0: "?w $ 0 \<noteq> 0"
       
  2948     by (simp del: of_nat_Suc)
       
  2949   note th0 = inverse_mult_eq_1[OF w0]
       
  2950   let ?iw = "inverse ?w"
       
  2951   from iffD1[OF power_radical[of a r], OF a0 r0]
       
  2952   have "fps_deriv (?r ^ Suc k) = fps_deriv a"
       
  2953     by simp
       
  2954   then have "fps_deriv ?r * ?w = fps_deriv a"
       
  2955     by (simp add: fps_deriv_power ac_simps del: power_Suc)
       
  2956   then have "?iw * fps_deriv ?r * ?w = ?iw * fps_deriv a"
       
  2957     by simp
       
  2958   with a0 r0 have "fps_deriv ?r * (?iw * ?w) = fps_deriv a / ?w"
       
  2959     by (subst fps_divide_unit) (auto simp del: of_nat_Suc)
       
  2960   then show ?thesis unfolding th0 by simp
       
  2961 qed
       
  2962 
       
  2963 lemma radical_mult_distrib:
       
  2964   fixes a :: "'a::field_char_0 fps"
       
  2965   assumes k: "k > 0"
       
  2966     and ra0: "r k (a $ 0) ^ k = a $ 0"
       
  2967     and rb0: "r k (b $ 0) ^ k = b $ 0"
       
  2968     and a0: "a $ 0 \<noteq> 0"
       
  2969     and b0: "b $ 0 \<noteq> 0"
       
  2970   shows "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0) \<longleftrightarrow>
       
  2971     fps_radical r k (a * b) = fps_radical r k a * fps_radical r k b"
       
  2972     (is "?lhs \<longleftrightarrow> ?rhs")
       
  2973 proof
       
  2974   show ?rhs if r0': ?lhs
       
  2975   proof -
       
  2976     from r0' have r0: "(r k ((a * b) $ 0)) ^ k = (a * b) $ 0"
       
  2977       by (simp add: fps_mult_nth ra0 rb0 power_mult_distrib)
       
  2978     show ?thesis
       
  2979     proof (cases k)
       
  2980       case 0
       
  2981       then show ?thesis using r0' by simp
       
  2982     next
       
  2983       case (Suc h)
       
  2984       let ?ra = "fps_radical r (Suc h) a"
       
  2985       let ?rb = "fps_radical r (Suc h) b"
       
  2986       have th0: "r (Suc h) ((a * b) $ 0) = (fps_radical r (Suc h) a * fps_radical r (Suc h) b) $ 0"
       
  2987         using r0' Suc by (simp add: fps_mult_nth)
       
  2988       have ab0: "(a*b) $ 0 \<noteq> 0"
       
  2989         using a0 b0 by (simp add: fps_mult_nth)
       
  2990       from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded Suc] th0 ab0, symmetric]
       
  2991         iffD1[OF power_radical[of _ r], OF a0 ra0[unfolded Suc]] iffD1[OF power_radical[of _ r], OF b0 rb0[unfolded Suc]] Suc r0'
       
  2992       show ?thesis
       
  2993         by (auto simp add: power_mult_distrib simp del: power_Suc)
       
  2994     qed
       
  2995   qed
       
  2996   show ?lhs if ?rhs
       
  2997   proof -
       
  2998     from that have "(fps_radical r k (a * b)) $ 0 = (fps_radical r k a * fps_radical r k b) $ 0"
       
  2999       by simp
       
  3000     then show ?thesis
       
  3001       using k by (simp add: fps_mult_nth)
       
  3002   qed
       
  3003 qed
       
  3004 
       
  3005 (*
       
  3006 lemma radical_mult_distrib:
       
  3007   fixes a:: "'a::field_char_0 fps"
       
  3008   assumes
       
  3009   ra0: "r k (a $ 0) ^ k = a $ 0"
       
  3010   and rb0: "r k (b $ 0) ^ k = b $ 0"
       
  3011   and r0': "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0)"
       
  3012   and a0: "a$0 \<noteq> 0"
       
  3013   and b0: "b$0 \<noteq> 0"
       
  3014   shows "fps_radical r (k) (a*b) = fps_radical r (k) a * fps_radical r (k) (b)"
       
  3015 proof-
       
  3016   from r0' have r0: "(r (k) ((a*b)$0)) ^ k = (a*b)$0"
       
  3017     by (simp add: fps_mult_nth ra0 rb0 power_mult_distrib)
       
  3018   {assume "k=0" then have ?thesis by simp}
       
  3019   moreover
       
  3020   {fix h assume k: "k = Suc h"
       
  3021   let ?ra = "fps_radical r (Suc h) a"
       
  3022   let ?rb = "fps_radical r (Suc h) b"
       
  3023   have th0: "r (Suc h) ((a * b) $ 0) = (fps_radical r (Suc h) a * fps_radical r (Suc h) b) $ 0"
       
  3024     using r0' k by (simp add: fps_mult_nth)
       
  3025   have ab0: "(a*b) $ 0 \<noteq> 0" using a0 b0 by (simp add: fps_mult_nth)
       
  3026   from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded k] th0 ab0, symmetric]
       
  3027     power_radical[of r, OF ra0[unfolded k] a0] power_radical[of r, OF rb0[unfolded k] b0] k
       
  3028   have ?thesis by (auto simp add: power_mult_distrib simp del: power_Suc)}
       
  3029 ultimately show ?thesis by (cases k, auto)
       
  3030 qed
       
  3031 *)
       
  3032 
       
  3033 lemma fps_divide_1 [simp]: "(a :: 'a::field fps) / 1 = a"
       
  3034   by (fact div_by_1)
       
  3035 
       
  3036 lemma radical_divide:
       
  3037   fixes a :: "'a::field_char_0 fps"
       
  3038   assumes kp: "k > 0"
       
  3039     and ra0: "(r k (a $ 0)) ^ k = a $ 0"
       
  3040     and rb0: "(r k (b $ 0)) ^ k = b $ 0"
       
  3041     and a0: "a$0 \<noteq> 0"
       
  3042     and b0: "b$0 \<noteq> 0"
       
  3043   shows "r k ((a $ 0) / (b$0)) = r k (a$0) / r k (b $ 0) \<longleftrightarrow>
       
  3044     fps_radical r k (a/b) = fps_radical r k a / fps_radical r k b"
       
  3045   (is "?lhs = ?rhs")
       
  3046 proof
       
  3047   let ?r = "fps_radical r k"
       
  3048   from kp obtain h where k: "k = Suc h"
       
  3049     by (cases k) auto
       
  3050   have ra0': "r k (a$0) \<noteq> 0" using a0 ra0 k by auto
       
  3051   have rb0': "r k (b$0) \<noteq> 0" using b0 rb0 k by auto
       
  3052 
       
  3053   show ?lhs if ?rhs
       
  3054   proof -
       
  3055     from that have "?r (a/b) $ 0 = (?r a / ?r b)$0"
       
  3056       by simp
       
  3057     then show ?thesis
       
  3058       using k a0 b0 rb0' by (simp add: fps_divide_unit fps_mult_nth fps_inverse_def divide_inverse)
       
  3059   qed
       
  3060   show ?rhs if ?lhs
       
  3061   proof -
       
  3062     from a0 b0 have ab0[simp]: "(a/b)$0 = a$0 / b$0"
       
  3063       by (simp add: fps_divide_def fps_mult_nth divide_inverse fps_inverse_def)
       
  3064     have th0: "r k ((a/b)$0) ^ k = (a/b)$0"
       
  3065       by (simp add: \<open>?lhs\<close> power_divide ra0 rb0)
       
  3066     from a0 b0 ra0' rb0' kp \<open>?lhs\<close>
       
  3067     have th1: "r k ((a / b) $ 0) = (fps_radical r k a / fps_radical r k b) $ 0"
       
  3068       by (simp add: fps_divide_unit fps_mult_nth fps_inverse_def divide_inverse)
       
  3069     from a0 b0 ra0' rb0' kp have ab0': "(a / b) $ 0 \<noteq> 0"
       
  3070       by (simp add: fps_divide_unit fps_mult_nth fps_inverse_def nonzero_imp_inverse_nonzero)
       
  3071     note tha[simp] = iffD1[OF power_radical[where r=r and k=h], OF a0 ra0[unfolded k], unfolded k[symmetric]]
       
  3072     note thb[simp] = iffD1[OF power_radical[where r=r and k=h], OF b0 rb0[unfolded k], unfolded k[symmetric]]
       
  3073     from b0 rb0' have th2: "(?r a / ?r b)^k = a/b"
       
  3074       by (simp add: fps_divide_unit power_mult_distrib fps_inverse_power[symmetric])
       
  3075 
       
  3076     from iffD1[OF radical_unique[where r=r and a="?r a / ?r b" and b="a/b" and k=h], symmetric, unfolded k[symmetric], OF th0 th1 ab0' th2]
       
  3077     show ?thesis .
       
  3078   qed
       
  3079 qed
       
  3080 
       
  3081 lemma radical_inverse:
       
  3082   fixes a :: "'a::field_char_0 fps"
       
  3083   assumes k: "k > 0"
       
  3084     and ra0: "r k (a $ 0) ^ k = a $ 0"
       
  3085     and r1: "(r k 1)^k = 1"
       
  3086     and a0: "a$0 \<noteq> 0"
       
  3087   shows "r k (inverse (a $ 0)) = r k 1 / (r k (a $ 0)) \<longleftrightarrow>
       
  3088     fps_radical r k (inverse a) = fps_radical r k 1 / fps_radical r k a"
       
  3089   using radical_divide[where k=k and r=r and a=1 and b=a, OF k ] ra0 r1 a0
       
  3090   by (simp add: divide_inverse fps_divide_def)
       
  3091 
       
  3092 
       
  3093 subsection \<open>Derivative of composition\<close>
       
  3094 
       
  3095 lemma fps_compose_deriv:
       
  3096   fixes a :: "'a::idom fps"
       
  3097   assumes b0: "b$0 = 0"
       
  3098   shows "fps_deriv (a oo b) = ((fps_deriv a) oo b) * fps_deriv b"
       
  3099 proof -
       
  3100   have "(fps_deriv (a oo b))$n = (((fps_deriv a) oo b) * (fps_deriv b)) $n" for n
       
  3101   proof -
       
  3102     have "(fps_deriv (a oo b))$n = sum (\<lambda>i. a $ i * (fps_deriv (b^i))$n) {0.. Suc n}"
       
  3103       by (simp add: fps_compose_def field_simps sum_distrib_left del: of_nat_Suc)
       
  3104     also have "\<dots> = sum (\<lambda>i. a$i * ((fps_const (of_nat i)) * (fps_deriv b * (b^(i - 1))))$n) {0.. Suc n}"
       
  3105       by (simp add: field_simps fps_deriv_power del: fps_mult_left_const_nth of_nat_Suc)
       
  3106     also have "\<dots> = sum (\<lambda>i. of_nat i * a$i * (((b^(i - 1)) * fps_deriv b))$n) {0.. Suc n}"
       
  3107       unfolding fps_mult_left_const_nth  by (simp add: field_simps)
       
  3108     also have "\<dots> = sum (\<lambda>i. of_nat i * a$i * (sum (\<lambda>j. (b^ (i - 1))$j * (fps_deriv b)$(n - j)) {0..n})) {0.. Suc n}"
       
  3109       unfolding fps_mult_nth ..
       
  3110     also have "\<dots> = sum (\<lambda>i. of_nat i * a$i * (sum (\<lambda>j. (b^ (i - 1))$j * (fps_deriv b)$(n - j)) {0..n})) {1.. Suc n}"
       
  3111       apply (rule sum.mono_neutral_right)
       
  3112       apply (auto simp add: mult_delta_left sum.delta not_le)
       
  3113       done
       
  3114     also have "\<dots> = sum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (sum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}"
       
  3115       unfolding fps_deriv_nth
       
  3116       by (rule sum.reindex_cong [of Suc]) (auto simp add: mult.assoc)
       
  3117     finally have th0: "(fps_deriv (a oo b))$n =
       
  3118       sum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (sum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}" .
       
  3119 
       
  3120     have "(((fps_deriv a) oo b) * (fps_deriv b))$n = sum (\<lambda>i. (fps_deriv b)$ (n - i) * ((fps_deriv a) oo b)$i) {0..n}"
       
  3121       unfolding fps_mult_nth by (simp add: ac_simps)
       
  3122     also have "\<dots> = sum (\<lambda>i. sum (\<lambda>j. of_nat (n - i +1) * b$(n - i + 1) * of_nat (j + 1) * a$(j+1) * (b^j)$i) {0..n}) {0..n}"
       
  3123       unfolding fps_deriv_nth fps_compose_nth sum_distrib_left mult.assoc
       
  3124       apply (rule sum.cong)
       
  3125       apply (rule refl)
       
  3126       apply (rule sum.mono_neutral_left)
       
  3127       apply (simp_all add: subset_eq)
       
  3128       apply clarify
       
  3129       apply (subgoal_tac "b^i$x = 0")
       
  3130       apply simp
       
  3131       apply (rule startsby_zero_power_prefix[OF b0, rule_format])
       
  3132       apply simp
       
  3133       done
       
  3134     also have "\<dots> = sum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (sum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}"
       
  3135       unfolding sum_distrib_left
       
  3136       apply (subst sum.commute)
       
  3137       apply (rule sum.cong, rule refl)+
       
  3138       apply simp
       
  3139       done
       
  3140     finally show ?thesis
       
  3141       unfolding th0 by simp
       
  3142   qed
       
  3143   then show ?thesis by (simp add: fps_eq_iff)
       
  3144 qed
       
  3145 
       
  3146 lemma fps_mult_X_plus_1_nth:
       
  3147   "((1+X)*a) $n = (if n = 0 then (a$n :: 'a::comm_ring_1) else a$n + a$(n - 1))"
       
  3148 proof (cases n)
       
  3149   case 0
       
  3150   then show ?thesis
       
  3151     by (simp add: fps_mult_nth)
       
  3152 next
       
  3153   case (Suc m)
       
  3154   have "((1 + X)*a) $ n = sum (\<lambda>i. (1 + X) $ i * a $ (n - i)) {0..n}"
       
  3155     by (simp add: fps_mult_nth)
       
  3156   also have "\<dots> = sum (\<lambda>i. (1+X)$i * a$(n-i)) {0.. 1}"
       
  3157     unfolding Suc by (rule sum.mono_neutral_right) auto
       
  3158   also have "\<dots> = (if n = 0 then (a$n :: 'a::comm_ring_1) else a$n + a$(n - 1))"
       
  3159     by (simp add: Suc)
       
  3160   finally show ?thesis .
       
