src/HOL/HOLCF/LowerPD.thy
changeset 40774 0437dbc127b3
parent 40734 a292fc5157f8
child 40888 28cd51cff70c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/HOLCF/LowerPD.thy	Sat Nov 27 16:08:10 2010 -0800
@@ -0,0 +1,534 @@
+(*  Title:      HOLCF/LowerPD.thy
+    Author:     Brian Huffman
+*)
+
+header {* Lower powerdomain *}
+
+theory LowerPD
+imports CompactBasis
+begin
+
+subsection {* Basis preorder *}
+
+definition
+  lower_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<flat>" 50) where
+  "lower_le = (\<lambda>u v. \<forall>x\<in>Rep_pd_basis u. \<exists>y\<in>Rep_pd_basis v. x \<sqsubseteq> y)"
+
+lemma lower_le_refl [simp]: "t \<le>\<flat> t"
+unfolding lower_le_def by fast
+
+lemma lower_le_trans: "\<lbrakk>t \<le>\<flat> u; u \<le>\<flat> v\<rbrakk> \<Longrightarrow> t \<le>\<flat> v"
+unfolding lower_le_def
+apply (rule ballI)
+apply (drule (1) bspec, erule bexE)
+apply (drule (1) bspec, erule bexE)
+apply (erule rev_bexI)
+apply (erule (1) below_trans)
+done
+
+interpretation lower_le: preorder lower_le
+by (rule preorder.intro, rule lower_le_refl, rule lower_le_trans)
+
+lemma lower_le_minimal [simp]: "PDUnit compact_bot \<le>\<flat> t"
+unfolding lower_le_def Rep_PDUnit
+by (simp, rule Rep_pd_basis_nonempty [folded ex_in_conv])
+
+lemma PDUnit_lower_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<flat> PDUnit y"
+unfolding lower_le_def Rep_PDUnit by fast
+
+lemma PDPlus_lower_mono: "\<lbrakk>s \<le>\<flat> t; u \<le>\<flat> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<flat> PDPlus t v"
+unfolding lower_le_def Rep_PDPlus by fast
+
+lemma PDPlus_lower_le: "t \<le>\<flat> PDPlus t u"
+unfolding lower_le_def Rep_PDPlus by fast
+
+lemma lower_le_PDUnit_PDUnit_iff [simp]:
+  "(PDUnit a \<le>\<flat> PDUnit b) = (a \<sqsubseteq> b)"
+unfolding lower_le_def Rep_PDUnit by fast
+
+lemma lower_le_PDUnit_PDPlus_iff:
+  "(PDUnit a \<le>\<flat> PDPlus t u) = (PDUnit a \<le>\<flat> t \<or> PDUnit a \<le>\<flat> u)"
+unfolding lower_le_def Rep_PDPlus Rep_PDUnit by fast
+
+lemma lower_le_PDPlus_iff: "(PDPlus t u \<le>\<flat> v) = (t \<le>\<flat> v \<and> u \<le>\<flat> v)"
+unfolding lower_le_def Rep_PDPlus by fast
+
+lemma lower_le_induct [induct set: lower_le]:
+  assumes le: "t \<le>\<flat> u"
+  assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)"
+  assumes 2: "\<And>t u a. P (PDUnit a) t \<Longrightarrow> P (PDUnit a) (PDPlus t u)"
+  assumes 3: "\<And>t u v. \<lbrakk>P t v; P u v\<rbrakk> \<Longrightarrow> P (PDPlus t u) v"
+  shows "P t u"
+using le
+apply (induct t arbitrary: u rule: pd_basis_induct)
+apply (erule rev_mp)
+apply (induct_tac u rule: pd_basis_induct)
+apply (simp add: 1)
+apply (simp add: lower_le_PDUnit_PDPlus_iff)
+apply (simp add: 2)
+apply (subst PDPlus_commute)
+apply (simp add: 2)
+apply (simp add: lower_le_PDPlus_iff 3)
+done
+
+
+subsection {* Type definition *}
+
+typedef (open) 'a lower_pd =
+  "{S::'a pd_basis set. lower_le.ideal S}"
+by (fast intro: lower_le.ideal_principal)
+
+instantiation lower_pd :: ("domain") below
+begin
+
+definition
+  "x \<sqsubseteq> y \<longleftrightarrow> Rep_lower_pd x \<subseteq> Rep_lower_pd y"
+
+instance ..
