src/HOL/HOLCF/Porder.thy
changeset 40774 0437dbc127b3
parent 40771 1c6f7d4b110e
child 41182 717404c7d59a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/HOLCF/Porder.thy	Sat Nov 27 16:08:10 2010 -0800
@@ -0,0 +1,336 @@
+(*  Title:      HOLCF/Porder.thy
+    Author:     Franz Regensburger and Brian Huffman
+*)
+
+header {* Partial orders *}
+
+theory Porder
+imports Main
+begin
+
+subsection {* Type class for partial orders *}
+
+class below =
+  fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+begin
+
+notation
+  below (infix "<<" 50)
+
+notation (xsymbols)
+  below (infix "\<sqsubseteq>" 50)
+
+lemma below_eq_trans: "\<lbrakk>a \<sqsubseteq> b; b = c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c"
+  by (rule subst)
+
+lemma eq_below_trans: "\<lbrakk>a = b; b \<sqsubseteq> c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c"
+  by (rule ssubst)
+
+end
+
+class po = below +
+  assumes below_refl [iff]: "x \<sqsubseteq> x"
+  assumes below_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"
+  assumes below_antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y"
+begin
+
+lemma eq_imp_below: "x = y \<Longrightarrow> x \<sqsubseteq> y"
+  by simp
+
+lemma box_below: "a \<sqsubseteq> b \<Longrightarrow> c \<sqsubseteq> a \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> c \<sqsubseteq> d"
+  by (rule below_trans [OF below_trans])
+
+lemma po_eq_conv: "x = y \<longleftrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x"
+  by (fast intro!: below_antisym)
+
+lemma rev_below_trans: "y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z"
+  by (rule below_trans)
+
+lemma not_below2not_eq: "\<not> x \<sqsubseteq> y \<Longrightarrow> x \<noteq> y"
+  by auto
+
+end
+
+lemmas HOLCF_trans_rules [trans] =
+  below_trans
+  below_antisym
+  below_eq_trans
+  eq_below_trans
+
+context po
+begin
+
+subsection {* Upper bounds *}
+
+definition is_ub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infix "<|" 55) where
+  "S <| x \<longleftrightarrow> (\<forall>y\<in>S. y \<sqsubseteq> x)"
+
+lemma is_ubI: "(\<And>x. x \<in> S \<Longrightarrow> x \<sqsubseteq> u) \<Longrightarrow> S <| u"
+  by (simp add: is_ub_def)
+
+lemma is_ubD: "\<lbrakk>S <| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"
+  by (simp add: is_ub_def)
+
+lemma ub_imageI: "(\<And>x. x \<in> S \<Longrightarrow> f x \<sqsubseteq> u) \<Longrightarrow> (\<lambda>x. f x) ` S <| u"
+  unfolding is_ub_def by fast
+
+lemma ub_imageD: "\<lbrakk>f ` S <| u; x \<in> S\<rbrakk> \<Longrightarrow> f x \<sqsubseteq> u"
+  unfolding is_ub_def by fast
+
+lemma ub_rangeI: "(\<And>i. S i \<sqsubseteq> x) \<Longrightarrow> range S <| x"
+  unfolding is_ub_def by fast
+
+lemma ub_rangeD: "range S <| x \<Longrightarrow> S i \<sqsubseteq> x"
+  unfolding is_ub_def by fast
+
+lemma is_ub_empty [simp]: "{} <| u"
+  unfolding is_ub_def by fast
+
+lemma is_ub_insert [simp]: "(insert x A) <| y = (x \<sqsubseteq> y \<and> A <| y)"
+  unfolding is_ub_def by fast
+
+lemma is_ub_upward: "\<lbrakk>S <| x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> S <| y"
+  unfolding is_ub_def by (fast intro: below_trans)
+
+subsection {* Least upper bounds *}
+
+definition is_lub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infix "<<|" 55) where