  3161 qed
       
  3162 
       
  3163 
       
  3164 subsection \<open>Finite FPS (i.e. polynomials) and X\<close>
       
  3165 
       
  3166 lemma fps_poly_sum_X:
       
  3167   assumes "\<forall>i > n. a$i = (0::'a::comm_ring_1)"
       
  3168   shows "a = sum (\<lambda>i. fps_const (a$i) * X^i) {0..n}" (is "a = ?r")
       
  3169 proof -
       
  3170   have "a$i = ?r$i" for i
       
  3171     unfolding fps_sum_nth fps_mult_left_const_nth X_power_nth
       
  3172     by (simp add: mult_delta_right sum.delta' assms)
       
  3173   then show ?thesis
       
  3174     unfolding fps_eq_iff by blast
       
  3175 qed
       
  3176 
       
  3177 
       
  3178 subsection \<open>Compositional inverses\<close>
       
  3179 
       
  3180 fun compinv :: "'a fps \<Rightarrow> nat \<Rightarrow> 'a::field"
       
  3181 where
       
  3182   "compinv a 0 = X$0"
       
  3183 | "compinv a (Suc n) =
       
  3184     (X$ Suc n - sum (\<lambda>i. (compinv a i) * (a^i)$Suc n) {0 .. n}) / (a$1) ^ Suc n"
       
  3185 
       
  3186 definition "fps_inv a = Abs_fps (compinv a)"
       
  3187 
       
  3188 lemma fps_inv:
       
  3189   assumes a0: "a$0 = 0"
       
  3190     and a1: "a$1 \<noteq> 0"
       
  3191   shows "fps_inv a oo a = X"
       
  3192 proof -
       
  3193   let ?i = "fps_inv a oo a"
       
  3194   have "?i $n = X$n" for n
       
  3195   proof (induct n rule: nat_less_induct)
       
  3196     fix n
       
  3197     assume h: "\<forall>m<n. ?i$m = X$m"
       
  3198     show "?i $ n = X$n"
       
  3199     proof (cases n)
       
  3200       case 0
       
  3201       then show ?thesis using a0
       
  3202         by (simp add: fps_compose_nth fps_inv_def)
       
  3203     next
       
  3204       case (Suc n1)
       
  3205       have "?i $ n = sum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} + fps_inv a $ Suc n1 * (a $ 1)^ Suc n1"
       
  3206         by (simp only: fps_compose_nth) (simp add: Suc startsby_zero_power_nth_same [OF a0] del: power_Suc)
       
  3207       also have "\<dots> = sum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} +
       
  3208         (X$ Suc n1 - sum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1})"
       
  3209         using a0 a1 Suc by (simp add: fps_inv_def)
       
  3210       also have "\<dots> = X$n" using Suc by simp
       
  3211       finally show ?thesis .
       
  3212     qed
       
  3213   qed
       
  3214   then show ?thesis
       
  3215     by (simp add: fps_eq_iff)
       
  3216 qed
       
  3217 
       
  3218 
       
  3219 fun gcompinv :: "'a fps \<Rightarrow> 'a fps \<Rightarrow> nat \<Rightarrow> 'a::field"
       
  3220 where
       
  3221   "gcompinv b a 0 = b$0"
       
  3222 | "gcompinv b a (Suc n) =
       
  3223     (b$ Suc n - sum (\<lambda>i. (gcompinv b a i) * (a^i)$Suc n) {0 .. n}) / (a$1) ^ Suc n"
       
  3224 
       
  3225 definition "fps_ginv b a = Abs_fps (gcompinv b a)"
       
  3226 
       
  3227 lemma fps_ginv:
       
  3228   assumes a0: "a$0 = 0"
       
  3229     and a1: "a$1 \<noteq> 0"
       
  3230   shows "fps_ginv b a oo a = b"
       
  3231 proof -
       
  3232   let ?i = "fps_ginv b a oo a"
       
  3233   have "?i $n = b$n" for n
       
  3234   proof (induct n rule: nat_less_induct)
       
  3235     fix n
       
  3236     assume h: "\<forall>m<n. ?i$m = b$m"
       
  3237     show "?i $ n = b$n"
       
  3238     proof (cases n)
       
  3239       case 0
       
  3240       then show ?thesis using a0
       
  3241         by (simp add: fps_compose_nth fps_ginv_def)
       
  3242     next
       
  3243       case (Suc n1)
       
  3244       have "?i $ n = sum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} + fps_ginv b a $ Suc n1 * (a $ 1)^ Suc n1"
       
  3245         by (simp only: fps_compose_nth) (simp add: Suc startsby_zero_power_nth_same [OF a0] del: power_Suc)
       
  3246       also have "\<dots> = sum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} +
       
  3247         (b$ Suc n1 - sum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1})"
       
  3248         using a0 a1 Suc by (simp add: fps_ginv_def)
       
  3249       also have "\<dots> = b$n" using Suc by simp
       
  3250       finally show ?thesis .
       
  3251     qed
       
  3252   qed
       
  3253   then show ?thesis
       
  3254     by (simp add: fps_eq_iff)
       
  3255 qed
       
  3256 
       
  3257 lemma fps_inv_ginv: "fps_inv = fps_ginv X"
       
  3258   apply (auto simp add: fun_eq_iff fps_eq_iff fps_inv_def fps_ginv_def)
       
  3259   apply (induct_tac n rule: nat_less_induct)
       
  3260   apply auto
       
  3261   apply (case_tac na)
       
  3262   apply simp
       
  3263   apply simp
       
  3264   done
       
  3265 
       
  3266 lemma fps_compose_1[simp]: "1 oo a = 1"
       
  3267   by (simp add: fps_eq_iff fps_compose_nth mult_delta_left sum.delta)
       
  3268 
       
  3269 lemma fps_compose_0[simp]: "0 oo a = 0"
       
  3270   by (simp add: fps_eq_iff fps_compose_nth)
       
  3271 
       
  3272 lemma fps_compose_0_right[simp]: "a oo 0 = fps_const (a $ 0)"
       
  3273   by (auto simp add: fps_eq_iff fps_compose_nth power_0_left sum.neutral)
       
  3274 
       
  3275 lemma fps_compose_add_distrib: "(a + b) oo c = (a oo c) + (b oo c)"
       
  3276   by (simp add: fps_eq_iff fps_compose_nth field_simps sum.distrib)
       
  3277 
       
  3278 lemma fps_compose_sum_distrib: "(sum f S) oo a = sum (\<lambda>i. f i oo a) S"
       
  3279 proof (cases "finite S")
       
  3280   case True
       
  3281   show ?thesis
       
  3282   proof (rule finite_induct[OF True])
       
  3283     show "sum f {} oo a = (\<Sum>i\<in>{}. f i oo a)"
       
  3284       by simp
       
  3285   next
       
  3286     fix x F
       
  3287     assume fF: "finite F"
       
  3288       and xF: "x \<notin> F"
       
  3289       and h: "sum f F oo a = sum (\<lambda>i. f i oo a) F"
       
  3290     show "sum f (insert x F) oo a  = sum (\<lambda>i. f i oo a) (insert x F)"
       
  3291       using fF xF h by (simp add: fps_compose_add_distrib)
       
  3292   qed
       
  3293 next
       
  3294   case False
       
  3295   then show ?thesis by simp
       
  3296 qed
       
  3297 
       
  3298 lemma convolution_eq:
       
  3299   "sum (\<lambda>i. a (i :: nat) * b (n - i)) {0 .. n} =
       
  3300     sum (\<lambda>(i,j). a i * b j) {(i,j). i \<le> n \<and> j \<le> n \<and> i + j = n}"
       
  3301   by (rule sum.reindex_bij_witness[where i=fst and j="\<lambda>i. (i, n - i)"]) auto
       
  3302 
       
  3303 lemma product_composition_lemma:
       
  3304   assumes c0: "c$0 = (0::'a::idom)"
       
  3305     and d0: "d$0 = 0"
       
  3306   shows "((a oo c) * (b oo d))$n =
       
  3307     sum (\<lambda>(k,m). a$k * b$m * (c^k * d^m) $ n) {(k,m). k + m \<le> n}"  (is "?l = ?r")
       
  3308 proof -
       
  3309   let ?S = "{(k::nat, m::nat). k + m \<le> n}"
       
  3310   have s: "?S \<subseteq> {0..n} \<times> {0..n}" by (auto simp add: subset_eq)
       
  3311   have f: "finite {(k::nat, m::nat). k + m \<le> n}"
       
  3312     apply (rule finite_subset[OF s])
       
  3313     apply auto
       
  3314     done
       
  3315   have "?r =  sum (\<lambda>i. sum (\<lambda>(k,m). a$k * (c^k)$i * b$m * (d^m) $ (n - i)) {(k,m). k + m \<le> n}) {0..n}"
       
  3316     apply (simp add: fps_mult_nth sum_distrib_left)
       
  3317     apply (subst sum.commute)
       
  3318     apply (rule sum.cong)
       
  3319     apply (auto simp add: field_simps)
       
  3320     done
       
  3321   also have "\<dots> = ?l"
       
  3322     apply (simp add: fps_mult_nth fps_compose_nth sum_product)
       
  3323     apply (rule sum.cong)
       
  3324     apply (rule refl)
       
  3325     apply (simp add: sum.cartesian_product mult.assoc)
       
  3326     apply (rule sum.mono_neutral_right[OF f])
       
  3327     apply (simp add: subset_eq)
       
  3328     apply presburger
       
  3329     apply clarsimp
       
  3330     apply (rule ccontr)
       
  3331     apply (clarsimp simp add: not_le)
       
  3332     apply (case_tac "x < aa")
       
  3333     apply simp
       
  3334     apply (frule_tac startsby_zero_power_prefix[rule_format, OF c0])
       
  3335     apply blast
       
  3336     apply simp
       
  3337     apply (frule_tac startsby_zero_power_prefix[rule_format, OF d0])
       
  3338     apply blast
       
  3339     done
       
  3340   finally show ?thesis by simp
       
  3341 qed
       
  3342 
       
  3343 lemma product_composition_lemma':
       
  3344   assumes c0: "c$0 = (0::'a::idom)"
       
  3345     and d0: "d$0 = 0"
       
  3346   shows "((a oo c) * (b oo d))$n =
       
  3347     sum (\<lambda>k. sum (\<lambda>m. a$k * b$m * (c^k * d^m) $ n) {0..n}) {0..n}"  (is "?l = ?r")
       
  3348   unfolding product_composition_lemma[OF c0 d0]
       
  3349   unfolding sum.cartesian_product
       
  3350   apply (rule sum.mono_neutral_left)
       
  3351   apply simp
       
  3352   apply (clarsimp simp add: subset_eq)
       
  3353   apply clarsimp
       
  3354   apply (rule ccontr)
       
  3355   apply (subgoal_tac "(c^aa * d^ba) $ n = 0")
       
  3356   apply simp
       
  3357   unfolding fps_mult_nth
       
  3358   apply (rule sum.neutral)
       
  3359   apply (clarsimp simp add: not_le)
       
  3360   apply (case_tac "x < aa")
       
  3361   apply (rule startsby_zero_power_prefix[OF c0, rule_format])
       
  3362   apply simp
       
  3363   apply (subgoal_tac "n - x < ba")
       
  3364   apply (frule_tac k = "ba" in startsby_zero_power_prefix[OF d0, rule_format])
       
  3365   apply simp
       
  3366   apply arith
       
  3367   done
       
  3368 
       
  3369 
       
  3370 lemma sum_pair_less_iff:
       
  3371   "sum (\<lambda>((k::nat),m). a k * b m * c (k + m)) {(k,m). k + m \<le> n} =
       
  3372     sum (\<lambda>s. sum (\<lambda>i. a i * b (s - i) * c s) {0..s}) {0..n}"
       
  3373   (is "?l = ?r")
       
  3374 proof -
       
  3375   let ?KM = "{(k,m). k + m \<le> n}"
       
  3376   let ?f = "\<lambda>s. UNION {(0::nat)..s} (\<lambda>i. {(i,s - i)})"
       
  3377   have th0: "?KM = UNION {0..n} ?f"
       
  3378     by auto
       
  3379   show "?l = ?r "
       
  3380     unfolding th0
       
  3381     apply (subst sum.UNION_disjoint)
       
  3382     apply auto
       
  3383     apply (subst sum.UNION_disjoint)
       
  3384     apply auto
       
  3385     done
       
  3386 qed
       
  3387 
       
  3388 lemma fps_compose_mult_distrib_lemma:
       
  3389   assumes c0: "c$0 = (0::'a::idom)"
       
  3390   shows "((a oo c) * (b oo c))$n = sum (\<lambda>s. sum (\<lambda>i. a$i * b$(s - i) * (c^s) $ n) {0..s}) {0..n}"
       
  3391   unfolding product_composition_lemma[OF c0 c0] power_add[symmetric]
       
  3392   unfolding sum_pair_less_iff[where a = "\<lambda>k. a$k" and b="\<lambda>m. b$m" and c="\<lambda>s. (c ^ s)$n" and n = n] ..
       
  3393 
       
  3394 lemma fps_compose_mult_distrib:
       
  3395   assumes c0: "c $ 0 = (0::'a::idom)"
       
  3396   shows "(a * b) oo c = (a oo c) * (b oo c)"
       
  3397   apply (simp add: fps_eq_iff fps_compose_mult_distrib_lemma [OF c0])
       
  3398   apply (simp add: fps_compose_nth fps_mult_nth sum_distrib_right)
       
  3399   done
       
  3400 
       
  3401 lemma fps_compose_prod_distrib:
       
  3402   assumes c0: "c$0 = (0::'a::idom)"
       
  3403   shows "prod a S oo c = prod (\<lambda>k. a k oo c) S"
       
  3404   apply (cases "finite S")
       
  3405   apply simp_all
       
  3406   apply (induct S rule: finite_induct)
       
  3407   apply simp
       
  3408   apply (simp add: fps_compose_mult_distrib[OF c0])
       
  3409   done
       
  3410 
       
  3411 lemma fps_compose_divide:
       
  3412   assumes [simp]: "g dvd f" "h $ 0 = 0"
       
  3413   shows   "fps_compose f h = fps_compose (f / g :: 'a :: field fps) h * fps_compose g h"
       
  3414 proof -
       
  3415   have "f = (f / g) * g" by simp
       
  3416   also have "fps_compose \<dots> h = fps_compose (f / g) h * fps_compose g h"
       
  3417     by (subst fps_compose_mult_distrib) simp_all
       
  3418   finally show ?thesis .
       