+end
+
+instance lower_pd :: ("domain") po
+using type_definition_lower_pd below_lower_pd_def
+by (rule lower_le.typedef_ideal_po)
+
+instance lower_pd :: ("domain") cpo
+using type_definition_lower_pd below_lower_pd_def
+by (rule lower_le.typedef_ideal_cpo)
+
+definition
+  lower_principal :: "'a pd_basis \<Rightarrow> 'a lower_pd" where
+  "lower_principal t = Abs_lower_pd {u. u \<le>\<flat> t}"
+
+interpretation lower_pd:
+  ideal_completion lower_le lower_principal Rep_lower_pd
+using type_definition_lower_pd below_lower_pd_def
+using lower_principal_def pd_basis_countable
+by (rule lower_le.typedef_ideal_completion)
+
+text {* Lower powerdomain is pointed *}
+
+lemma lower_pd_minimal: "lower_principal (PDUnit compact_bot) \<sqsubseteq> ys"
+by (induct ys rule: lower_pd.principal_induct, simp, simp)
+
+instance lower_pd :: ("domain") pcpo
+by intro_classes (fast intro: lower_pd_minimal)
+
+lemma inst_lower_pd_pcpo: "\<bottom> = lower_principal (PDUnit compact_bot)"
+by (rule lower_pd_minimal [THEN UU_I, symmetric])
+
+
+subsection {* Monadic unit and plus *}
+
+definition
+  lower_unit :: "'a \<rightarrow> 'a lower_pd" where
+  "lower_unit = compact_basis.basis_fun (\<lambda>a. lower_principal (PDUnit a))"
+
+definition
+  lower_plus :: "'a lower_pd \<rightarrow> 'a lower_pd \<rightarrow> 'a lower_pd" where
+  "lower_plus = lower_pd.basis_fun (\<lambda>t. lower_pd.basis_fun (\<lambda>u.
+      lower_principal (PDPlus t u)))"
+
+abbreviation
+  lower_add :: "'a lower_pd \<Rightarrow> 'a lower_pd \<Rightarrow> 'a lower_pd"
+    (infixl "+\<flat>" 65) where
+  "xs +\<flat> ys == lower_plus\<cdot>xs\<cdot>ys"
+
+syntax
+  "_lower_pd" :: "args \<Rightarrow> 'a lower_pd" ("{_}\<flat>")
+
+translations
+  "{x,xs}\<flat>" == "{x}\<flat> +\<flat> {xs}\<flat>"
+  "{x}\<flat>" == "CONST lower_unit\<cdot>x"
+
+lemma lower_unit_Rep_compact_basis [simp]:
+  "{Rep_compact_basis a}\<flat> = lower_principal (PDUnit a)"
+unfolding lower_unit_def
+by (simp add: compact_basis.basis_fun_principal PDUnit_lower_mono)
+
+lemma lower_plus_principal [simp]:
+  "lower_principal t +\<flat> lower_principal u = lower_principal (PDPlus t u)"
+unfolding lower_plus_def
+by (simp add: lower_pd.basis_fun_principal
+    lower_pd.basis_fun_mono PDPlus_lower_mono)
+
+interpretation lower_add: semilattice lower_add proof
+  fix xs ys zs :: "'a lower_pd"
+  show "(xs +\<flat> ys) +\<flat> zs = xs +\<flat> (ys +\<flat> zs)"
+    apply (induct xs ys arbitrary: zs rule: lower_pd.principal_induct2, simp, simp)
+    apply (rule_tac x=zs in lower_pd.principal_induct, simp)
+    apply (simp add: PDPlus_assoc)
+    done
+  show "xs +\<flat> ys = ys +\<flat> xs"
+    apply (induct xs ys rule: lower_pd.principal_induct2, simp, simp)
+    apply (simp add: PDPlus_commute)
+    done
+  show "xs +\<flat> xs = xs"
+    apply (induct xs rule: lower_pd.principal_induct, simp)
+    apply (simp add: PDPlus_absorb)
+    done
+qed
+
+lemmas lower_plus_assoc = lower_add.assoc
+lemmas lower_plus_commute = lower_add.commute
+lemmas lower_plus_absorb = lower_add.idem
+lemmas lower_plus_left_commute = lower_add.left_commute
+lemmas lower_plus_left_absorb = lower_add.left_idem
+
+text {* Useful for @{text "simp add: lower_plus_ac"} *}
+lemmas lower_plus_ac =
+  lower_plus_assoc lower_plus_commute lower_plus_left_commute
+
+text {* Useful for @{text "simp only: lower_plus_aci"} *}
