src/HOL/Inductive.thy
changeset 24915 fc90277c0dd7
parent 24845 abcd15369ffa
child 25510 38c15efe603b
equal deleted inserted replaced
24914:95cda5dd58d5 24915:fc90277c0dd7
     1 (*  Title:      HOL/Inductive.thy
     1 (*  Title:      HOL/Inductive.thy
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author:     Markus Wenzel, TU Muenchen
     3     Author:     Markus Wenzel, TU Muenchen
     4 *)
     4 *)
     5 
     5 
     6 header {* Support for inductive sets and types *}
     6 header {* Knaster-Tarski Fixpoint Theorem and inductive definitions *}
     7 
     7 
     8 theory Inductive 
     8 theory Inductive 
     9 imports FixedPoint Sum_Type
     9 imports Lattices Sum_Type
    10 uses
    10 uses
    11   ("Tools/inductive_package.ML")
    11   ("Tools/inductive_package.ML")
    12   "Tools/dseq.ML"
    12   "Tools/dseq.ML"
    13   ("Tools/inductive_codegen.ML")
    13   ("Tools/inductive_codegen.ML")
    14   ("Tools/datatype_aux.ML")
    14   ("Tools/datatype_aux.ML")
    17   ("Tools/datatype_abs_proofs.ML")
    17   ("Tools/datatype_abs_proofs.ML")
    18   ("Tools/datatype_case.ML")
    18   ("Tools/datatype_case.ML")
    19   ("Tools/datatype_package.ML")
    19   ("Tools/datatype_package.ML")
    20   ("Tools/primrec_package.ML")
    20   ("Tools/primrec_package.ML")
    21 begin
    21 begin
       
    22 
       
    23 subsection {* Least and greatest fixed points *}
       
    24 
       
    25 definition
       
    26   lfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where
       
    27   "lfp f = Inf {u. f u \<le> u}"    --{*least fixed point*}
       
    28 
       
    29 definition
       
    30   gfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where
       
    31   "gfp f = Sup {u. u \<le> f u}"    --{*greatest fixed point*}
       
    32 
       
    33 
       
    34 subsection{* Proof of Knaster-Tarski Theorem using @{term lfp} *}
       
    35 
       
    36 text{*@{term "lfp f"} is the least upper bound of 
       
    37       the set @{term "{u. f(u) \<le> u}"} *}
       
    38 
       
    39 lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A"
       
    40   by (auto simp add: lfp_def intro: Inf_lower)
       
    41 
       
    42 lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f"
       
    43   by (auto simp add: lfp_def intro: Inf_greatest)
       
    44 
       
    45 lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f"
       
    46   by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound)
       
    47 
       
    48 lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)"
       
    49   by (iprover intro: lfp_lemma2 monoD lfp_lowerbound)
       
    50 
       
    51 lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)"
       
    52   by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3)
       
    53 
       
    54 lemma lfp_const: "lfp (\<lambda>x. t) = t"
       
    55   by (rule lfp_unfold) (simp add:mono_def)
       
    56 
       
    57 
       
    58 subsection {* General induction rules for least fixed points *}
       
    59 
       
    60 theorem lfp_induct:
       
    61   assumes mono: "mono f" and ind: "f (inf (lfp f) P) <= P"
       
    62   shows "lfp f <= P"
       
    63 proof -
       
    64   have "inf (lfp f) P <= lfp f" by (rule inf_le1)
       
    65   with mono have "f (inf (lfp f) P) <= f (lfp f)" ..
       
    66   also from mono have "f (lfp f) = lfp f" by (rule lfp_unfold [symmetric])
       
    67   finally have "f (inf (lfp f) P) <= lfp f" .
       
    68   from this and ind have "f (inf (lfp f) P) <= inf (lfp f) P" by (rule le_infI)
       
    69   hence "lfp f <= inf (lfp f) P" by (rule lfp_lowerbound)
       
    70   also have "inf (lfp f) P <= P" by (rule inf_le2)
       
    71   finally show ?thesis .
       
    72 qed
       
    73 
       
    74 lemma lfp_induct_set:
       
    75   assumes lfp: "a: lfp(f)"
       
    76       and mono: "mono(f)"
       
    77       and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
       
    78   shows "P(a)"
       
    79   by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp])
       
    80     (auto simp: inf_set_eq intro: indhyp)
       
    81 
       
    82 lemma lfp_ordinal_induct: 
       
    83   assumes mono: "mono f"
       
    84   and P_f: "!!S. P S ==> P(f S)"
       
    85   and P_Union: "!!M. !S:M. P S ==> P(Union M)"
       
    86   shows "P(lfp f)"
       
    87 proof -
       
    88   let ?M = "{S. S \<subseteq> lfp f & P S}"
       
    89   have "P (Union ?M)" using P_Union by simp
       
    90   also have "Union ?M = lfp f"
       
    91   proof
       
    92     show "Union ?M \<subseteq> lfp f" by blast
       
    93     hence "f (Union ?M) \<subseteq> f (lfp f)" by (rule mono [THEN monoD])
       
    94     hence "f (Union ?M) \<subseteq> lfp f" using mono [THEN lfp_unfold] by simp
       
    95     hence "f (Union ?M) \<in> ?M" using P_f P_Union by simp
       
    96     hence "f (Union ?M) \<subseteq> Union ?M" by (rule Union_upper)
       
    97     thus "lfp f \<subseteq> Union ?M" by (rule lfp_lowerbound)
       
    98   qed
       
    99   finally show ?thesis .
       