  3419 qed
       
  3420 
       
  3421 lemma fps_compose_divide_distrib:
       
  3422   assumes "g dvd f" "h $ 0 = 0" "fps_compose g h \<noteq> 0"
       
  3423   shows   "fps_compose (f / g :: 'a :: field fps) h = fps_compose f h / fps_compose g h"
       
  3424   using fps_compose_divide[OF assms(1,2)] assms(3) by simp
       
  3425 
       
  3426 lemma fps_compose_power:
       
  3427   assumes c0: "c$0 = (0::'a::idom)"
       
  3428   shows "(a oo c)^n = a^n oo c"
       
  3429 proof (cases n)
       
  3430   case 0
       
  3431   then show ?thesis by simp
       
  3432 next
       
  3433   case (Suc m)
       
  3434   have th0: "a^n = prod (\<lambda>k. a) {0..m}" "(a oo c) ^ n = prod (\<lambda>k. a oo c) {0..m}"
       
  3435     by (simp_all add: prod_constant Suc)
       
  3436   then show ?thesis
       
  3437     by (simp add: fps_compose_prod_distrib[OF c0])
       
  3438 qed
       
  3439 
       
  3440 lemma fps_compose_uminus: "- (a::'a::ring_1 fps) oo c = - (a oo c)"
       
  3441   by (simp add: fps_eq_iff fps_compose_nth field_simps sum_negf[symmetric])
       
  3442     
       
  3443 lemma fps_compose_sub_distrib: "(a - b) oo (c::'a::ring_1 fps) = (a oo c) - (b oo c)"
       
  3444   using fps_compose_add_distrib [of a "- b" c] by (simp add: fps_compose_uminus)
       
  3445 
       
  3446 lemma X_fps_compose: "X oo a = Abs_fps (\<lambda>n. if n = 0 then (0::'a::comm_ring_1) else a$n)"
       
  3447   by (simp add: fps_eq_iff fps_compose_nth mult_delta_left sum.delta)
       
  3448 
       
  3449 lemma fps_inverse_compose:
       
  3450   assumes b0: "(b$0 :: 'a::field) = 0"
       
  3451     and a0: "a$0 \<noteq> 0"
       
  3452   shows "inverse a oo b = inverse (a oo b)"
       
  3453 proof -
       
  3454   let ?ia = "inverse a"
       
  3455   let ?ab = "a oo b"
       
  3456   let ?iab = "inverse ?ab"
       
  3457 
       
  3458   from a0 have ia0: "?ia $ 0 \<noteq> 0" by simp
       
  3459   from a0 have ab0: "?ab $ 0 \<noteq> 0" by (simp add: fps_compose_def)
       
  3460   have "(?ia oo b) *  (a oo b) = 1"
       
  3461     unfolding fps_compose_mult_distrib[OF b0, symmetric]
       
  3462     unfolding inverse_mult_eq_1[OF a0]
       
  3463     fps_compose_1 ..
       
  3464 
       
  3465   then have "(?ia oo b) *  (a oo b) * ?iab  = 1 * ?iab" by simp
       
  3466   then have "(?ia oo b) *  (?iab * (a oo b))  = ?iab" by simp
       
  3467   then show ?thesis unfolding inverse_mult_eq_1[OF ab0] by simp
       
  3468 qed
       
  3469 
       
  3470 lemma fps_divide_compose:
       
  3471   assumes c0: "(c$0 :: 'a::field) = 0"
       
  3472     and b0: "b$0 \<noteq> 0"
       
  3473   shows "(a/b) oo c = (a oo c) / (b oo c)"
       
  3474     using b0 c0 by (simp add: fps_divide_unit fps_inverse_compose fps_compose_mult_distrib)
       
  3475 
       
  3476 lemma gp:
       
  3477   assumes a0: "a$0 = (0::'a::field)"
       
  3478   shows "(Abs_fps (\<lambda>n. 1)) oo a = 1/(1 - a)"
       
  3479     (is "?one oo a = _")
       
  3480 proof -
       
  3481   have o0: "?one $ 0 \<noteq> 0" by simp
       
  3482   have th0: "(1 - X) $ 0 \<noteq> (0::'a)" by simp
       
  3483   from fps_inverse_gp[where ?'a = 'a]
       
  3484   have "inverse ?one = 1 - X" by (simp add: fps_eq_iff)
       
  3485   then have "inverse (inverse ?one) = inverse (1 - X)" by simp
       
  3486   then have th: "?one = 1/(1 - X)" unfolding fps_inverse_idempotent[OF o0]
       
  3487     by (simp add: fps_divide_def)
       
  3488   show ?thesis
       
  3489     unfolding th
       
  3490     unfolding fps_divide_compose[OF a0 th0]
       
  3491     fps_compose_1 fps_compose_sub_distrib X_fps_compose_startby0[OF a0] ..
       
  3492 qed
       
  3493 
       
  3494 lemma fps_const_power [simp]: "fps_const (c::'a::ring_1) ^ n = fps_const (c^n)"
       
  3495   by (induct n) auto
       
  3496 
       
  3497 lemma fps_compose_radical:
       
  3498   assumes b0: "b$0 = (0::'a::field_char_0)"
       
  3499     and ra0: "r (Suc k) (a$0) ^ Suc k = a$0"
       
  3500     and a0: "a$0 \<noteq> 0"
       
  3501   shows "fps_radical r (Suc k)  a oo b = fps_radical r (Suc k) (a oo b)"
       
  3502 proof -
       
  3503   let ?r = "fps_radical r (Suc k)"
       
  3504   let ?ab = "a oo b"
       
  3505   have ab0: "?ab $ 0 = a$0"
       
  3506     by (simp add: fps_compose_def)
       
  3507   from ab0 a0 ra0 have rab0: "?ab $ 0 \<noteq> 0" "r (Suc k) (?ab $ 0) ^ Suc k = ?ab $ 0"
       
  3508     by simp_all
       
  3509   have th00: "r (Suc k) ((a oo b) $ 0) = (fps_radical r (Suc k) a oo b) $ 0"
       
  3510     by (simp add: ab0 fps_compose_def)
       
  3511   have th0: "(?r a oo b) ^ (Suc k) = a  oo b"
       
  3512     unfolding fps_compose_power[OF b0]
       
  3513     unfolding iffD1[OF power_radical[of a r k], OF a0 ra0]  ..
       
  3514   from iffD1[OF radical_unique[where r=r and k=k and b= ?ab and a = "?r a oo b", OF rab0(2) th00 rab0(1)], OF th0]
       
  3515   show ?thesis  .
       
  3516 qed
       
  3517 
       
  3518 lemma fps_const_mult_apply_left: "fps_const c * (a oo b) = (fps_const c * a) oo b"
       
  3519   by (simp add: fps_eq_iff fps_compose_nth sum_distrib_left mult.assoc)
       
  3520 
       
  3521 lemma fps_const_mult_apply_right:
       
  3522   "(a oo b) * fps_const (c::'a::comm_semiring_1) = (fps_const c * a) oo b"
       
  3523   by (auto simp add: fps_const_mult_apply_left mult.commute)
       
  3524 
       
  3525 lemma fps_compose_assoc:
       
  3526   assumes c0: "c$0 = (0::'a::idom)"
       
  3527     and b0: "b$0 = 0"
       
  3528   shows "a oo (b oo c) = a oo b oo c" (is "?l = ?r")
       
  3529 proof -
       
  3530   have "?l$n = ?r$n" for n
       
  3531   proof -
       
  3532     have "?l$n = (sum (\<lambda>i. (fps_const (a$i) * b^i) oo c) {0..n})$n"
       
  3533       by (simp add: fps_compose_nth fps_compose_power[OF c0] fps_const_mult_apply_left
       
  3534         sum_distrib_left mult.assoc fps_sum_nth)
       
  3535     also have "\<dots> = ((sum (\<lambda>i. fps_const (a$i) * b^i) {0..n}) oo c)$n"
       
  3536       by (simp add: fps_compose_sum_distrib)
       
  3537     also have "\<dots> = ?r$n"
       
  3538       apply (simp add: fps_compose_nth fps_sum_nth sum_distrib_right mult.assoc)
       
  3539       apply (rule sum.cong)
       
  3540       apply (rule refl)
       
  3541       apply (rule sum.mono_neutral_right)
       
  3542       apply (auto simp add: not_le)
       
  3543       apply (erule startsby_zero_power_prefix[OF b0, rule_format])
       
  3544       done
       
  3545     finally show ?thesis .
       
  3546   qed
       
  3547   then show ?thesis
       
  3548     by (simp add: fps_eq_iff)
       
  3549 qed
       
  3550 
       
  3551 
       
  3552 lemma fps_X_power_compose:
       
  3553   assumes a0: "a$0=0"
       
  3554   shows "X^k oo a = (a::'a::idom fps)^k"
       
  3555   (is "?l = ?r")
       
  3556 proof (cases k)
       
  3557   case 0
       
  3558   then show ?thesis by simp
       
  3559 next
       
  3560   case (Suc h)
       
  3561   have "?l $ n = ?r $n" for n
       
  3562   proof -
       
  3563     consider "k > n" | "k \<le> n" by arith
       
  3564     then show ?thesis
       
  3565     proof cases
       
  3566       case 1
       
  3567       then show ?thesis
       
  3568         using a0 startsby_zero_power_prefix[OF a0] Suc
       
  3569         by (simp add: fps_compose_nth del: power_Suc)
       
  3570     next
       
  3571       case 2
       
  3572       then show ?thesis
       
  3573         by (simp add: fps_compose_nth mult_delta_left sum.delta)
       
  3574     qed
       
  3575   qed
       
  3576   then show ?thesis
       
  3577     unfolding fps_eq_iff by blast
       
  3578 qed
       
  3579 
       
  3580 lemma fps_inv_right:
       
  3581   assumes a0: "a$0 = 0"
       
  3582     and a1: "a$1 \<noteq> 0"
       
  3583   shows "a oo fps_inv a = X"
       
  3584 proof -
       
  3585   let ?ia = "fps_inv a"
       
  3586   let ?iaa = "a oo fps_inv a"
       
  3587   have th0: "?ia $ 0 = 0"
       
  3588     by (simp add: fps_inv_def)
       
  3589   have th1: "?iaa $ 0 = 0"
       
  3590     using a0 a1 by (simp add: fps_inv_def fps_compose_nth)
       
  3591   have th2: "X$0 = 0"
       
  3592     by simp
       
  3593   from fps_inv[OF a0 a1] have "a oo (fps_inv a oo a) = a oo X"
       
  3594     by simp
       
  3595   then have "(a oo fps_inv a) oo a = X oo a"
       
  3596     by (simp add: fps_compose_assoc[OF a0 th0] X_fps_compose_startby0[OF a0])
       
  3597   with fps_compose_inj_right[OF a0 a1] show ?thesis
       
  3598     by simp
       
  3599 qed
       
  3600 
       
  3601 lemma fps_inv_deriv:
       
  3602   assumes a0: "a$0 = (0::'a::field)"
       
  3603     and a1: "a$1 \<noteq> 0"
       
  3604   shows "fps_deriv (fps_inv a) = inverse (fps_deriv a oo fps_inv a)"
       
  3605 proof -
       
  3606   let ?ia = "fps_inv a"
       
  3607   let ?d = "fps_deriv a oo ?ia"
       
  3608   let ?dia = "fps_deriv ?ia"
       
  3609   have ia0: "?ia$0 = 0"
       
  3610     by (simp add: fps_inv_def)
       
  3611   have th0: "?d$0 \<noteq> 0"
       
  3612     using a1 by (simp add: fps_compose_nth)
       
  3613   from fps_inv_right[OF a0 a1] have "?d * ?dia = 1"
       
  3614     by (simp add: fps_compose_deriv[OF ia0, of a, symmetric] )
       
  3615   then have "inverse ?d * ?d * ?dia = inverse ?d * 1"
       
  3616     by simp
       
  3617   with inverse_mult_eq_1 [OF th0] show "?dia = inverse ?d"
       
  3618     by simp
       
  3619 qed
       
  3620 
       
  3621 lemma fps_inv_idempotent:
       
  3622   assumes a0: "a$0 = 0"
       
  3623     and a1: "a$1 \<noteq> 0"
       
  3624   shows "fps_inv (fps_inv a) = a"
       
  3625 proof -
       
  3626   let ?r = "fps_inv"
       
  3627   have ra0: "?r a $ 0 = 0"
       
  3628     by (simp add: fps_inv_def)
       
  3629   from a1 have ra1: "?r a $ 1 \<noteq> 0"
       
  3630     by (simp add: fps_inv_def field_simps)
       
  3631   have X0: "X$0 = 0"
       
  3632     by simp
       
  3633   from fps_inv[OF ra0 ra1] have "?r (?r a) oo ?r a = X" .
       
  3634   then have "?r (?r a) oo ?r a oo a = X oo a"
       
  3635     by simp
       
  3636   then have "?r (?r a) oo (?r a oo a) = a"
       
  3637     unfolding X_fps_compose_startby0[OF a0]
       
  3638     unfolding fps_compose_assoc[OF a0 ra0, symmetric] .
       
  3639   then show ?thesis
       
  3640     unfolding fps_inv[OF a0 a1] by simp
       
  3641 qed
       
  3642 
       
  3643 lemma fps_ginv_ginv:
       
  3644   assumes a0: "a$0 = 0"
       
  3645     and a1: "a$1 \<noteq> 0"
       
  3646     and c0: "c$0 = 0"
       
  3647     and  c1: "c$1 \<noteq> 0"
       
  3648   shows "fps_ginv b (fps_ginv c a) = b oo a oo fps_inv c"
       
  3649 proof -
       
  3650   let ?r = "fps_ginv"
       
  3651   from c0 have rca0: "?r c a $0 = 0"
       
  3652     by (simp add: fps_ginv_def)
       
  3653   from a1 c1 have rca1: "?r c a $ 1 \<noteq> 0"
       
  3654     by (simp add: fps_ginv_def field_simps)
       
  3655   from fps_ginv[OF rca0 rca1]
       
  3656   have "?r b (?r c a) oo ?r c a = b" .
       