+lemmas lower_plus_aci =
+  lower_plus_ac lower_plus_absorb lower_plus_left_absorb
+
+lemma lower_plus_below1: "xs \<sqsubseteq> xs +\<flat> ys"
+apply (induct xs ys rule: lower_pd.principal_induct2, simp, simp)
+apply (simp add: PDPlus_lower_le)
+done
+
+lemma lower_plus_below2: "ys \<sqsubseteq> xs +\<flat> ys"
+by (subst lower_plus_commute, rule lower_plus_below1)
+
+lemma lower_plus_least: "\<lbrakk>xs \<sqsubseteq> zs; ys \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs +\<flat> ys \<sqsubseteq> zs"
+apply (subst lower_plus_absorb [of zs, symmetric])
+apply (erule (1) monofun_cfun [OF monofun_cfun_arg])
+done
+
+lemma lower_plus_below_iff [simp]:
+  "xs +\<flat> ys \<sqsubseteq> zs \<longleftrightarrow> xs \<sqsubseteq> zs \<and> ys \<sqsubseteq> zs"
+apply safe
+apply (erule below_trans [OF lower_plus_below1])
+apply (erule below_trans [OF lower_plus_below2])
+apply (erule (1) lower_plus_least)
+done
+
+lemma lower_unit_below_plus_iff [simp]:
+  "{x}\<flat> \<sqsubseteq> ys +\<flat> zs \<longleftrightarrow> {x}\<flat> \<sqsubseteq> ys \<or> {x}\<flat> \<sqsubseteq> zs"
+apply (induct x rule: compact_basis.principal_induct, simp)
+apply (induct ys rule: lower_pd.principal_induct, simp)
+apply (induct zs rule: lower_pd.principal_induct, simp)
+apply (simp add: lower_le_PDUnit_PDPlus_iff)
+done
+
+lemma lower_unit_below_iff [simp]: "{x}\<flat> \<sqsubseteq> {y}\<flat> \<longleftrightarrow> x \<sqsubseteq> y"
+apply (induct x rule: compact_basis.principal_induct, simp)
+apply (induct y rule: compact_basis.principal_induct, simp)
+apply simp
+done
+
+lemmas lower_pd_below_simps =
+  lower_unit_below_iff
+  lower_plus_below_iff
+  lower_unit_below_plus_iff
+
+lemma lower_unit_eq_iff [simp]: "{x}\<flat> = {y}\<flat> \<longleftrightarrow> x = y"
+by (simp add: po_eq_conv)
+
+lemma lower_unit_strict [simp]: "{\<bottom>}\<flat> = \<bottom>"
+using lower_unit_Rep_compact_basis [of compact_bot]
+by (simp add: inst_lower_pd_pcpo)
+
+lemma lower_unit_bottom_iff [simp]: "{x}\<flat> = \<bottom> \<longleftrightarrow> x = \<bottom>"
+unfolding lower_unit_strict [symmetric] by (rule lower_unit_eq_iff)
+
+lemma lower_plus_bottom_iff [simp]:
+  "xs +\<flat> ys = \<bottom> \<longleftrightarrow> xs = \<bottom> \<and> ys = \<bottom>"
+apply safe
+apply (rule UU_I, erule subst, rule lower_plus_below1)
+apply (rule UU_I, erule subst, rule lower_plus_below2)
+apply (rule lower_plus_absorb)
+done
+
+lemma lower_plus_strict1 [simp]: "\<bottom> +\<flat> ys = ys"
+apply (rule below_antisym [OF _ lower_plus_below2])
+apply (simp add: lower_plus_least)
+done
+
+lemma lower_plus_strict2 [simp]: "xs +\<flat> \<bottom> = xs"
+apply (rule below_antisym [OF _ lower_plus_below1])
+apply (simp add: lower_plus_least)
+done
+
+lemma compact_lower_unit: "compact x \<Longrightarrow> compact {x}\<flat>"
+by (auto dest!: compact_basis.compact_imp_principal)
+
+lemma compact_lower_unit_iff [simp]: "compact {x}\<flat> \<longleftrightarrow> compact x"
+apply (safe elim!: compact_lower_unit)
+apply (simp only: compact_def lower_unit_below_iff [symmetric])
+apply (erule adm_subst [OF cont_Rep_cfun2])
+done
+
+lemma compact_lower_plus [simp]:
+  "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<flat> ys)"
+by (auto dest!: lower_pd.compact_imp_principal)
+
+
+subsection {* Induction rules *}
+
+lemma lower_pd_induct1:
