src/HOL/WF.ML
changeset 923 ff1574a81019
child 950 323f8ca4587a
equal deleted inserted replaced
922:196ca0973a6d 923:ff1574a81019
       
     1 (*  Title: 	HOL/wf.ML
       
     2     ID:         $Id$
       
     3     Author: 	Tobias Nipkow
       
     4     Copyright   1992  University of Cambridge
       
     5 
       
     6 For wf.thy.  Well-founded Recursion
       
     7 *)
       
     8 
       
     9 open WF;
       
    10 
       
    11 val H_cong = read_instantiate [("f","H::[?'a, ?'a=>?'b]=>?'b")]
       
    12                (standard(refl RS cong RS cong));
       
    13 val H_cong1 = refl RS H_cong;
       
    14 
       
    15 (*Restriction to domain A.  If r is well-founded over A then wf(r)*)
       
    16 val [prem1,prem2] = goalw WF.thy [wf_def]
       
    17  "[| r <= Sigma A (%u.A);  \
       
    18 \    !!x P. [| ! x. (! y. <y,x> : r --> P(y)) --> P(x);  x:A |] ==> P(x) |]  \
       
    19 \ ==>  wf(r)";
       
    20 by (strip_tac 1);
       
    21 by (rtac allE 1);
       
    22 by (assume_tac 1);
       
    23 by (best_tac (HOL_cs addSEs [prem1 RS subsetD RS SigmaE2] addIs [prem2]) 1);
       
    24 qed "wfI";
       
    25 
       
    26 val major::prems = goalw WF.thy [wf_def]
       
    27     "[| wf(r);          \
       
    28 \       !!x.[| ! y. <y,x>: r --> P(y) |] ==> P(x) \
       
    29 \    |]  ==>  P(a)";
       
    30 by (rtac (major RS spec RS mp RS spec) 1);
       
    31 by (fast_tac (HOL_cs addEs prems) 1);
       
    32 qed "wf_induct";
       
    33 
       
    34 (*Perform induction on i, then prove the wf(r) subgoal using prems. *)
       
    35 fun wf_ind_tac a prems i = 
       
    36     EVERY [res_inst_tac [("a",a)] wf_induct i,
       
    37 	   rename_last_tac a ["1"] (i+1),
       
    38 	   ares_tac prems i];
       
    39 
       
    40 val prems = goal WF.thy "[| wf(r);  <a,x>:r;  <x,a>:r |] ==> P";
       
    41 by (subgoal_tac "! x. <a,x>:r --> <x,a>:r --> P" 1);
       
    42 by (fast_tac (HOL_cs addIs prems) 1);
       
    43 by (wf_ind_tac "a" prems 1);
       
    44 by (fast_tac set_cs 1);
       
    45 qed "wf_asym";
       
    46 
       
    47 val prems = goal WF.thy "[| wf(r);  <a,a>: r |] ==> P";
       
    48 by (rtac wf_asym 1);
       
    49 by (REPEAT (resolve_tac prems 1));
       
    50 qed "wf_anti_refl";
       
    51 
       
    52 (*transitive closure of a WF relation is WF!*)
       
    53 val [prem] = goal WF.thy "wf(r) ==> wf(r^+)";
       
    54 by (rewtac wf_def);
       
    55 by (strip_tac 1);
       
    56 (*must retain the universal formula for later use!*)
       
    57 by (rtac allE 1 THEN assume_tac 1);
       
    58 by (etac mp 1);
       
    59 by (res_inst_tac [("a","x")] (prem RS wf_induct) 1);
       
    60 by (rtac (impI RS allI) 1);
       
    61 by (etac tranclE 1);
       
    62 by (fast_tac HOL_cs 1);
       
    63 by (fast_tac HOL_cs 1);
       
    64 qed "wf_trancl";
       
    65 
       
    66 
       
    67 (** cut **)
       
    68 
       
    69 (*This rewrite rule works upon formulae; thus it requires explicit use of
       
    70   H_cong to expose the equality*)
       
    71 goalw WF.thy [cut_def]
       