  3657   then have "?r b (?r c a) oo ?r c a oo a = b oo a"
       
  3658     by simp
       
  3659   then have "?r b (?r c a) oo (?r c a oo a) = b oo a"
       
  3660     apply (subst fps_compose_assoc)
       
  3661     using a0 c0
       
  3662     apply (auto simp add: fps_ginv_def)
       
  3663     done
       
  3664   then have "?r b (?r c a) oo c = b oo a"
       
  3665     unfolding fps_ginv[OF a0 a1] .
       
  3666   then have "?r b (?r c a) oo c oo fps_inv c= b oo a oo fps_inv c"
       
  3667     by simp
       
  3668   then have "?r b (?r c a) oo (c oo fps_inv c) = b oo a oo fps_inv c"
       
  3669     apply (subst fps_compose_assoc)
       
  3670     using a0 c0
       
  3671     apply (auto simp add: fps_inv_def)
       
  3672     done
       
  3673   then show ?thesis
       
  3674     unfolding fps_inv_right[OF c0 c1] by simp
       
  3675 qed
       
  3676 
       
  3677 lemma fps_ginv_deriv:
       
  3678   assumes a0:"a$0 = (0::'a::field)"
       
  3679     and a1: "a$1 \<noteq> 0"
       
  3680   shows "fps_deriv (fps_ginv b a) = (fps_deriv b / fps_deriv a) oo fps_ginv X a"
       
  3681 proof -
       
  3682   let ?ia = "fps_ginv b a"
       
  3683   let ?iXa = "fps_ginv X a"
       
  3684   let ?d = "fps_deriv"
       
  3685   let ?dia = "?d ?ia"
       
  3686   have iXa0: "?iXa $ 0 = 0"
       
  3687     by (simp add: fps_ginv_def)
       
  3688   have da0: "?d a $ 0 \<noteq> 0"
       
  3689     using a1 by simp
       
  3690   from fps_ginv[OF a0 a1, of b] have "?d (?ia oo a) = fps_deriv b"
       
  3691     by simp
       
  3692   then have "(?d ?ia oo a) * ?d a = ?d b"
       
  3693     unfolding fps_compose_deriv[OF a0] .
       
  3694   then have "(?d ?ia oo a) * ?d a * inverse (?d a) = ?d b * inverse (?d a)"
       
  3695     by simp
       
  3696   with a1 have "(?d ?ia oo a) * (inverse (?d a) * ?d a) = ?d b / ?d a"
       
  3697     by (simp add: fps_divide_unit)
       
  3698   then have "(?d ?ia oo a) oo ?iXa =  (?d b / ?d a) oo ?iXa"
       
  3699     unfolding inverse_mult_eq_1[OF da0] by simp
       
  3700   then have "?d ?ia oo (a oo ?iXa) =  (?d b / ?d a) oo ?iXa"
       
  3701     unfolding fps_compose_assoc[OF iXa0 a0] .
       
  3702   then show ?thesis unfolding fps_inv_ginv[symmetric]
       
  3703     unfolding fps_inv_right[OF a0 a1] by simp
       
  3704 qed
       
  3705 
       
  3706 lemma fps_compose_linear:
       
  3707   "fps_compose (f :: 'a :: comm_ring_1 fps) (fps_const c * X) = Abs_fps (\<lambda>n. c^n * f $ n)"
       
  3708   by (simp add: fps_eq_iff fps_compose_def power_mult_distrib
       
  3709                 if_distrib sum.delta' cong: if_cong)
       
  3710               
       
  3711 lemma fps_compose_uminus': 
       
  3712   "fps_compose f (-X :: 'a :: comm_ring_1 fps) = Abs_fps (\<lambda>n. (-1)^n * f $ n)"
       
  3713   using fps_compose_linear[of f "-1"] 
       
  3714   by (simp only: fps_const_neg [symmetric] fps_const_1_eq_1) simp
       
  3715 
       
  3716 subsection \<open>Elementary series\<close>
       
  3717 
       
  3718 subsubsection \<open>Exponential series\<close>
       
  3719 
       
  3720 definition "fps_exp x = Abs_fps (\<lambda>n. x^n / of_nat (fact n))"
       
  3721 
       
  3722 lemma fps_exp_deriv[simp]: "fps_deriv (fps_exp a) = fps_const (a::'a::field_char_0) * fps_exp a" 
       
  3723   (is "?l = ?r")
       
  3724 proof -
       
  3725   have "?l$n = ?r $ n" for n
       
  3726     apply (auto simp add: fps_exp_def field_simps power_Suc[symmetric]
       
  3727       simp del: fact_Suc of_nat_Suc power_Suc)
       
  3728     apply (simp add: field_simps)
       
  3729     done
       
  3730   then show ?thesis
       
  3731     by (simp add: fps_eq_iff)
       
  3732 qed
       
  3733 
       
  3734 lemma fps_exp_unique_ODE:
       
  3735   "fps_deriv a = fps_const c * a \<longleftrightarrow> a = fps_const (a$0) * fps_exp (c::'a::field_char_0)"
       
  3736   (is "?lhs \<longleftrightarrow> ?rhs")
       
  3737 proof
       
  3738   show ?rhs if ?lhs
       
  3739   proof -
       
  3740     from that have th: "\<And>n. a $ Suc n = c * a$n / of_nat (Suc n)"
       
  3741       by (simp add: fps_deriv_def fps_eq_iff field_simps del: of_nat_Suc)
       
  3742     have th': "a$n = a$0 * c ^ n/ (fact n)" for n
       
  3743     proof (induct n)
       
  3744       case 0
       
  3745       then show ?case by simp
       
  3746     next
       
  3747       case Suc
       
  3748       then show ?case
       
  3749         unfolding th
       
  3750         using fact_gt_zero
       
  3751         apply (simp add: field_simps del: of_nat_Suc fact_Suc)
       
  3752         apply simp
       
  3753         done
       
  3754     qed
       
  3755     show ?thesis
       
  3756       by (auto simp add: fps_eq_iff fps_const_mult_left fps_exp_def intro: th')
       
  3757   qed
       
  3758   show ?lhs if ?rhs
       
  3759     using that by (metis fps_exp_deriv fps_deriv_mult_const_left mult.left_commute)
       
  3760 qed
       
  3761 
       
  3762 lemma fps_exp_add_mult: "fps_exp (a + b) = fps_exp (a::'a::field_char_0) * fps_exp b" (is "?l = ?r")
       
  3763 proof -
       
  3764   have "fps_deriv ?r = fps_const (a + b) * ?r"
       
  3765     by (simp add: fps_const_add[symmetric] field_simps del: fps_const_add)
       
  3766   then have "?r = ?l"
       
  3767     by (simp only: fps_exp_unique_ODE) (simp add: fps_mult_nth fps_exp_def)
       
  3768   then show ?thesis ..
       
  3769 qed
       
  3770 
       
  3771 lemma fps_exp_nth[simp]: "fps_exp a $ n = a^n / of_nat (fact n)"
       
  3772   by (simp add: fps_exp_def)
       
  3773 
       
  3774 lemma fps_exp_0[simp]: "fps_exp (0::'a::field) = 1"
       
  3775   by (simp add: fps_eq_iff power_0_left)
       
  3776 
       
  3777 lemma fps_exp_neg: "fps_exp (- a) = inverse (fps_exp (a::'a::field_char_0))"
       
  3778 proof -
       
  3779   from fps_exp_add_mult[of a "- a"] have th0: "fps_exp a * fps_exp (- a) = 1" by simp
       
  3780   from fps_inverse_unique[OF th0] show ?thesis by simp
       
  3781 qed
       
  3782 
       
  3783 lemma fps_exp_nth_deriv[simp]: 
       
  3784   "fps_nth_deriv n (fps_exp (a::'a::field_char_0)) = (fps_const a)^n * (fps_exp a)"
       
  3785   by (induct n) auto
       
  3786 
       
  3787 lemma X_compose_fps_exp[simp]: "X oo fps_exp (a::'a::field) = fps_exp a - 1"
       
  3788   by (simp add: fps_eq_iff X_fps_compose)
       
  3789 
       
  3790 lemma fps_inv_fps_exp_compose:
       
  3791   assumes a: "a \<noteq> 0"
       
  3792   shows "fps_inv (fps_exp a - 1) oo (fps_exp a - 1) = X"
       
  3793     and "(fps_exp a - 1) oo fps_inv (fps_exp a - 1) = X"
       
  3794 proof -
       
  3795   let ?b = "fps_exp a - 1"
       
  3796   have b0: "?b $ 0 = 0"
       
  3797     by simp
       
  3798   have b1: "?b $ 1 \<noteq> 0"
       
  3799     by (simp add: a)
       
  3800   from fps_inv[OF b0 b1] show "fps_inv (fps_exp a - 1) oo (fps_exp a - 1) = X" .
       
  3801   from fps_inv_right[OF b0 b1] show "(fps_exp a - 1) oo fps_inv (fps_exp a - 1) = X" .
       
  3802 qed
       
  3803 
       
  3804 lemma fps_exp_power_mult: "(fps_exp (c::'a::field_char_0))^n = fps_exp (of_nat n * c)"
       
  3805   by (induct n) (auto simp add: field_simps fps_exp_add_mult)
       
  3806 
       
  3807 lemma radical_fps_exp:
       
  3808   assumes r: "r (Suc k) 1 = 1"
       
  3809   shows "fps_radical r (Suc k) (fps_exp (c::'a::field_char_0)) = fps_exp (c / of_nat (Suc k))"
       
  3810 proof -
       
  3811   let ?ck = "(c / of_nat (Suc k))"
       
  3812   let ?r = "fps_radical r (Suc k)"
       
  3813   have eq0[simp]: "?ck * of_nat (Suc k) = c" "of_nat (Suc k) * ?ck = c"
       
  3814     by (simp_all del: of_nat_Suc)
       
  3815   have th0: "fps_exp ?ck ^ (Suc k) = fps_exp c" unfolding fps_exp_power_mult eq0 ..
       
  3816   have th: "r (Suc k) (fps_exp c $0) ^ Suc k = fps_exp c $ 0"
       
  3817     "r (Suc k) (fps_exp c $ 0) = fps_exp ?ck $ 0" "fps_exp c $ 0 \<noteq> 0" using r by simp_all
       
  3818   from th0 radical_unique[where r=r and k=k, OF th] show ?thesis
       
  3819     by auto
       
  3820 qed
       
  3821 
       
  3822 lemma fps_exp_compose_linear [simp]: 
       
  3823   "fps_exp (d::'a::field_char_0) oo (fps_const c * X) = fps_exp (c * d)"
       
  3824   by (simp add: fps_compose_linear fps_exp_def fps_eq_iff power_mult_distrib)
       
  3825   
       
  3826 lemma fps_fps_exp_compose_minus [simp]: 
       
  3827   "fps_compose (fps_exp c) (-X) = fps_exp (-c :: 'a :: field_char_0)"
       
  3828   using fps_exp_compose_linear[of c "-1 :: 'a"] 
       
  3829   unfolding fps_const_neg [symmetric] fps_const_1_eq_1 by simp
       
  3830 
       
  3831 lemma fps_exp_eq_iff [simp]: "fps_exp c = fps_exp d \<longleftrightarrow> c = (d :: 'a :: field_char_0)"
       
  3832 proof
       
  3833   assume "fps_exp c = fps_exp d"
       
  3834   from arg_cong[of _ _ "\<lambda>F. F $ 1", OF this] show "c = d" by simp
       
  3835 qed simp_all
       
  3836 
       
  3837 lemma fps_exp_eq_fps_const_iff [simp]: 
       
  3838   "fps_exp (c :: 'a :: field_char_0) = fps_const c' \<longleftrightarrow> c = 0 \<and> c' = 1"
       
  3839 proof
       
  3840   assume "c = 0 \<and> c' = 1"
       
  3841   thus "fps_exp c = fps_const c'" by (auto simp: fps_eq_iff)
       
  3842 next
       
  3843   assume "fps_exp c = fps_const c'"
       
  3844   from arg_cong[of _ _ "\<lambda>F. F $ 1", OF this] arg_cong[of _ _ "\<lambda>F. F $ 0", OF this] 
       
  3845     show "c = 0 \<and> c' = 1" by simp_all
       
  3846 qed
       
  3847 
       
  3848 lemma fps_exp_neq_0 [simp]: "\<not>fps_exp (c :: 'a :: field_char_0) = 0"
       
  3849   unfolding fps_const_0_eq_0 [symmetric] fps_exp_eq_fps_const_iff by simp  
       
  3850 
       
  3851 lemma fps_exp_eq_1_iff [simp]: "fps_exp (c :: 'a :: field_char_0) = 1 \<longleftrightarrow> c = 0"
       
  3852   unfolding fps_const_1_eq_1 [symmetric] fps_exp_eq_fps_const_iff by simp
       
  3853     
       
  3854 lemma fps_exp_neq_numeral_iff [simp]: 
       
  3855   "fps_exp (c :: 'a :: field_char_0) = numeral n \<longleftrightarrow> c = 0 \<and> n = Num.One"
       
  3856   unfolding numeral_fps_const fps_exp_eq_fps_const_iff by simp
       
  3857 
       
  3858 
       
  3859 subsubsection \<open>Logarithmic series\<close>
       
  3860 
       
  3861 lemma Abs_fps_if_0:
       
  3862   "Abs_fps (\<lambda>n. if n = 0 then (v::'a::ring_1) else f n) =
       
  3863     fps_const v + X * Abs_fps (\<lambda>n. f (Suc n))"
       
  3864   by (auto simp add: fps_eq_iff)
       
  3865 
       
  3866 definition fps_ln :: "'a::field_char_0 \<Rightarrow> 'a fps"
       
  3867   where "fps_ln c = fps_const (1/c) * Abs_fps (\<lambda>n. if n = 0 then 0 else (- 1) ^ (n - 1) / of_nat n)"
       
  3868 
       
  3869 lemma fps_ln_deriv: "fps_deriv (fps_ln c) = fps_const (1/c) * inverse (1 + X)"
       
  3870   unfolding fps_inverse_X_plus1
       
  3871   by (simp add: fps_ln_def fps_eq_iff del: of_nat_Suc)
       
  3872 
       
  3873 lemma fps_ln_nth: "fps_ln c $ n = (if n = 0 then 0 else 1/c * ((- 1) ^ (n - 1) / of_nat n))"
       
  3874   by (simp add: fps_ln_def field_simps)
       
  3875 
       
  3876 lemma fps_ln_0 [simp]: "fps_ln c $ 0 = 0" by (simp add: fps_ln_def)
       
  3877 
       
  3878 lemma fps_ln_fps_exp_inv:
       
  3879   fixes a :: "'a::field_char_0"
       
  3880   assumes a: "a \<noteq> 0"
       
  3881   shows "fps_ln a = fps_inv (fps_exp a - 1)"  (is "?l = ?r")
       
  3882 proof -
       
  3883   let ?b = "fps_exp a - 1"
       
  3884   have b0: "?b $ 0 = 0" by simp
       
  3885   have b1: "?b $ 1 \<noteq> 0" by (simp add: a)
       
  3886   have "fps_deriv (fps_exp a - 1) oo fps_inv (fps_exp a - 1) =
       
  3887     (fps_const a * (fps_exp a - 1) + fps_const a) oo fps_inv (fps_exp a - 1)"
       
  3888     by (simp add: field_simps)
       
  3889   also have "\<dots> = fps_const a * (X + 1)"
       
  3890     apply (simp add: fps_compose_add_distrib fps_const_mult_apply_left[symmetric] fps_inv_right[OF b0 b1])
       
  3891     apply (simp add: field_simps)
       
  3892     done
       
  3893   finally have eq: "fps_deriv (fps_exp a - 1) oo fps_inv (fps_exp a - 1) = fps_const a * (X + 1)" .
       