+  assumes P: "adm P"
+  assumes unit: "\<And>x. P {x}\<flat>"
+  assumes insert:
+    "\<And>x ys. \<lbrakk>P {x}\<flat>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<flat> +\<flat> ys)"
+  shows "P (xs::'a lower_pd)"
+apply (induct xs rule: lower_pd.principal_induct, rule P)
+apply (induct_tac a rule: pd_basis_induct1)
+apply (simp only: lower_unit_Rep_compact_basis [symmetric])
+apply (rule unit)
+apply (simp only: lower_unit_Rep_compact_basis [symmetric]
+                  lower_plus_principal [symmetric])
+apply (erule insert [OF unit])
+done
+
+lemma lower_pd_induct
+  [case_names adm lower_unit lower_plus, induct type: lower_pd]:
+  assumes P: "adm P"
+  assumes unit: "\<And>x. P {x}\<flat>"
+  assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs +\<flat> ys)"
+  shows "P (xs::'a lower_pd)"
+apply (induct xs rule: lower_pd.principal_induct, rule P)
+apply (induct_tac a rule: pd_basis_induct)
+apply (simp only: lower_unit_Rep_compact_basis [symmetric] unit)
+apply (simp only: lower_plus_principal [symmetric] plus)
+done
+
+
+subsection {* Monadic bind *}
+
+definition
+  lower_bind_basis ::
+  "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b lower_pd) \<rightarrow> 'b lower_pd" where
+  "lower_bind_basis = fold_pd
+    (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a))
+    (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<flat> y\<cdot>f)"
+
+lemma ACI_lower_bind:
+  "class.ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<flat> y\<cdot>f)"
+apply unfold_locales
+apply (simp add: lower_plus_assoc)
+apply (simp add: lower_plus_commute)
+apply (simp add: eta_cfun)
+done
+
+lemma lower_bind_basis_simps [simp]:
+  "lower_bind_basis (PDUnit a) =
+    (\<Lambda> f. f\<cdot>(Rep_compact_basis a))"
+  "lower_bind_basis (PDPlus t u) =
+    (\<Lambda> f. lower_bind_basis t\<cdot>f +\<flat> lower_bind_basis u\<cdot>f)"
+unfolding lower_bind_basis_def
+apply -
+apply (rule fold_pd_PDUnit [OF ACI_lower_bind])
+apply (rule fold_pd_PDPlus [OF ACI_lower_bind])
+done
+
+lemma lower_bind_basis_mono:
+  "t \<le>\<flat> u \<Longrightarrow> lower_bind_basis t \<sqsubseteq> lower_bind_basis u"
+unfolding cfun_below_iff
+apply (erule lower_le_induct, safe)
+apply (simp add: monofun_cfun)
+apply (simp add: rev_below_trans [OF lower_plus_below1])
+apply simp
+done
+
+definition
+  lower_bind :: "'a lower_pd \<rightarrow> ('a \<rightarrow> 'b lower_pd) \<rightarrow> 'b lower_pd" where
+  "lower_bind = lower_pd.basis_fun lower_bind_basis"
+
+lemma lower_bind_principal [simp]:
+  "lower_bind\<cdot>(lower_principal t) = lower_bind_basis t"
+unfolding lower_bind_def
+apply (rule lower_pd.basis_fun_principal)
+apply (erule lower_bind_basis_mono)
+done
+
+lemma lower_bind_unit [simp]:
+  "lower_bind\<cdot>{x}\<flat>\<cdot>f = f\<cdot>x"
+by (induct x rule: compact_basis.principal_induct, simp, simp)
+
+lemma lower_bind_plus [simp]:
+  "lower_bind\<cdot>(xs +\<flat> ys)\<cdot>f = lower_bind\<cdot>xs\<cdot>f +\<flat> lower_bind\<cdot>ys\<cdot>f"
+by (induct xs ys rule: lower_pd.principal_induct2, simp, simp, simp)
+
+lemma lower_bind_strict [simp]: "lower_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"
+unfolding lower_unit_strict [symmetric] by (rule lower_bind_unit)
+
+lemma lower_bind_bind:
+  "lower_bind\<cdot>(lower_bind\<cdot>xs\<cdot>f)\<cdot>g = lower_bind\<cdot>xs\<cdot>(\<Lambda> x. lower_bind\<cdot>(f\<cdot>x)\<cdot>g)"