    72     "(cut f r x = cut g r x) = (!y. <y,x>:r --> f(y)=g(y))";
       
    73 by(simp_tac (HOL_ss addsimps [expand_fun_eq]
       
    74                     setloop (split_tac [expand_if])) 1);
       
    75 qed "cut_cut_eq";
       
    76 
       
    77 goalw WF.thy [cut_def] "!!x. <x,a>:r ==> (cut f r a)(x) = f(x)";
       
    78 by(asm_simp_tac HOL_ss 1);
       
    79 qed "cut_apply";
       
    80 
       
    81 
       
    82 (*** is_recfun ***)
       
    83 
       
    84 goalw WF.thy [is_recfun_def,cut_def]
       
    85     "!!f. [| is_recfun r a H f;  ~<b,a>:r |] ==> f(b) = (@z.True)";
       
    86 by (etac ssubst 1);
       
    87 by(asm_simp_tac HOL_ss 1);
       
    88 qed "is_recfun_undef";
       
    89 
       
    90 (*eresolve_tac transD solves <a,b>:r using transitivity AT MOST ONCE
       
    91   mp amd allE  instantiate induction hypotheses*)
       
    92 fun indhyp_tac hyps =
       
    93     ares_tac (TrueI::hyps) ORELSE' 
       
    94     (cut_facts_tac hyps THEN'
       
    95        DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
       
    96 		        eresolve_tac [transD, mp, allE]));
       
    97 
       
    98 (*** NOTE! some simplifications need a different finish_tac!! ***)
       
    99 fun indhyp_tac hyps =
       
   100     resolve_tac (TrueI::refl::hyps) ORELSE' 
       
   101     (cut_facts_tac hyps THEN'
       
   102        DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
       
   103 		        eresolve_tac [transD, mp, allE]));
       
   104 val wf_super_ss = HOL_ss setsolver indhyp_tac;
       
   105 
       
   106 val prems = goalw WF.thy [is_recfun_def,cut_def]
       
   107     "[| wf(r);  trans(r);  is_recfun r a H f;  is_recfun r b H g |] ==> \
       
   108     \ <x,a>:r --> <x,b>:r --> f(x)=g(x)";
       
   109 by (cut_facts_tac prems 1);
       
   110 by (etac wf_induct 1);
       
   111 by (REPEAT (rtac impI 1 ORELSE etac ssubst 1));
       
   112 by (asm_simp_tac (wf_super_ss addcongs [if_cong]) 1);
       
   113 qed "is_recfun_equal_lemma";
       
   114 bind_thm ("is_recfun_equal", (is_recfun_equal_lemma RS mp RS mp));
       
   115 
       
   116 
       
   117 val prems as [wfr,transr,recfa,recgb,_] = goalw WF.thy [cut_def]
       
   118     "[| wf(r);  trans(r); \
       
   119 \       is_recfun r a H f;  is_recfun r b H g;  <b,a>:r |] ==> \
       
   120 \    cut f r b = g";
       
   121 val gundef = recgb RS is_recfun_undef
       
   122 and fisg   = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal)));
       
   123 by (cut_facts_tac prems 1);
       
   124 by (rtac ext 1);
       
   125 by (asm_simp_tac (wf_super_ss addsimps [gundef,fisg]
       
   126                               setloop (split_tac [expand_if])) 1);
       
   127 qed "is_recfun_cut";
       
   128 
       
   129 (*** Main Existence Lemma -- Basic Properties of the_recfun ***)
       
   130 
       
   131 val prems = goalw WF.thy [the_recfun_def]
       
   132     "is_recfun r a H f ==> is_recfun r a H (the_recfun r a H)";
       
   133 by (res_inst_tac [("P", "is_recfun r a H")] selectI 1);
       
   134 by (resolve_tac prems 1);
       
   135 qed "is_the_recfun";
       