+  "S <<| x \<longleftrightarrow> S <| x \<and> (\<forall>u. S <| u \<longrightarrow> x \<sqsubseteq> u)"
+
+definition lub :: "'a set \<Rightarrow> 'a" where
+  "lub S = (THE x. S <<| x)"
+
+end
+
+syntax
+  "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3LUB _:_./ _)" [0,0, 10] 10)
+
+syntax (xsymbols)
+  "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0,0, 10] 10)
+
+translations
+  "LUB x:A. t" == "CONST lub ((%x. t) ` A)"
+
+context po
+begin
+
+abbreviation
+  Lub  (binder "LUB " 10) where
+  "LUB n. t n == lub (range t)"
+
+notation (xsymbols)
+  Lub  (binder "\<Squnion> " 10)
+
+text {* access to some definition as inference rule *}
+
+lemma is_lubD1: "S <<| x \<Longrightarrow> S <| x"
+  unfolding is_lub_def by fast
+
+lemma is_lubD2: "\<lbrakk>S <<| x; S <| u\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"
+  unfolding is_lub_def by fast
+
+lemma is_lubI: "\<lbrakk>S <| x; \<And>u. S <| u \<Longrightarrow> x \<sqsubseteq> u\<rbrakk> \<Longrightarrow> S <<| x"
+  unfolding is_lub_def by fast
+
+lemma is_lub_below_iff: "S <<| x \<Longrightarrow> x \<sqsubseteq> u \<longleftrightarrow> S <| u"
+  unfolding is_lub_def is_ub_def by (metis below_trans)
+
+text {* lubs are unique *}
+
+lemma is_lub_unique: "\<lbrakk>S <<| x; S <<| y\<rbrakk> \<Longrightarrow> x = y"
+  unfolding is_lub_def is_ub_def by (blast intro: below_antisym)
+
+text {* technical lemmas about @{term lub} and @{term is_lub} *}
+
+lemma is_lub_lub: "M <<| x \<Longrightarrow> M <<| lub M"
+  unfolding lub_def by (rule theI [OF _ is_lub_unique])
+
+lemma lub_eqI: "M <<| l \<Longrightarrow> lub M = l"
+  by (rule is_lub_unique [OF is_lub_lub])
+
+lemma is_lub_singleton: "{x} <<| x"
+  by (simp add: is_lub_def)
+
+lemma lub_singleton [simp]: "lub {x} = x"
+  by (rule is_lub_singleton [THEN lub_eqI])
+
+lemma is_lub_bin: "x \<sqsubseteq> y \<Longrightarrow> {x, y} <<| y"
+  by (simp add: is_lub_def)
+
+lemma lub_bin: "x \<sqsubseteq> y \<Longrightarrow> lub {x, y} = y"
+  by (rule is_lub_bin [THEN lub_eqI])
+
+lemma is_lub_maximal: "\<lbrakk>S <| x; x \<in> S\<rbrakk> \<Longrightarrow> S <<| x"
+  by (erule is_lubI, erule (1) is_ubD)
+
+lemma lub_maximal: "\<lbrakk>S <| x; x \<in> S\<rbrakk> \<Longrightarrow> lub S = x"
+  by (rule is_lub_maximal [THEN lub_eqI])
+
+subsection {* Countable chains *}
+
+definition chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where
+  -- {* Here we use countable chains and I prefer to code them as functions! *}
+  "chain Y = (\<forall>i. Y i \<sqsubseteq> Y (Suc i))"
+
+lemma chainI: "(\<And>i. Y i \<sqsubseteq> Y (Suc i)) \<Longrightarrow> chain Y"
+  unfolding chain_def by fast
+
+lemma chainE: "chain Y \<Longrightarrow> Y i \<sqsubseteq> Y (Suc i)"
+  unfolding chain_def by fast
+
+text {* chains are monotone functions *}
+
+lemma chain_mono_less: "\<lbrakk>chain Y; i < j\<rbrakk> \<Longrightarrow> Y i \<sqsubseteq> Y j"
+  by (erule less_Suc_induct, erule chainE, erule below_trans)
+
+lemma chain_mono: "\<lbrakk>chain Y; i \<le> j\<rbrakk> \<Longrightarrow> Y i \<sqsubseteq> Y j"
+  by (cases "i = j", simp, simp add: chain_mono_less)
+
+lemma chain_shift: "chain Y \<Longrightarrow> chain (\<lambda>i. Y (i + j))"
+  by (rule chainI, simp, erule chainE)
+
+text {* technical lemmas about (least) upper bounds of chains *}
+
+lemma is_lub_rangeD1: "range S <<| x \<Longrightarrow> S i \<sqsubseteq> x"