   100 qed
       
   101 
       
   102 
       
   103 text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, 
       
   104     to control unfolding*}
       
   105 
       
   106 lemma def_lfp_unfold: "[| h==lfp(f);  mono(f) |] ==> h = f(h)"
       
   107 by (auto intro!: lfp_unfold)
       
   108 
       
   109 lemma def_lfp_induct: 
       
   110     "[| A == lfp(f); mono(f);
       
   111         f (inf A P) \<le> P
       
   112      |] ==> A \<le> P"
       
   113   by (blast intro: lfp_induct)
       
   114 
       
   115 lemma def_lfp_induct_set: 
       
   116     "[| A == lfp(f);  mono(f);   a:A;                    
       
   117         !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)         
       
   118      |] ==> P(a)"
       
   119   by (blast intro: lfp_induct_set)
       
   120 
       
   121 (*Monotonicity of lfp!*)
       
   122 lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g"
       
   123   by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans)
       
   124 
       
   125 
       
   126 subsection {* Proof of Knaster-Tarski Theorem using @{term gfp} *}
       
   127 
       
   128 text{*@{term "gfp f"} is the greatest lower bound of 
       
   129       the set @{term "{u. u \<le> f(u)}"} *}
       
   130 
       
   131 lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f"
       
   132   by (auto simp add: gfp_def intro: Sup_upper)
       
   133 
       
   134 lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X"
       
   135   by (auto simp add: gfp_def intro: Sup_least)
       
   136 
       
   137 lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)"
       
   138   by (iprover intro: gfp_least order_trans monoD gfp_upperbound)
       
   139 
       
   140 lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f"
       
   141   by (iprover intro: gfp_lemma2 monoD gfp_upperbound)
       
   142 
       
   143 lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)"
       
   144   by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3)
       
   145 
       
   146 
       
   147 subsection {* Coinduction rules for greatest fixed points *}
       
   148 
       
   149 text{*weak version*}
       
   150 lemma weak_coinduct: "[| a: X;  X \<subseteq> f(X) |] ==> a : gfp(f)"
       
   151 by (rule gfp_upperbound [THEN subsetD], auto)
       
   152 
       
   153 lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f"
       
   154 apply (erule gfp_upperbound [THEN subsetD])
       
   155 apply (erule imageI)
       
   156 done
       
   157 
       
   158 lemma coinduct_lemma:
       
   159      "[| X \<le> f (sup X (gfp f));  mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))"
       
   160   apply (frule gfp_lemma2)
       
   161   apply (drule mono_sup)
       
   162   apply (rule le_supI)
       
   163   apply assumption
       
   164   apply (rule order_trans)
       
   165   apply (rule order_trans)
       
   166   apply assumption
       
   167   apply (rule sup_ge2)
       
   168   apply assumption
       
   169   done
       
   170 
       
   171 text{*strong version, thanks to Coen and Frost*}
       
   172 lemma coinduct_set: "[| mono(f);  a: X;  X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)"
       
   173 by (blast intro: weak_coinduct [OF _ coinduct_lemma, simplified sup_set_eq])
       
   174 
       
   175 lemma coinduct: "[| mono(f); X \<le> f (sup X (gfp f)) |] ==> X \<le> gfp(f)"
       
   176   apply (rule order_trans)
       
   177   apply (rule sup_ge1)
       
   178   apply (erule gfp_upperbound [OF coinduct_lemma])
       
   179   apply assumption
       
   180   done
       
   181 
       
   182 lemma gfp_fun_UnI2: "[| mono(f);  a: gfp(f) |] ==> a: f(X Un gfp(f))"
       
   183 by (blast dest: gfp_lemma2 mono_Un)
       
   184 
       
   185 
       
   186 subsection {* Even Stronger Coinduction Rule, by Martin Coen *}
       
   187 
       
   188 text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
       
   189   @{term lfp} and @{term gfp}*}
       
   190 
       
   191 lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)"
       
   192 by (iprover intro: subset_refl monoI Un_mono monoD)
       
   193 
       
   194 lemma coinduct3_lemma:
       
   195      "[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)));  mono(f) |]
       
   196       ==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))"
       
   197 apply (rule subset_trans)
       
   198 apply (erule coinduct3_mono_lemma [THEN lfp_lemma3])
       
   199 apply (rule Un_least [THEN Un_least])
       
   200 apply (rule subset_refl, assumption)
       
   201 apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption)
       
   202 apply (rule monoD, assumption)
       
   203 apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto)
       