   136 
       
   137 val prems = goal WF.thy
       
   138     "[| wf(r);  trans(r) |] ==> is_recfun r a H (the_recfun r a H)";
       
   139 by (cut_facts_tac prems 1);
       
   140 by (wf_ind_tac "a" prems 1);
       
   141 by (res_inst_tac [("f", "cut (%y. wftrec r y H) r a1")] is_the_recfun 1);
       
   142 by (rewrite_goals_tac [is_recfun_def, wftrec_def]);
       
   143 by (rtac (cut_cut_eq RS ssubst) 1);
       
   144 (*Applying the substitution: must keep the quantified assumption!!*)
       
   145 by (EVERY1 [strip_tac, rtac H_cong1, rtac allE, atac,
       
   146             etac (mp RS ssubst), atac]);
       
   147 by (fold_tac [is_recfun_def]);
       
   148 by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cut_cut_eq]) 1);
       
   149 qed "unfold_the_recfun";
       
   150 
       
   151 
       
   152 (*Beware incompleteness of unification!*)
       
   153 val prems = goal WF.thy
       
   154     "[| wf(r);  trans(r);  <c,a>:r;  <c,b>:r |] \
       
   155 \    ==> the_recfun r a H c = the_recfun r b H c";
       
   156 by (DEPTH_SOLVE (ares_tac (prems@[is_recfun_equal,unfold_the_recfun]) 1));
       
   157 qed "the_recfun_equal";
       
   158 
       
   159 val prems = goal WF.thy
       
   160     "[| wf(r); trans(r); <b,a>:r |] \
       
   161 \    ==> cut (the_recfun r a H) r b = the_recfun r b H";
       
   162 by (REPEAT (ares_tac (prems@[is_recfun_cut,unfold_the_recfun]) 1));
       
   163 qed "the_recfun_cut";
       
   164 
       
   165 (*** Unfolding wftrec ***)
       
   166 
       
   167 goalw WF.thy [wftrec_def]
       
   168     "!!r. [| wf(r);  trans(r) |] ==> \
       
   169 \    wftrec r a H = H a (cut (%x.wftrec r x H) r a)";
       
   170 by (EVERY1 [stac (rewrite_rule [is_recfun_def] unfold_the_recfun),
       
   171 	    REPEAT o atac, rtac H_cong1]);
       
   172 by (asm_simp_tac (HOL_ss addsimps [cut_cut_eq,the_recfun_cut]) 1);
       
   173 qed "wftrec";
       
   174 
       
   175 (*Unused but perhaps interesting*)
       
   176 val prems = goal WF.thy
       
   177     "[| wf(r);  trans(r);  !!f x. H x (cut f r x) = H x f |] ==> \
       
   178 \		wftrec r a H = H a (%x.wftrec r x H)";
       
   179 by (rtac (wftrec RS trans) 1);
       
   180 by (REPEAT (resolve_tac prems 1));
       
   181 qed "wftrec2";
       
   182 
       
   183 (** Removal of the premise trans(r) **)
       
   184 
       
   185 goalw WF.thy [wfrec_def]
       
   186     "!!r. wf(r) ==> wfrec r a H = H a (cut (%x.wfrec r x H) r a)";
       
   187 by (etac (wf_trancl RS wftrec RS ssubst) 1);
       
   188 by (rtac trans_trancl 1);
       
   189 by (rtac (refl RS H_cong) 1);    (*expose the equality of cuts*)
       
   190 by (simp_tac (HOL_ss addsimps [cut_cut_eq, cut_apply, r_into_trancl]) 1);
       
   191 qed "wfrec";
       
   192 
       
   193 (*This form avoids giant explosions in proofs.  NOTE USE OF == *)
       
   194 val rew::prems = goal WF.thy
       
   195     "[| !!x. f(x)==wfrec r x H;  wf(r) |] ==> f(a) = H a (cut (%x.f(x)) r a)";
       
   196 by (rewtac rew);
       
   197 by (REPEAT (resolve_tac (prems@[wfrec]) 1));
       
   198 qed "def_wfrec";