  3894   from fps_inv_deriv[OF b0 b1, unfolded eq]
       
  3895   have "fps_deriv (fps_inv ?b) = fps_const (inverse a) / (X + 1)"
       
  3896     using a by (simp add: fps_const_inverse eq fps_divide_def fps_inverse_mult)
       
  3897   then have "fps_deriv ?l = fps_deriv ?r"
       
  3898     by (simp add: fps_ln_deriv add.commute fps_divide_def divide_inverse)
       
  3899   then show ?thesis unfolding fps_deriv_eq_iff
       
  3900     by (simp add: fps_ln_nth fps_inv_def)
       
  3901 qed
       
  3902 
       
  3903 lemma fps_ln_mult_add:
       
  3904   assumes c0: "c\<noteq>0"
       
  3905     and d0: "d\<noteq>0"
       
  3906   shows "fps_ln c + fps_ln d = fps_const (c+d) * fps_ln (c*d)"
       
  3907   (is "?r = ?l")
       
  3908 proof-
       
  3909   from c0 d0 have eq: "1/c + 1/d = (c+d)/(c*d)" by (simp add: field_simps)
       
  3910   have "fps_deriv ?r = fps_const (1/c + 1/d) * inverse (1 + X)"
       
  3911     by (simp add: fps_ln_deriv fps_const_add[symmetric] algebra_simps del: fps_const_add)
       
  3912   also have "\<dots> = fps_deriv ?l"
       
  3913     apply (simp add: fps_ln_deriv)
       
  3914     apply (simp add: fps_eq_iff eq)
       
  3915     done
       
  3916   finally show ?thesis
       
  3917     unfolding fps_deriv_eq_iff by simp
       
  3918 qed
       
  3919 
       
  3920 lemma X_dvd_fps_ln [simp]: "X dvd fps_ln c"
       
  3921 proof -
       
  3922   have "fps_ln c = X * Abs_fps (\<lambda>n. (-1) ^ n / (of_nat (Suc n) * c))"
       
  3923     by (intro fps_ext) (auto simp: fps_ln_def of_nat_diff)
       
  3924   thus ?thesis by simp
       
  3925 qed
       
  3926 
       
  3927 
       
  3928 subsubsection \<open>Binomial series\<close>
       
  3929 
       
  3930 definition "fps_binomial a = Abs_fps (\<lambda>n. a gchoose n)"
       
  3931 
       
  3932 lemma fps_binomial_nth[simp]: "fps_binomial a $ n = a gchoose n"
       
  3933   by (simp add: fps_binomial_def)
       
  3934 
       
  3935 lemma fps_binomial_ODE_unique:
       
  3936   fixes c :: "'a::field_char_0"
       
  3937   shows "fps_deriv a = (fps_const c * a) / (1 + X) \<longleftrightarrow> a = fps_const (a$0) * fps_binomial c"
       
  3938   (is "?lhs \<longleftrightarrow> ?rhs")
       
  3939 proof
       
  3940   let ?da = "fps_deriv a"
       
  3941   let ?x1 = "(1 + X):: 'a fps"
       
  3942   let ?l = "?x1 * ?da"
       
  3943   let ?r = "fps_const c * a"
       
  3944 
       
  3945   have eq: "?l = ?r \<longleftrightarrow> ?lhs"
       
  3946   proof -
       
  3947     have x10: "?x1 $ 0 \<noteq> 0" by simp
       
  3948     have "?l = ?r \<longleftrightarrow> inverse ?x1 * ?l = inverse ?x1 * ?r" by simp
       
  3949     also have "\<dots> \<longleftrightarrow> ?da = (fps_const c * a) / ?x1"
       
  3950       apply (simp only: fps_divide_def  mult.assoc[symmetric] inverse_mult_eq_1[OF x10])
       
  3951       apply (simp add: field_simps)
       
  3952       done
       
  3953     finally show ?thesis .
       
  3954   qed
       
  3955 
       
  3956   show ?rhs if ?lhs
       
  3957   proof -
       
  3958     from eq that have h: "?l = ?r" ..
       
  3959     have th0: "a$ Suc n = ((c - of_nat n) / of_nat (Suc n)) * a $n" for n
       
  3960     proof -
       
  3961       from h have "?l $ n = ?r $ n" by simp
       
  3962       then show ?thesis
       
  3963         apply (simp add: field_simps del: of_nat_Suc)
       
  3964         apply (cases n)
       
  3965         apply (simp_all add: field_simps del: of_nat_Suc)
       
  3966         done
       
  3967     qed
       
  3968     have th1: "a $ n = (c gchoose n) * a $ 0" for n
       
  3969     proof (induct n)
       
  3970       case 0
       
  3971       then show ?case by simp
       
  3972     next
       
  3973       case (Suc m)
       
  3974       then show ?case
       
  3975         unfolding th0
       
  3976         apply (simp add: field_simps del: of_nat_Suc)
       
  3977         unfolding mult.assoc[symmetric] gbinomial_mult_1
       
  3978         apply (simp add: field_simps)
       
  3979         done
       
  3980     qed
       
  3981     show ?thesis
       
  3982       apply (simp add: fps_eq_iff)
       
  3983       apply (subst th1)
       
  3984       apply (simp add: field_simps)
       
  3985       done
       
  3986   qed
       
  3987 
       
  3988   show ?lhs if ?rhs
       
  3989   proof -
       
  3990     have th00: "x * (a $ 0 * y) = a $ 0 * (x * y)" for x y
       
  3991       by (simp add: mult.commute)
       
  3992     have "?l = ?r"
       
  3993       apply (subst \<open>?rhs\<close>)
       
  3994       apply (subst (2) \<open>?rhs\<close>)
       
  3995       apply (clarsimp simp add: fps_eq_iff field_simps)
       
  3996       unfolding mult.assoc[symmetric] th00 gbinomial_mult_1
       
  3997       apply (simp add: field_simps gbinomial_mult_1)
       
  3998       done
       
  3999     with eq show ?thesis ..
       
  4000   qed
       
  4001 qed
       
  4002 
       
  4003 lemma fps_binomial_ODE_unique':
       
  4004   "(fps_deriv a = fps_const c * a / (1 + X) \<and> a $ 0 = 1) \<longleftrightarrow> (a = fps_binomial c)"
       
  4005   by (subst fps_binomial_ODE_unique) auto
       
  4006 
       
  4007 lemma fps_binomial_deriv: "fps_deriv (fps_binomial c) = fps_const c * fps_binomial c / (1 + X)"
       
  4008 proof -
       
  4009   let ?a = "fps_binomial c"
       
  4010   have th0: "?a = fps_const (?a$0) * ?a" by (simp)
       
  4011   from iffD2[OF fps_binomial_ODE_unique, OF th0] show ?thesis .
       
  4012 qed
       
  4013 
       
  4014 lemma fps_binomial_add_mult: "fps_binomial (c+d) = fps_binomial c * fps_binomial d" (is "?l = ?r")
       
  4015 proof -
       
  4016   let ?P = "?r - ?l"
       
  4017   let ?b = "fps_binomial"
       
  4018   let ?db = "\<lambda>x. fps_deriv (?b x)"
       
  4019   have "fps_deriv ?P = ?db c * ?b d + ?b c * ?db d - ?db (c + d)"  by simp
       
  4020   also have "\<dots> = inverse (1 + X) *
       
  4021       (fps_const c * ?b c * ?b d + fps_const d * ?b c * ?b d - fps_const (c+d) * ?b (c + d))"
       
  4022     unfolding fps_binomial_deriv
       
  4023     by (simp add: fps_divide_def field_simps)
       
  4024   also have "\<dots> = (fps_const (c + d)/ (1 + X)) * ?P"
       
  4025     by (simp add: field_simps fps_divide_unit fps_const_add[symmetric] del: fps_const_add)
       
  4026   finally have th0: "fps_deriv ?P = fps_const (c+d) * ?P / (1 + X)"
       
  4027     by (simp add: fps_divide_def)
       
  4028   have "?P = fps_const (?P$0) * ?b (c + d)"
       
  4029     unfolding fps_binomial_ODE_unique[symmetric]
       
  4030     using th0 by simp
       
  4031   then have "?P = 0" by (simp add: fps_mult_nth)
       
  4032   then show ?thesis by simp
       
  4033 qed
       
  4034 
       
  4035 lemma fps_binomial_minus_one: "fps_binomial (- 1) = inverse (1 + X)"
       
  4036   (is "?l = inverse ?r")
       
  4037 proof-
       
  4038   have th: "?r$0 \<noteq> 0" by simp
       
  4039   have th': "fps_deriv (inverse ?r) = fps_const (- 1) * inverse ?r / (1 + X)"
       
  4040     by (simp add: fps_inverse_deriv[OF th] fps_divide_def
       
  4041       power2_eq_square mult.commute fps_const_neg[symmetric] del: fps_const_neg)
       
  4042   have eq: "inverse ?r $ 0 = 1"
       
  4043     by (simp add: fps_inverse_def)
       
  4044   from iffD1[OF fps_binomial_ODE_unique[of "inverse (1 + X)" "- 1"] th'] eq
       
  4045   show ?thesis by (simp add: fps_inverse_def)
       
  4046 qed
       
  4047 
       
  4048 lemma fps_binomial_of_nat: "fps_binomial (of_nat n) = (1 + X :: 'a :: field_char_0 fps) ^ n"
       
  4049 proof (cases "n = 0")
       
  4050   case [simp]: True
       
  4051   have "fps_deriv ((1 + X) ^ n :: 'a fps) = 0" by simp
       
  4052   also have "\<dots> = fps_const (of_nat n) * (1 + X) ^ n / (1 + X)" by (simp add: fps_binomial_def)
       
  4053   finally show ?thesis by (subst sym, subst fps_binomial_ODE_unique' [symmetric]) simp_all
       
  4054 next
       
  4055   case False
       
  4056   have "fps_deriv ((1 + X) ^ n :: 'a fps) = fps_const (of_nat n) * (1 + X) ^ (n - 1)"
       
  4057     by (simp add: fps_deriv_power)
       
  4058   also have "(1 + X :: 'a fps) $ 0 \<noteq> 0" by simp
       
  4059   hence "(1 + X :: 'a fps) \<noteq> 0" by (intro notI) (simp only: , simp)
       
  4060   with False have "(1 + X :: 'a fps) ^ (n - 1) = (1 + X) ^ n / (1 + X)"
       
  4061     by (cases n) (simp_all )
       
  4062   also have "fps_const (of_nat n :: 'a) * ((1 + X) ^ n / (1 + X)) =
       
  4063                fps_const (of_nat n) * (1 + X) ^ n / (1 + X)"
       
  4064     by (simp add: unit_div_mult_swap)
       
  4065   finally show ?thesis
       
  4066     by (subst sym, subst fps_binomial_ODE_unique' [symmetric]) (simp_all add: fps_power_nth)
       
  4067 qed
       
  4068 
       
  4069 lemma fps_binomial_0 [simp]: "fps_binomial 0 = 1"
       
  4070   using fps_binomial_of_nat[of 0] by simp
       
  4071   
       
  4072 lemma fps_binomial_power: "fps_binomial a ^ n = fps_binomial (of_nat n * a)"
       
  4073   by (induction n) (simp_all add: fps_binomial_add_mult ring_distribs)
       
  4074 
       
  4075 lemma fps_binomial_1: "fps_binomial 1 = 1 + X"
       
  4076   using fps_binomial_of_nat[of 1] by simp
       
  4077 
       
  4078 lemma fps_binomial_minus_of_nat:
       
  4079   "fps_binomial (- of_nat n) = inverse ((1 + X :: 'a :: field_char_0 fps) ^ n)"
       
  4080   by (rule sym, rule fps_inverse_unique)
       
  4081      (simp add: fps_binomial_of_nat [symmetric] fps_binomial_add_mult [symmetric])
       
  4082 
       
  4083 lemma one_minus_const_X_power:
       
  4084   "c \<noteq> 0 \<Longrightarrow> (1 - fps_const c * X) ^ n =
       
  4085      fps_compose (fps_binomial (of_nat n)) (-fps_const c * X)"
       
  4086   by (subst fps_binomial_of_nat)
       
  4087      (simp add: fps_compose_power [symmetric] fps_compose_add_distrib fps_const_neg [symmetric] 
       
  4088            del: fps_const_neg)
       
  4089 
       
  4090 lemma one_minus_X_const_neg_power:
       
  4091   "inverse ((1 - fps_const c * X) ^ n) = 
       
  4092        fps_compose (fps_binomial (-of_nat n)) (-fps_const c * X)"
       
  4093 proof (cases "c = 0")
       
  4094   case False
       
  4095   thus ?thesis
       
  4096   by (subst fps_binomial_minus_of_nat)
       
  4097      (simp add: fps_compose_power [symmetric] fps_inverse_compose fps_compose_add_distrib
       
  4098                 fps_const_neg [symmetric] del: fps_const_neg)
       
  4099 qed simp
       
  4100 
       
  4101 lemma X_plus_const_power:
       
  4102   "c \<noteq> 0 \<Longrightarrow> (X + fps_const c) ^ n =
       
  4103      fps_const (c^n) * fps_compose (fps_binomial (of_nat n)) (fps_const (inverse c) * X)"
       
  4104   by (subst fps_binomial_of_nat)
       