   204 done
       
   205 
       
   206 lemma coinduct3: 
       
   207   "[| mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"
       
   208 apply (rule coinduct3_lemma [THEN [2] weak_coinduct])
       
   209 apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst], auto)
       
   210 done
       
   211 
       
   212 
       
   213 text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, 
       
   214     to control unfolding*}
       
   215 
       
   216 lemma def_gfp_unfold: "[| A==gfp(f);  mono(f) |] ==> A = f(A)"
       
   217 by (auto intro!: gfp_unfold)
       
   218 
       
   219 lemma def_coinduct:
       
   220      "[| A==gfp(f);  mono(f);  X \<le> f(sup X A) |] ==> X \<le> A"
       
   221 by (iprover intro!: coinduct)
       
   222 
       
   223 lemma def_coinduct_set:
       
   224      "[| A==gfp(f);  mono(f);  a:X;  X \<subseteq> f(X Un A) |] ==> a: A"
       
   225 by (auto intro!: coinduct_set)
       
   226 
       
   227 (*The version used in the induction/coinduction package*)
       
   228 lemma def_Collect_coinduct:
       
   229     "[| A == gfp(%w. Collect(P(w)));  mono(%w. Collect(P(w)));   
       
   230         a: X;  !!z. z: X ==> P (X Un A) z |] ==>  
       
   231      a : A"
       
   232 apply (erule def_coinduct_set, auto) 
       
   233 done
       
   234 
       
   235 lemma def_coinduct3:
       
   236     "[| A==gfp(f); mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A"
       
   237 by (auto intro!: coinduct3)
       
   238 
       
   239 text{*Monotonicity of @{term gfp}!*}
       
   240 lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g"
       
   241   by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans)
       
   242 
    22 
   243 
    23 subsection {* Inductive predicates and sets *}
   244 subsection {* Inductive predicates and sets *}
    24 
   245 
    25 text {* Inversion of injective functions. *}
   246 text {* Inversion of injective functions. *}
    26 
   247 
    62   imp_conv_disj not_not de_Morgan_disj de_Morgan_conj
   283   imp_conv_disj not_not de_Morgan_disj de_Morgan_conj
    63   not_all not_ex
   284   not_all not_ex
    64   Ball_def Bex_def
   285   Ball_def Bex_def
    65   induct_rulify_fallback
   286   induct_rulify_fallback
    66 
   287 
       
   288 ML {*
       
   289 val def_lfp_unfold = @{thm def_lfp_unfold}
       
   290 val def_gfp_unfold = @{thm def_gfp_unfold}
       
   291 val def_lfp_induct = @{thm def_lfp_induct}
       
   292 val def_coinduct = @{thm def_coinduct}
       
   293 val inf_bool_eq = @{thm inf_bool_eq}
       
   294 val inf_fun_eq = @{thm inf_fun_eq}
       
   295 val le_boolI = @{thm le_boolI}
       
   296 val le_boolI' = @{thm le_boolI'}
       
   297 val le_funI = @{thm le_funI}
       
   298 val le_boolE = @{thm le_boolE}
       
   299 val le_funE = @{thm le_funE}
       
   300 val le_boolD = @{thm le_boolD}
       
   301 val le_funD = @{thm le_funD}
       
   302 val le_bool_def = @{thm le_bool_def}
       
   303 val le_fun_def = @{thm le_fun_def}
       
   304 *}
       
   305 
    67 use "Tools/inductive_package.ML"
   306 use "Tools/inductive_package.ML"
    68 setup InductivePackage.setup
   307 setup InductivePackage.setup
    69 
   308 
    70 theorems [mono] =
   309 theorems [mono] =
    71   imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
   310   imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
    72   imp_conv_disj not_not de_Morgan_disj de_Morgan_conj
   311   imp_conv_disj not_not de_Morgan_disj de_Morgan_conj
    73   not_all not_ex
   312   not_all not_ex
    74   Ball_def Bex_def
   313   Ball_def Bex_def
    75   induct_rulify_fallback
   314   induct_rulify_fallback
    76 
       
    77 lemma False_meta_all:
       
    78   "Trueprop False \<equiv> (\<And>P\<Colon>bool. P)"
       
    79 proof
       
    80   fix P
       
    81   assume False
       
    82   then show P ..
       
    83 next
       
    84   assume "\<And>P\<Colon>bool. P"
       
    85   then show False .
       
    86 qed
       
    87 
       
    88 lemma not_eq_False:
       
    89   assumes not_eq: "x \<noteq> y"
       
    90   and eq: "x \<equiv> y"
       
    91   shows False
       
    92   using not_eq eq by auto
       
    93 
       
    94 lemmas not_eq_quodlibet =
       
    95   not_eq_False [simplified False_meta_all]
       
    96 
   315 
    97 
   316 
    98 subsection {* Inductive datatypes and primitive recursion *}
   317 subsection {* Inductive datatypes and primitive recursion *}
    99 
   318 
   100 text {* Package setup. *}
   319 text {* Package setup. *}