+by (induct xs, simp_all)
+
+
+subsection {* Map *}
+
+definition
+  lower_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a lower_pd \<rightarrow> 'b lower_pd" where
+  "lower_map = (\<Lambda> f xs. lower_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<flat>))"
+
+lemma lower_map_unit [simp]:
+  "lower_map\<cdot>f\<cdot>{x}\<flat> = {f\<cdot>x}\<flat>"
+unfolding lower_map_def by simp
+
+lemma lower_map_plus [simp]:
+  "lower_map\<cdot>f\<cdot>(xs +\<flat> ys) = lower_map\<cdot>f\<cdot>xs +\<flat> lower_map\<cdot>f\<cdot>ys"
+unfolding lower_map_def by simp
+
+lemma lower_map_bottom [simp]: "lower_map\<cdot>f\<cdot>\<bottom> = {f\<cdot>\<bottom>}\<flat>"
+unfolding lower_map_def by simp
+
+lemma lower_map_ident: "lower_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"
+by (induct xs rule: lower_pd_induct, simp_all)
+
+lemma lower_map_ID: "lower_map\<cdot>ID = ID"
+by (simp add: cfun_eq_iff ID_def lower_map_ident)
+
+lemma lower_map_map:
+  "lower_map\<cdot>f\<cdot>(lower_map\<cdot>g\<cdot>xs) = lower_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"
+by (induct xs rule: lower_pd_induct, simp_all)
+
+lemma ep_pair_lower_map: "ep_pair e p \<Longrightarrow> ep_pair (lower_map\<cdot>e) (lower_map\<cdot>p)"
+apply default
+apply (induct_tac x rule: lower_pd_induct, simp_all add: ep_pair.e_inverse)
+apply (induct_tac y rule: lower_pd_induct)
+apply (simp_all add: ep_pair.e_p_below monofun_cfun del: lower_plus_below_iff)
+done
+
+lemma deflation_lower_map: "deflation d \<Longrightarrow> deflation (lower_map\<cdot>d)"
+apply default
+apply (induct_tac x rule: lower_pd_induct, simp_all add: deflation.idem)
+apply (induct_tac x rule: lower_pd_induct)
+apply (simp_all add: deflation.below monofun_cfun del: lower_plus_below_iff)
+done
+
+(* FIXME: long proof! *)
+lemma finite_deflation_lower_map:
+  assumes "finite_deflation d" shows "finite_deflation (lower_map\<cdot>d)"
+proof (rule finite_deflation_intro)
+  interpret d: finite_deflation d by fact
+  have "deflation d" by fact
+  thus "deflation (lower_map\<cdot>d)" by (rule deflation_lower_map)
+  have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range)
+  hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))"
+    by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
+  hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp
+  hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))"
+    by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
+  hence *: "finite (lower_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp
+  hence "finite (range (\<lambda>xs. lower_map\<cdot>d\<cdot>xs))"
+    apply (rule rev_finite_subset)
+    apply clarsimp
+    apply (induct_tac xs rule: lower_pd.principal_induct)
+    apply (simp add: adm_mem_finite *)
+    apply (rename_tac t, induct_tac t rule: pd_basis_induct)
+    apply (simp only: lower_unit_Rep_compact_basis [symmetric] lower_map_unit)
+    apply simp
+    apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b")
+    apply clarsimp
+    apply (rule imageI)
+    apply (rule vimageI2)
+    apply (simp add: Rep_PDUnit)
+    apply (rule range_eqI)
+    apply (erule sym)
+    apply (rule exI)
+    apply (rule Abs_compact_basis_inverse [symmetric])
+    apply (simp add: d.compact)