  4105      (simp add: fps_compose_power [symmetric] fps_binomial_of_nat fps_compose_add_distrib
       
  4106                 fps_const_power [symmetric] power_mult_distrib [symmetric] 
       
  4107                 algebra_simps inverse_mult_eq_1' del: fps_const_power)
       
  4108 
       
  4109 lemma X_plus_const_neg_power:
       
  4110   "c \<noteq> 0 \<Longrightarrow> inverse ((X + fps_const c) ^ n) =
       
  4111      fps_const (inverse c^n) * fps_compose (fps_binomial (-of_nat n)) (fps_const (inverse c) * X)"
       
  4112   by (subst fps_binomial_minus_of_nat)
       
  4113      (simp add: fps_compose_power [symmetric] fps_binomial_of_nat fps_compose_add_distrib
       
  4114                 fps_const_power [symmetric] power_mult_distrib [symmetric] fps_inverse_compose 
       
  4115                 algebra_simps fps_const_inverse [symmetric] fps_inverse_mult [symmetric]
       
  4116                 fps_inverse_power [symmetric] inverse_mult_eq_1'
       
  4117            del: fps_const_power)
       
  4118 
       
  4119 
       
  4120 lemma one_minus_const_X_neg_power':
       
  4121   "n > 0 \<Longrightarrow> inverse ((1 - fps_const (c :: 'a :: field_char_0) * X) ^ n) =
       
  4122        Abs_fps (\<lambda>k. of_nat ((n + k - 1) choose k) * c^k)"
       
  4123   apply (rule fps_ext)
       
  4124   apply (subst one_minus_X_const_neg_power, subst fps_const_neg, subst fps_compose_linear)
       
  4125   apply (simp add: power_mult_distrib [symmetric] mult.assoc [symmetric] 
       
  4126                    gbinomial_minus binomial_gbinomial of_nat_diff)
       
  4127   done
       
  4128 
       
  4129 text \<open>Vandermonde's Identity as a consequence.\<close>
       
  4130 lemma gbinomial_Vandermonde:
       
  4131   "sum (\<lambda>k. (a gchoose k) * (b gchoose (n - k))) {0..n} = (a + b) gchoose n"
       
  4132 proof -
       
  4133   let ?ba = "fps_binomial a"
       
  4134   let ?bb = "fps_binomial b"
       
  4135   let ?bab = "fps_binomial (a + b)"
       
  4136   from fps_binomial_add_mult[of a b] have "?bab $ n = (?ba * ?bb)$n" by simp
       
  4137   then show ?thesis by (simp add: fps_mult_nth)
       
  4138 qed
       
  4139 
       
  4140 lemma binomial_Vandermonde:
       
  4141   "sum (\<lambda>k. (a choose k) * (b choose (n - k))) {0..n} = (a + b) choose n"
       
  4142   using gbinomial_Vandermonde[of "(of_nat a)" "of_nat b" n]
       
  4143   by (simp only: binomial_gbinomial[symmetric] of_nat_mult[symmetric]
       
  4144                  of_nat_sum[symmetric] of_nat_add[symmetric] of_nat_eq_iff)
       
  4145 
       
  4146 lemma binomial_Vandermonde_same: "sum (\<lambda>k. (n choose k)\<^sup>2) {0..n} = (2 * n) choose n"
       
  4147   using binomial_Vandermonde[of n n n, symmetric]
       
  4148   unfolding mult_2
       
  4149   apply (simp add: power2_eq_square)
       
  4150   apply (rule sum.cong)
       
  4151   apply (auto intro:  binomial_symmetric)
       
  4152   done
       
  4153 
       
  4154 lemma Vandermonde_pochhammer_lemma:
       
  4155   fixes a :: "'a::field_char_0"
       
  4156   assumes b: "\<forall>j\<in>{0 ..<n}. b \<noteq> of_nat j"
       
  4157   shows "sum (\<lambda>k. (pochhammer (- a) k * pochhammer (- (of_nat n)) k) /
       
  4158       (of_nat (fact k) * pochhammer (b - of_nat n + 1) k)) {0..n} =
       
  4159     pochhammer (- (a + b)) n / pochhammer (- b) n"
       
  4160   (is "?l = ?r")
       
  4161 proof -
       
  4162   let ?m1 = "\<lambda>m. (- 1 :: 'a) ^ m"
       
  4163   let ?f = "\<lambda>m. of_nat (fact m)"
       
  4164   let ?p = "\<lambda>(x::'a). pochhammer (- x)"
       
  4165   from b have bn0: "?p b n \<noteq> 0"
       
  4166     unfolding pochhammer_eq_0_iff by simp
       
  4167   have th00:
       
  4168     "b gchoose (n - k) =
       
  4169         (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)"
       
  4170       (is ?gchoose)
       
  4171     "pochhammer (1 + b - of_nat n) k \<noteq> 0"
       
  4172       (is ?pochhammer)
       
  4173     if kn: "k \<in> {0..n}" for k
       
  4174   proof -
       
  4175     from kn have "k \<le> n" by simp
       
  4176     have nz: "pochhammer (1 + b - of_nat n) n \<noteq> 0"
       
  4177     proof
       
  4178       assume "pochhammer (1 + b - of_nat n) n = 0"
       
  4179       then have c: "pochhammer (b - of_nat n + 1) n = 0"
       
  4180         by (simp add: algebra_simps)
       
  4181       then obtain j where j: "j < n" "b - of_nat n + 1 = - of_nat j"
       
  4182         unfolding pochhammer_eq_0_iff by blast
       
  4183       from j have "b = of_nat n - of_nat j - of_nat 1"
       
  4184         by (simp add: algebra_simps)
       
  4185       then have "b = of_nat (n - j - 1)"
       
  4186         using j kn by (simp add: of_nat_diff)
       
  4187       with b show False using j by auto
       
  4188     qed
       
  4189 
       
  4190     from nz kn [simplified] have nz': "pochhammer (1 + b - of_nat n) k \<noteq> 0"
       
  4191       by (rule pochhammer_neq_0_mono)
       
  4192 
       
  4193     consider "k = 0 \<or> n = 0" | "k \<noteq> 0" "n \<noteq> 0"
       
  4194       by blast
       
  4195     then have "b gchoose (n - k) =
       
  4196       (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)"
       
  4197     proof cases
       
  4198       case 1
       
  4199       then show ?thesis
       
  4200         using kn by (cases "k = 0") (simp_all add: gbinomial_pochhammer)
       
  4201     next
       
  4202       case neq: 2
       
  4203       then obtain m where m: "n = Suc m"
       
  4204         by (cases n) auto
       
  4205       from neq(1) obtain h where h: "k = Suc h"
       
  4206         by (cases k) auto
       
  4207       show ?thesis
       
  4208       proof (cases "k = n")
       
  4209         case True
       
  4210         then show ?thesis
       
  4211           using pochhammer_minus'[where k=k and b=b]
       
  4212           apply (simp add: pochhammer_same)
       
  4213           using bn0
       
  4214           apply (simp add: field_simps power_add[symmetric])
       
  4215           done
       
  4216       next
       
  4217         case False
       
  4218         with kn have kn': "k < n"
       
  4219           by simp
       
  4220         have m1nk: "?m1 n = prod (\<lambda>i. - 1) {..m}" "?m1 k = prod (\<lambda>i. - 1) {0..h}"
       
  4221           by (simp_all add: prod_constant m h)
       
  4222         have bnz0: "pochhammer (b - of_nat n + 1) k \<noteq> 0"
       
  4223           using bn0 kn
       
  4224           unfolding pochhammer_eq_0_iff
       
  4225           apply auto
       
  4226           apply (erule_tac x= "n - ka - 1" in allE)
       
  4227           apply (auto simp add: algebra_simps of_nat_diff)
       
  4228           done
       
  4229         have eq1: "prod (\<lambda>k. (1::'a) + of_nat m - of_nat k) {..h} =
       
  4230           prod of_nat {Suc (m - h) .. Suc m}"
       
  4231           using kn' h m
       
  4232           by (intro prod.reindex_bij_witness[where i="\<lambda>k. Suc m - k" and j="\<lambda>k. Suc m - k"])
       
  4233              (auto simp: of_nat_diff)
       
  4234         have th1: "(?m1 k * ?p (of_nat n) k) / ?f n = 1 / of_nat(fact (n - k))"
       
  4235           apply (simp add: pochhammer_minus field_simps)
       
  4236           using \<open>k \<le> n\<close> apply (simp add: fact_split [of k n])
       
  4237           apply (simp add: pochhammer_prod)
       
  4238           using prod.atLeast_lessThan_shift_bounds [where ?'a = 'a, of "\<lambda>i. 1 + of_nat i" 0 "n - k" k]
       
  4239           apply (auto simp add: of_nat_diff field_simps)
       
  4240           done
       
  4241         have th20: "?m1 n * ?p b n = prod (\<lambda>i. b - of_nat i) {0..m}"
       
  4242           apply (simp add: pochhammer_minus field_simps m)
       
  4243           apply (auto simp add: pochhammer_prod_rev of_nat_diff prod.atLeast_Suc_atMost_Suc_shift)
       
  4244           done
       
  4245         have th21:"pochhammer (b - of_nat n + 1) k = prod (\<lambda>i. b - of_nat i) {n - k .. n - 1}"
       
  4246           using kn apply (simp add: pochhammer_prod_rev m h prod.atLeast_Suc_atMost_Suc_shift)
       
  4247           using prod.atLeast_atMost_shift_0 [of "m - h" m, where ?'a = 'a]
       
  4248           apply (auto simp add: of_nat_diff field_simps)
       
  4249           done
       
  4250         have "?m1 n * ?p b n =
       
  4251           prod (\<lambda>i. b - of_nat i) {0.. n - k - 1} * pochhammer (b - of_nat n + 1) k"
       
  4252           using kn' m h unfolding th20 th21 apply simp
       
  4253           apply (subst prod.union_disjoint [symmetric])
       
  4254           apply auto
       
  4255           apply (rule prod.cong)
       
  4256           apply auto
       
  4257           done
       
  4258         then have th2: "(?m1 n * ?p b n)/pochhammer (b - of_nat n + 1) k =
       
  4259           prod (\<lambda>i. b - of_nat i) {0.. n - k - 1}"
       
  4260           using nz' by (simp add: field_simps)
       
  4261         have "(?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k) =
       
  4262           ((?m1 k * ?p (of_nat n) k) / ?f n) * ((?m1 n * ?p b n)/pochhammer (b - of_nat n + 1) k)"
       
  4263           using bnz0
       
  4264           by (simp add: field_simps)
       
  4265         also have "\<dots> = b gchoose (n - k)"
       
  4266           unfolding th1 th2
       
  4267           using kn' m h
       
  4268           apply (simp add: field_simps gbinomial_mult_fact)
       
  4269           apply (rule prod.cong)
       
  4270           apply auto
       
  4271           done
       
  4272         finally show ?thesis by simp
       
  4273       qed
       
  4274     qed
       
  4275     then show ?gchoose and ?pochhammer
       
  4276       apply (cases "n = 0")
       
  4277       using nz'
       
  4278       apply auto
       
  4279       done
       
  4280   qed
       
  4281   have "?r = ((a + b) gchoose n) * (of_nat (fact n) / (?m1 n * pochhammer (- b) n))"
       
  4282     unfolding gbinomial_pochhammer
       
  4283     using bn0 by (auto simp add: field_simps)
       
  4284   also have "\<dots> = ?l"
       
  4285     unfolding gbinomial_Vandermonde[symmetric]
       
  4286     apply (simp add: th00)
       
  4287     unfolding gbinomial_pochhammer
       
  4288     using bn0
       
  4289     apply (simp add: sum_distrib_right sum_distrib_left field_simps)
       
  4290     done
       
  4291   finally show ?thesis by simp
       
  4292 qed
       
  4293 
       
  4294 lemma Vandermonde_pochhammer:
       
  4295   fixes a :: "'a::field_char_0"
       
  4296   assumes c: "\<forall>i \<in> {0..< n}. c \<noteq> - of_nat i"
       
  4297   shows "sum (\<lambda>k. (pochhammer a k * pochhammer (- (of_nat n)) k) /
       
  4298     (of_nat (fact k) * pochhammer c k)) {0..n} = pochhammer (c - a) n / pochhammer c n"
       
  4299 proof -
       
  4300   let ?a = "- a"
       
  4301   let ?b = "c + of_nat n - 1"
       
  4302   have h: "\<forall> j \<in>{0..< n}. ?b \<noteq> of_nat j"
       
  4303     using c
       
  4304     apply (auto simp add: algebra_simps of_nat_diff)
       
  4305     apply (erule_tac x = "n - j - 1" in ballE)
       
  4306     apply (auto simp add: of_nat_diff algebra_simps)
       
  4307     done
       
  4308   have th0: "pochhammer (- (?a + ?b)) n = (- 1)^n * pochhammer (c - a) n"
       
  4309     unfolding pochhammer_minus
       
  4310     by (simp add: algebra_simps)
       
  4311   have th1: "pochhammer (- ?b) n = (- 1)^n * pochhammer c n"
       
  4312     unfolding pochhammer_minus
       
  4313     by simp
       
  4314   have nz: "pochhammer c n \<noteq> 0" using c
       
  4315     by (simp add: pochhammer_eq_0_iff)
       
  4316   from Vandermonde_pochhammer_lemma[where a = "?a" and b="?b" and n=n, OF h, unfolded th0 th1]
       
  4317   show ?thesis
       
  4318     using nz by (simp add: field_simps sum_distrib_left)
       
  4319 qed
       
  4320 
       
  4321 
       
  4322 subsubsection \<open>Formal trigonometric functions\<close>
       
  4323 
       
  4324 definition "fps_sin (c::'a::field_char_0) =
       
  4325   Abs_fps (\<lambda>n. if even n then 0 else (- 1) ^((n - 1) div 2) * c^n /(of_nat (fact n)))"
       
  4326 
       
  4327 definition "fps_cos (c::'a::field_char_0) =
       
  4328   Abs_fps (\<lambda>n. if even n then (- 1) ^ (n div 2) * c^n / (of_nat (fact n)) else 0)"
       
  4329 
       
  4330 lemma fps_sin_deriv:
       
  4331   "fps_deriv (fps_sin c) = fps_const c * fps_cos c"
       
  4332   (is "?lhs = ?rhs")
       
  4333 proof (rule fps_ext)
       
  4334   fix n :: nat
       
  4335   show "?lhs $ n = ?rhs $ n"
       
  4336   proof (cases "even n")
       
  4337     case True
       
  4338     have "?lhs$n = of_nat (n+1) * (fps_sin c $ (n+1))" by simp
       
  4339     also have "\<dots> = of_nat (n+1) * ((- 1)^(n div 2) * c^Suc n / of_nat (fact (Suc n)))"
       
  4340       using True by (simp add: fps_sin_def)
       
  4341     also have "\<dots> = (- 1)^(n div 2) * c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))"
       
  4342       unfolding fact_Suc of_nat_mult
       
  4343       by (simp add: field_simps del: of_nat_add of_nat_Suc)
       
  4344     also have "\<dots> = (- 1)^(n div 2) *c^Suc n / of_nat (fact n)"
       
  4345       by (simp add: field_simps del: of_nat_add of_nat_Suc)
       
  4346     finally show ?thesis
       
  4347       using True by (simp add: fps_cos_def field_simps)
       
  4348   next
       
  4349     case False
       
  4350     then show ?thesis
       
  4351       by (simp_all add: fps_deriv_def fps_sin_def fps_cos_def)
       
  4352   qed
       
  4353 qed
       
  4354 
       
  4355 lemma fps_cos_deriv: "fps_deriv (fps_cos c) = fps_const (- c)* (fps_sin c)"
       
  4356   (is "?lhs = ?rhs")
       
  4357 proof (rule fps_ext)
       
  4358   have th0: "- ((- 1::'a) ^ n) = (- 1)^Suc n" for n
       
  4359     by simp
       
  4360   show "?lhs $ n = ?rhs $ n" for n
       
  4361   proof (cases "even n")
       
  4362     case False
       
  4363     then have n0: "n \<noteq> 0" by presburger
       
  4364     from False have th1: "Suc ((n - 1) div 2) = Suc n div 2"
       
  4365       by (cases n) simp_all
       
  4366     have "?lhs$n = of_nat (n+1) * (fps_cos c $ (n+1))" by simp
       
  4367     also have "\<dots> = of_nat (n+1) * ((- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact (Suc n)))"
       
  4368       using False by (simp add: fps_cos_def)
       
  4369     also have "\<dots> = (- 1)^((n + 1) div 2)*c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))"
       
  4370       unfolding fact_Suc of_nat_mult
       
  4371       by (simp add: field_simps del: of_nat_add of_nat_Suc)
       
  4372     also have "\<dots> = (- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact n)"
       
  4373       by (simp add: field_simps del: of_nat_add of_nat_Suc)
       
  4374     also have "\<dots> = (- ((- 1)^((n - 1) div 2))) * c^Suc n / of_nat (fact n)"
       
  4375       unfolding th0 unfolding th1 by simp
       
  4376     finally show ?thesis
       
  4377       using False by (simp add: fps_sin_def field_simps)
       
  4378   next
       
  4379     case True
       
  4380     then show ?thesis
       
  4381       by (simp_all add: fps_deriv_def fps_sin_def fps_cos_def)
       
  4382   qed
       
  4383 qed
       
  4384 
       
  4385 lemma fps_sin_cos_sum_of_squares: "(fps_cos c)\<^sup>2 + (fps_sin c)\<^sup>2 = 1"
       
  4386   (is "?lhs = _")
       
  4387 proof -
       
  4388   have "fps_deriv ?lhs = 0"
       
  4389     apply (simp add:  fps_deriv_power fps_sin_deriv fps_cos_deriv)
       
  4390     apply (simp add: field_simps fps_const_neg[symmetric] del: fps_const_neg)
       
  4391     done
       
  4392   then have "?lhs = fps_const (?lhs $ 0)"
       
  4393     unfolding fps_deriv_eq_0_iff .
       
  4394   also have "\<dots> = 1"
       
  4395     by (auto simp add: fps_eq_iff numeral_2_eq_2 fps_mult_nth fps_cos_def fps_sin_def)
       
  4396   finally show ?thesis .
       
  4397 qed
       
  4398 
       
  4399 lemma fps_sin_nth_0 [simp]: "fps_sin c $ 0 = 0"
       
  4400   unfolding fps_sin_def by simp
       
  4401 
       
  4402 lemma fps_sin_nth_1 [simp]: "fps_sin c $ 1 = c"
       
  4403   unfolding fps_sin_def by simp
       
  4404 
       
  4405 lemma fps_sin_nth_add_2:
       
  4406     "fps_sin c $ (n + 2) = - (c * c * fps_sin c $ n / (of_nat (n + 1) * of_nat (n + 2)))"
       
  4407   unfolding fps_sin_def
       
  4408   apply (cases n)
       
  4409   apply simp
       
  4410   apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq del: of_nat_Suc fact_Suc)
       
  4411   apply simp
       
  4412   done
       
  4413 
       
  4414 lemma fps_cos_nth_0 [simp]: "fps_cos c $ 0 = 1"
       
  4415   unfolding fps_cos_def by simp
       
  4416 
       
  4417 lemma fps_cos_nth_1 [simp]: "fps_cos c $ 1 = 0"
       
  4418   unfolding fps_cos_def by simp
       
  4419 
       
  4420 lemma fps_cos_nth_add_2:
       
  4421   "fps_cos c $ (n + 2) = - (c * c * fps_cos c $ n / (of_nat (n + 1) * of_nat (n + 2)))"
       
  4422   unfolding fps_cos_def
       
  4423   apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq del: of_nat_Suc fact_Suc)
       
  4424   apply simp
       
  4425   done
       
  4426 
       
  4427 lemma nat_induct2: "P 0 \<Longrightarrow> P 1 \<Longrightarrow> (\<And>n. P n \<Longrightarrow> P (n + 2)) \<Longrightarrow> P (n::nat)"
       
  4428   unfolding One_nat_def numeral_2_eq_2
       
  4429   apply (induct n rule: nat_less_induct)
       
  4430   apply (case_tac n)
       
  4431   apply simp
       
  4432   apply (rename_tac m)
       
  4433   apply (case_tac m)
       
  4434   apply simp
       
  4435   apply (rename_tac k)
       
  4436   apply (case_tac k)
       
  4437   apply simp_all
       
  4438   done
       
  4439 
       
  4440 lemma nat_add_1_add_1: "(n::nat) + 1 + 1 = n + 2"
       
  4441   by simp
       
  4442 
       
  4443 lemma eq_fps_sin:
       
  4444   assumes 0: "a $ 0 = 0"
       
  4445     and 1: "a $ 1 = c"
       
  4446     and 2: "fps_deriv (fps_deriv a) = - (fps_const c * fps_const c * a)"
       
  4447   shows "a = fps_sin c"
       
  4448   apply (rule fps_ext)
       
  4449   apply (induct_tac n rule: nat_induct2)
       
  4450   apply (simp add: 0)
       
  4451   apply (simp add: 1 del: One_nat_def)
       
  4452   apply (rename_tac m, cut_tac f="\<lambda>a. a $ m" in arg_cong [OF 2])
       
  4453   apply (simp add: nat_add_1_add_1 fps_sin_nth_add_2
       
  4454               del: One_nat_def of_nat_Suc of_nat_add add_2_eq_Suc')
       
  4455   apply (subst minus_divide_left)
       
  4456   apply (subst nonzero_eq_divide_eq)
       
  4457   apply (simp del: of_nat_add of_nat_Suc)
       
  4458   apply (simp only: ac_simps)
       
  4459   done
       
  4460 
       
  4461 lemma eq_fps_cos:
       
  4462   assumes 0: "a $ 0 = 1"
       
  4463     and 1: "a $ 1 = 0"
       
  4464     and 2: "fps_deriv (fps_deriv a) = - (fps_const c * fps_const c * a)"
       
  4465   shows "a = fps_cos c"
       
  4466   apply (rule fps_ext)
       
  4467   apply (induct_tac n rule: nat_induct2)
       
  4468   apply (simp add: 0)
       
  4469   apply (simp add: 1 del: One_nat_def)
       
  4470   apply (rename_tac m, cut_tac f="\<lambda>a. a $ m" in arg_cong [OF 2])
       
  4471   apply (simp add: nat_add_1_add_1 fps_cos_nth_add_2
       
  4472               del: One_nat_def of_nat_Suc of_nat_add add_2_eq_Suc')
       
  4473   apply (subst minus_divide_left)
       
  4474   apply (subst nonzero_eq_divide_eq)
       
  4475   apply (simp del: of_nat_add of_nat_Suc)
       
  4476   apply (simp only: ac_simps)
       
  4477   done
       
  4478 
       
  4479 lemma mult_nth_0 [simp]: "(a * b) $ 0 = a $ 0 * b $ 0"
       
  4480   by (simp add: fps_mult_nth)
       
  4481 
       
  4482 lemma mult_nth_1 [simp]: "(a * b) $ 1 = a $ 0 * b $ 1 + a $ 1 * b $ 0"
       
  4483   by (simp add: fps_mult_nth)
       
  4484 
       
  4485 lemma fps_sin_add: "fps_sin (a + b) = fps_sin a * fps_cos b + fps_cos a * fps_sin b"
       
  4486   apply (rule eq_fps_sin [symmetric], simp, simp del: One_nat_def)
       
  4487   apply (simp del: fps_const_neg fps_const_add fps_const_mult
       
  4488               add: fps_const_add [symmetric] fps_const_neg [symmetric]
       
  4489                    fps_sin_deriv fps_cos_deriv algebra_simps)
       
  4490   done
       
  4491 
       
  4492 lemma fps_cos_add: "fps_cos (a + b) = fps_cos a * fps_cos b - fps_sin a * fps_sin b"
       
  4493   apply (rule eq_fps_cos [symmetric], simp, simp del: One_nat_def)
       
  4494   apply (simp del: fps_const_neg fps_const_add fps_const_mult
       
  4495               add: fps_const_add [symmetric] fps_const_neg [symmetric]
       
  4496                    fps_sin_deriv fps_cos_deriv algebra_simps)
       
  4497   done
       
  4498 
       
  4499 lemma fps_sin_even: "fps_sin (- c) = - fps_sin c"
       
  4500   by (auto simp add: fps_eq_iff fps_sin_def)
       
  4501 
       
  4502 lemma fps_cos_odd: "fps_cos (- c) = fps_cos c"
       
  4503   by (auto simp add: fps_eq_iff fps_cos_def)
       
  4504 
       
  4505 definition "fps_tan c = fps_sin c / fps_cos c"
       
  4506 
       
  4507 lemma fps_tan_deriv: "fps_deriv (fps_tan c) = fps_const c / (fps_cos c)\<^sup>2"
       
  4508 proof -
       
  4509   have th0: "fps_cos c $ 0 \<noteq> 0" by (simp add: fps_cos_def)
       
  4510   from this have "fps_cos c \<noteq> 0" by (intro notI) simp
       
  4511   hence "fps_deriv (fps_tan c) =
       
  4512            fps_const c * (fps_cos c^2 + fps_sin c^2) / (fps_cos c^2)"
       
  4513     by (simp add: fps_tan_def fps_divide_deriv power2_eq_square algebra_simps
       
  4514                   fps_sin_deriv fps_cos_deriv fps_const_neg[symmetric] div_mult_swap
       
  4515              del: fps_const_neg)
       
  4516   also note fps_sin_cos_sum_of_squares
       
  4517   finally show ?thesis by simp
       
  4518 qed
       
  4519 
       
  4520 text \<open>Connection to @{const "fps_exp"} over the complex numbers --- Euler and de Moivre.\<close>
       
  4521 
       
  4522 lemma fps_exp_ii_sin_cos: "fps_exp (\<i> * c) = fps_cos c + fps_const \<i> * fps_sin c"
       
  4523   (is "?l = ?r")
       
  4524 proof -
       
  4525   have "?l $ n = ?r $ n" for n
       
  4526   proof (cases "even n")
       
  4527     case True
       
  4528     then obtain m where m: "n = 2 * m" ..
       
  4529     show ?thesis
       
  4530       by (simp add: m fps_sin_def fps_cos_def power_mult_distrib power_mult power_minus [of "c ^ 2"])
       
  4531   next
       
  4532     case False
       
  4533     then obtain m where m: "n = 2 * m + 1" ..
       
  4534     show ?thesis
       
  4535       by (simp add: m fps_sin_def fps_cos_def power_mult_distrib
       
  4536         power_mult power_minus [of "c ^ 2"])
       
  4537   qed
       
  4538   then show ?thesis
       
  4539     by (simp add: fps_eq_iff)
       
  4540 qed
       
  4541 
       
  4542 lemma fps_exp_minus_ii_sin_cos: "fps_exp (- (\<i> * c)) = fps_cos c - fps_const \<i> * fps_sin c"
       
  4543   unfolding minus_mult_right fps_exp_ii_sin_cos by (simp add: fps_sin_even fps_cos_odd)
       
  4544 
       
  4545 lemma fps_const_minus: "fps_const (c::'a::group_add) - fps_const d = fps_const (c - d)"
       
  4546   by (fact fps_const_sub)
       
  4547 
       
  4548 lemma fps_of_int: "fps_const (of_int c) = of_int c"
       
  4549   by (induction c) (simp_all add: fps_const_minus [symmetric] fps_of_nat fps_const_neg [symmetric] 
       
  4550                              del: fps_const_minus fps_const_neg)
       
  4551 
       
  4552 lemma fps_deriv_of_int [simp]: "fps_deriv (of_int n) = 0"
       
  4553   by (simp add: fps_of_int [symmetric])
       
  4554 
       
  4555 lemma fps_numeral_fps_const: "numeral i = fps_const (numeral i :: 'a::comm_ring_1)"
       
  4556   by (fact numeral_fps_const) (* FIXME: duplicate *)
       
  4557 
       
  4558 lemma fps_cos_fps_exp_ii: "fps_cos c = (fps_exp (\<i> * c) + fps_exp (- \<i> * c)) / fps_const 2"
       
  4559 proof -
       
  4560   have th: "fps_cos c + fps_cos c = fps_cos c * fps_const 2"
       
  4561     by (simp add: numeral_fps_const)
       
  4562   show ?thesis
       
  4563     unfolding fps_exp_ii_sin_cos minus_mult_commute
       
  4564     by (simp add: fps_sin_even fps_cos_odd numeral_fps_const fps_divide_unit fps_const_inverse th)
       
  4565 qed
       
  4566 
       
  4567 lemma fps_sin_fps_exp_ii: "fps_sin c = (fps_exp (\<i> * c) - fps_exp (- \<i> * c)) / fps_const (2*\<i>)"
       