+    apply (simp only: lower_plus_principal [symmetric] lower_map_plus)
+    apply clarsimp
+    apply (rule imageI)
+    apply (rule vimageI2)
+    apply (simp add: Rep_PDPlus)
+    done
+  thus "finite {xs. lower_map\<cdot>d\<cdot>xs = xs}"
+    by (rule finite_range_imp_finite_fixes)
+qed
+
+subsection {* Lower powerdomain is a domain *}
+
+definition
+  lower_approx :: "nat \<Rightarrow> udom lower_pd \<rightarrow> udom lower_pd"
+where
+  "lower_approx = (\<lambda>i. lower_map\<cdot>(udom_approx i))"
+
+lemma lower_approx: "approx_chain lower_approx"
+using lower_map_ID finite_deflation_lower_map
+unfolding lower_approx_def by (rule approx_chain_lemma1)
+
+definition lower_defl :: "defl \<rightarrow> defl"
+where "lower_defl = defl_fun1 lower_approx lower_map"
+
+lemma cast_lower_defl:
+  "cast\<cdot>(lower_defl\<cdot>A) =
+    udom_emb lower_approx oo lower_map\<cdot>(cast\<cdot>A) oo udom_prj lower_approx"
+using lower_approx finite_deflation_lower_map
+unfolding lower_defl_def by (rule cast_defl_fun1)
+
+instantiation lower_pd :: ("domain") liftdomain
+begin
+
+definition
+  "emb = udom_emb lower_approx oo lower_map\<cdot>emb"
+
+definition
+  "prj = lower_map\<cdot>prj oo udom_prj lower_approx"
+
+definition
+  "defl (t::'a lower_pd itself) = lower_defl\<cdot>DEFL('a)"
+
+definition
+  "(liftemb :: 'a lower_pd u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+
+definition
+  "(liftprj :: udom \<rightarrow> 'a lower_pd u) = u_map\<cdot>prj oo udom_prj u_approx"
+
+definition
+  "liftdefl (t::'a lower_pd itself) = u_defl\<cdot>DEFL('a lower_pd)"
+
+instance
+using liftemb_lower_pd_def liftprj_lower_pd_def liftdefl_lower_pd_def
+proof (rule liftdomain_class_intro)
+  show "ep_pair emb (prj :: udom \<rightarrow> 'a lower_pd)"
+    unfolding emb_lower_pd_def prj_lower_pd_def
+    using ep_pair_udom [OF lower_approx]
+    by (intro ep_pair_comp ep_pair_lower_map ep_pair_emb_prj)
+next
+  show "cast\<cdot>DEFL('a lower_pd) = emb oo (prj :: udom \<rightarrow> 'a lower_pd)"
+    unfolding emb_lower_pd_def prj_lower_pd_def defl_lower_pd_def cast_lower_defl
+    by (simp add: cast_DEFL oo_def cfun_eq_iff lower_map_map)
+qed
+
+end
+
+lemma DEFL_lower: "DEFL('a lower_pd) = lower_defl\<cdot>DEFL('a)"
+by (rule defl_lower_pd_def)
+
+
+subsection {* Join *}
+
+definition
+  lower_join :: "'a lower_pd lower_pd \<rightarrow> 'a lower_pd" where
+  "lower_join = (\<Lambda> xss. lower_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"
+
+lemma lower_join_unit [simp]:
+  "lower_join\<cdot>{xs}\<flat> = xs"
+unfolding lower_join_def by simp
+
+lemma lower_join_plus [simp]:
+  "lower_join\<cdot>(xss +\<flat> yss) = lower_join\<cdot>xss +\<flat> lower_join\<cdot>yss"
+unfolding lower_join_def by simp
+
+lemma lower_join_bottom [simp]: "lower_join\<cdot>\<bottom> = \<bottom>"
+unfolding lower_join_def by simp
+
+lemma lower_join_map_unit:
+  "lower_join\<cdot>(lower_map\<cdot>lower_unit\<cdot>xs) = xs"
+by (induct xs rule: lower_pd_induct, simp_all)
+
+lemma lower_join_map_join:
+  "lower_join\<cdot>(lower_map\<cdot>lower_join\<cdot>xsss) = lower_join\<cdot>(lower_join\<cdot>xsss)"
+by (induct xsss rule: lower_pd_induct, simp_all)
+
+lemma lower_join_map_map:
+  "lower_join\<cdot>(lower_map\<cdot>(lower_map\<cdot>f)\<cdot>xss) =
+   lower_map\<cdot>f\<cdot>(lower_join\<cdot>xss)"
+by (induct xss rule: lower_pd_induct, simp_all)
+
+end