  4568 proof -
       
  4569   have th: "fps_const \<i> * fps_sin c + fps_const \<i> * fps_sin c = fps_sin c * fps_const (2 * \<i>)"
       
  4570     by (simp add: fps_eq_iff numeral_fps_const)
       
  4571   show ?thesis
       
  4572     unfolding fps_exp_ii_sin_cos minus_mult_commute
       
  4573     by (simp add: fps_sin_even fps_cos_odd fps_divide_unit fps_const_inverse th)
       
  4574 qed
       
  4575 
       
  4576 lemma fps_tan_fps_exp_ii:
       
  4577   "fps_tan c = (fps_exp (\<i> * c) - fps_exp (- \<i> * c)) / 
       
  4578       (fps_const \<i> * (fps_exp (\<i> * c) + fps_exp (- \<i> * c)))"
       
  4579   unfolding fps_tan_def fps_sin_fps_exp_ii fps_cos_fps_exp_ii mult_minus_left fps_exp_neg
       
  4580   apply (simp add: fps_divide_unit fps_inverse_mult fps_const_mult[symmetric] fps_const_inverse del: fps_const_mult)
       
  4581   apply simp
       
  4582   done
       
  4583 
       
  4584 lemma fps_demoivre:
       
  4585   "(fps_cos a + fps_const \<i> * fps_sin a)^n =
       
  4586     fps_cos (of_nat n * a) + fps_const \<i> * fps_sin (of_nat n * a)"
       
  4587   unfolding fps_exp_ii_sin_cos[symmetric] fps_exp_power_mult
       
  4588   by (simp add: ac_simps)
       
  4589 
       
  4590 
       
  4591 subsection \<open>Hypergeometric series\<close>
       
  4592 
       
  4593 definition "fps_hypergeo as bs (c::'a::{field_char_0,field}) =
       
  4594   Abs_fps (\<lambda>n. (foldl (\<lambda>r a. r* pochhammer a n) 1 as * c^n) /
       
  4595     (foldl (\<lambda>r b. r * pochhammer b n) 1 bs * of_nat (fact n)))"
       
  4596 
       
  4597 lemma fps_hypergeo_nth[simp]: "fps_hypergeo as bs c $ n =
       
  4598   (foldl (\<lambda>r a. r* pochhammer a n) 1 as * c^n) /
       
  4599     (foldl (\<lambda>r b. r * pochhammer b n) 1 bs * of_nat (fact n))"
       
  4600   by (simp add: fps_hypergeo_def)
       
  4601 
       
  4602 lemma foldl_mult_start:
       
  4603   fixes v :: "'a::comm_ring_1"
       
  4604   shows "foldl (\<lambda>r x. r * f x) v as * x = foldl (\<lambda>r x. r * f x) (v * x) as "
       
  4605   by (induct as arbitrary: x v) (auto simp add: algebra_simps)
       
  4606 
       
  4607 lemma foldr_mult_foldl:
       
  4608   fixes v :: "'a::comm_ring_1"
       
  4609   shows "foldr (\<lambda>x r. r * f x) as v = foldl (\<lambda>r x. r * f x) v as"
       
  4610   by (induct as arbitrary: v) (auto simp add: foldl_mult_start)
       
  4611 
       
  4612 lemma fps_hypergeo_nth_alt:
       
  4613   "fps_hypergeo as bs c $ n = foldr (\<lambda>a r. r * pochhammer a n) as (c ^ n) /
       
  4614     foldr (\<lambda>b r. r * pochhammer b n) bs (of_nat (fact n))"
       
  4615   by (simp add: foldl_mult_start foldr_mult_foldl)
       
  4616 
       
  4617 lemma fps_hypergeo_fps_exp[simp]: "fps_hypergeo [] [] c = fps_exp c"
       
  4618   by (simp add: fps_eq_iff)
       
  4619 
       
  4620 lemma fps_hypergeo_1_0[simp]: "fps_hypergeo [1] [] c = 1/(1 - fps_const c * X)"
       
  4621 proof -
       
  4622   let ?a = "(Abs_fps (\<lambda>n. 1)) oo (fps_const c * X)"
       
  4623   have th0: "(fps_const c * X) $ 0 = 0" by simp
       
  4624   show ?thesis unfolding gp[OF th0, symmetric]
       
  4625     by (auto simp add: fps_eq_iff pochhammer_fact[symmetric]
       
  4626       fps_compose_nth power_mult_distrib cond_value_iff sum.delta' cong del: if_weak_cong)
       
  4627 qed
       
  4628 
       
  4629 lemma fps_hypergeo_B[simp]: "fps_hypergeo [-a] [] (- 1) = fps_binomial a"
       
  4630   by (simp add: fps_eq_iff gbinomial_pochhammer algebra_simps)
       
  4631 
       
  4632 lemma fps_hypergeo_0[simp]: "fps_hypergeo as bs c $ 0 = 1"
       
  4633   apply simp
       
  4634   apply (subgoal_tac "\<forall>as. foldl (\<lambda>(r::'a) (a::'a). r) 1 as = 1")
       
  4635   apply auto
       
  4636   apply (induct_tac as)
       
  4637   apply auto
       
  4638   done
       
  4639 
       
  4640 lemma foldl_prod_prod:
       
  4641   "foldl (\<lambda>(r::'b::comm_ring_1) (x::'a::comm_ring_1). r * f x) v as * foldl (\<lambda>r x. r * g x) w as =
       
  4642     foldl (\<lambda>r x. r * f x * g x) (v * w) as"
       
  4643   by (induct as arbitrary: v w) (auto simp add: algebra_simps)
       
  4644 
       
  4645 
       
  4646 lemma fps_hypergeo_rec:
       
  4647   "fps_hypergeo as bs c $ Suc n = ((foldl (\<lambda>r a. r* (a + of_nat n)) c as) /
       
  4648     (foldl (\<lambda>r b. r * (b + of_nat n)) (of_nat (Suc n)) bs )) * fps_hypergeo as bs c $ n"
       
  4649   apply (simp del: of_nat_Suc of_nat_add fact_Suc)
       
  4650   apply (simp add: foldl_mult_start del: fact_Suc of_nat_Suc)
       
  4651   unfolding foldl_prod_prod[unfolded foldl_mult_start] pochhammer_Suc
       
  4652   apply (simp add: algebra_simps)
       
  4653   done
       
  4654 
       
  4655 lemma XD_nth[simp]: "XD a $ n = (if n = 0 then 0 else of_nat n * a$n)"
       
  4656   by (simp add: XD_def)
       
  4657 
       
  4658 lemma XD_0th[simp]: "XD a $ 0 = 0"
       
  4659   by simp
       
  4660 lemma XD_Suc[simp]:" XD a $ Suc n = of_nat (Suc n) * a $ Suc n"
       
  4661   by simp
       
  4662 
       
  4663 definition "XDp c a = XD a + fps_const c * a"
       
  4664 
       
  4665 lemma XDp_nth[simp]: "XDp c a $ n = (c + of_nat n) * a$n"
       
  4666   by (simp add: XDp_def algebra_simps)
       
  4667 
       
  4668 lemma XDp_commute: "XDp b \<circ> XDp (c::'a::comm_ring_1) = XDp c \<circ> XDp b"
       
  4669   by (auto simp add: XDp_def fun_eq_iff fps_eq_iff algebra_simps)
       
  4670 
       
  4671 lemma XDp0 [simp]: "XDp 0 = XD"
       
  4672   by (simp add: fun_eq_iff fps_eq_iff)
       
  4673 
       
  4674 lemma XDp_fps_integral [simp]: "XDp 0 (fps_integral a c) = X * a"
       
  4675   by (simp add: fps_eq_iff fps_integral_def)
       
  4676 
       
  4677 lemma fps_hypergeo_minus_nat:
       
  4678   "fps_hypergeo [- of_nat n] [- of_nat (n + m)] (c::'a::{field_char_0,field}) $ k =
       
  4679     (if k \<le> n then
       
  4680       pochhammer (- of_nat n) k * c ^ k / (pochhammer (- of_nat (n + m)) k * of_nat (fact k))
       
  4681      else 0)"
       
  4682   "fps_hypergeo [- of_nat m] [- of_nat (m + n)] (c::'a::{field_char_0,field}) $ k =
       
  4683     (if k \<le> m then
       
  4684       pochhammer (- of_nat m) k * c ^ k / (pochhammer (- of_nat (m + n)) k * of_nat (fact k))
       
  4685      else 0)"
       
  4686   by (auto simp add: pochhammer_eq_0_iff)
       
  4687 
       
  4688 lemma sum_eq_if: "sum f {(n::nat) .. m} = (if m < n then 0 else f n + sum f {n+1 .. m})"
       
  4689   apply simp
       
  4690   apply (subst sum.insert[symmetric])
       
  4691   apply (auto simp add: not_less sum_head_Suc)
       
  4692   done
       
  4693 
       
  4694 lemma pochhammer_rec_if: "pochhammer a n = (if n = 0 then 1 else a * pochhammer (a + 1) (n - 1))"
       
  4695   by (cases n) (simp_all add: pochhammer_rec)
       
  4696 
       
  4697 lemma XDp_foldr_nth [simp]: "foldr (\<lambda>c r. XDp c \<circ> r) cs (\<lambda>c. XDp c a) c0 $ n =
       
  4698     foldr (\<lambda>c r. (c + of_nat n) * r) cs (c0 + of_nat n) * a$n"
       
  4699   by (induct cs arbitrary: c0) (auto simp add: algebra_simps)
       
  4700 
       
  4701 lemma genric_XDp_foldr_nth:
       
  4702   assumes f: "\<forall>n c a. f c a $ n = (of_nat n + k c) * a$n"
       
  4703   shows "foldr (\<lambda>c r. f c \<circ> r) cs (\<lambda>c. g c a) c0 $ n =
       
  4704     foldr (\<lambda>c r. (k c + of_nat n) * r) cs (g c0 a $ n)"
       
  4705   by (induct cs arbitrary: c0) (auto simp add: algebra_simps f)
       
  4706 
       
  4707 lemma dist_less_imp_nth_equal:
       
  4708   assumes "dist f g < inverse (2 ^ i)"
       
  4709     and"j \<le> i"
       
  4710   shows "f $ j = g $ j"
       
  4711 proof (rule ccontr)
       
  4712   assume "f $ j \<noteq> g $ j"
       
  4713   hence "f \<noteq> g" by auto
       
  4714   with assms have "i < subdegree (f - g)"
       
  4715     by (simp add: if_split_asm dist_fps_def)
       
  4716   also have "\<dots> \<le> j"
       
  4717     using \<open>f $ j \<noteq> g $ j\<close> by (intro subdegree_leI) simp_all
       
  4718   finally show False using \<open>j \<le> i\<close> by simp
       
  4719 qed
       
  4720 
       
  4721 lemma nth_equal_imp_dist_less:
       
  4722   assumes "\<And>j. j \<le> i \<Longrightarrow> f $ j = g $ j"
       
  4723   shows "dist f g < inverse (2 ^ i)"
       
  4724 proof (cases "f = g")
       
  4725   case True
       
  4726   then show ?thesis by simp
       
  4727 next
       
  4728   case False
       
  4729   with assms have "dist f g = inverse (2 ^ subdegree (f - g))"
       
  4730     by (simp add: if_split_asm dist_fps_def)
       
  4731   moreover
       
  4732   from assms and False have "i < subdegree (f - g)"
       
  4733     by (intro subdegree_greaterI) simp_all
       
  4734   ultimately show ?thesis by simp
       
  4735 qed
       
  4736 
       
  4737 lemma dist_less_eq_nth_equal: "dist f g < inverse (2 ^ i) \<longleftrightarrow> (\<forall>j \<le> i. f $ j = g $ j)"
       
  4738   using dist_less_imp_nth_equal nth_equal_imp_dist_less by blast
       
  4739 
       
  4740 instance fps :: (comm_ring_1) complete_space
       
  4741 proof
       
  4742   fix X :: "nat \<Rightarrow> 'a fps"
       
  4743   assume "Cauchy X"
       
  4744   obtain M where M: "\<forall>i. \<forall>m \<ge> M i. \<forall>j \<le> i. X (M i) $ j = X m $ j"
       
  4745   proof -
       
  4746     have "\<exists>M. \<forall>m \<ge> M. \<forall>j\<le>i. X M $ j = X m $ j" for i
       
  4747     proof -
       
  4748       have "0 < inverse ((2::real)^i)" by simp
       
  4749       from metric_CauchyD[OF \<open>Cauchy X\<close> this] dist_less_imp_nth_equal
       
  4750       show ?thesis by blast
       
  4751     qed
       
  4752     then show ?thesis using that by metis
       
  4753   qed
       
  4754 
       
  4755   show "convergent X"
       
  4756   proof (rule convergentI)
       
  4757     show "X \<longlonglongrightarrow> Abs_fps (\<lambda>i. X (M i) $ i)"
       
  4758       unfolding tendsto_iff
       
  4759     proof safe
       
  4760       fix e::real assume e: "0 < e"
       
  4761       have "(\<lambda>n. inverse (2 ^ n) :: real) \<longlonglongrightarrow> 0" by (rule LIMSEQ_inverse_realpow_zero) simp_all
       
  4762       from this and e have "eventually (\<lambda>i. inverse (2 ^ i) < e) sequentially"
       
  4763         by (rule order_tendstoD)
       
  4764       then obtain i where "inverse (2 ^ i) < e"
       
  4765         by (auto simp: eventually_sequentially)
       
  4766       have "eventually (\<lambda>x. M i \<le> x) sequentially"
       
  4767         by (auto simp: eventually_sequentially)
       
  4768       then show "eventually (\<lambda>x. dist (X x) (Abs_fps (\<lambda>i. X (M i) $ i)) < e) sequentially"
       
  4769       proof eventually_elim
       
  4770         fix x
       
  4771         assume x: "M i \<le> x"
       
  4772         have "X (M i) $ j = X (M j) $ j" if "j \<le> i" for j
       
  4773           using M that by (metis nat_le_linear)
       
  4774         with x have "dist (X x) (Abs_fps (\<lambda>j. X (M j) $ j)) < inverse (2 ^ i)"
       
  4775           using M by (force simp: dist_less_eq_nth_equal)
       
  4776         also note \<open>inverse (2 ^ i) < e\<close>
       
  4777         finally show "dist (X x) (Abs_fps (\<lambda>j. X (M j) $ j)) < e" .
       
  4778       qed
       
  4779     qed
       
  4780   qed
       
  4781 qed
       
  4782 
       
  4783 end