+  by (rule is_lubD1 [THEN ub_rangeD])
+
+lemma is_ub_range_shift:
+  "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <| x = range S <| x"
+apply (rule iffI)
+apply (rule ub_rangeI)
+apply (rule_tac y="S (i + j)" in below_trans)
+apply (erule chain_mono)
+apply (rule le_add1)
+apply (erule ub_rangeD)
+apply (rule ub_rangeI)
+apply (erule ub_rangeD)
+done
+
+lemma is_lub_range_shift:
+  "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <<| x = range S <<| x"
+  by (simp add: is_lub_def is_ub_range_shift)
+
+text {* the lub of a constant chain is the constant *}
+
+lemma chain_const [simp]: "chain (\<lambda>i. c)"
+  by (simp add: chainI)
+
+lemma is_lub_const: "range (\<lambda>x. c) <<| c"
+by (blast dest: ub_rangeD intro: is_lubI ub_rangeI)
+
+lemma lub_const [simp]: "(\<Squnion>i. c) = c"
+  by (rule is_lub_const [THEN lub_eqI])
+
+subsection {* Finite chains *}
+
+definition max_in_chain :: "nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool" where
+  -- {* finite chains, needed for monotony of continuous functions *}
+  "max_in_chain i C \<longleftrightarrow> (\<forall>j. i \<le> j \<longrightarrow> C i = C j)"
+
+definition finite_chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where
+  "finite_chain C = (chain C \<and> (\<exists>i. max_in_chain i C))"
+
+text {* results about finite chains *}
+
+lemma max_in_chainI: "(\<And>j. i \<le> j \<Longrightarrow> Y i = Y j) \<Longrightarrow> max_in_chain i Y"
+  unfolding max_in_chain_def by fast
+
+lemma max_in_chainD: "\<lbrakk>max_in_chain i Y; i \<le> j\<rbrakk> \<Longrightarrow> Y i = Y j"
+  unfolding max_in_chain_def by fast
+
+lemma finite_chainI:
+  "\<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> finite_chain C"
+  unfolding finite_chain_def by fast
+
+lemma finite_chainE:
+  "\<lbrakk>finite_chain C; \<And>i. \<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
+  unfolding finite_chain_def by fast
+
+lemma lub_finch1: "\<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> range C <<| C i"
+apply (rule is_lubI)
+apply (rule ub_rangeI, rename_tac j)
+apply (rule_tac x=i and y=j in linorder_le_cases)
+apply (drule (1) max_in_chainD, simp)
+apply (erule (1) chain_mono)
+apply (erule ub_rangeD)
+done
+
+lemma lub_finch2:
+  "finite_chain C \<Longrightarrow> range C <<| C (LEAST i. max_in_chain i C)"
+apply (erule finite_chainE)
+apply (erule LeastI2 [where Q="\<lambda>i. range C <<| C i"])
+apply (erule (1) lub_finch1)
+done
+
+lemma finch_imp_finite_range: "finite_chain Y \<Longrightarrow> finite (range Y)"
+ apply (erule finite_chainE)
+ apply (rule_tac B="Y ` {..i}" in finite_subset)
+  apply (rule subsetI)
+  apply (erule rangeE, rename_tac j)
+  apply (rule_tac x=i and y=j in linorder_le_cases)
+   apply (subgoal_tac "Y j = Y i", simp)
+   apply (simp add: max_in_chain_def)
+  apply simp
+ apply simp
+done
+
+lemma finite_range_has_max:
+  fixes f :: "nat \<Rightarrow> 'a" and r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+  assumes mono: "\<And>i j. i \<le> j \<Longrightarrow> r (f i) (f j)"
+  assumes finite_range: "finite (range f)"
+  shows "\<exists>k. \<forall>i. r (f i) (f k)"
+proof (intro exI allI)
+  fix i :: nat
+  let ?j = "LEAST k. f k = f i"
+  let ?k = "Max ((\<lambda>x. LEAST k. f k = x) ` range f)"
+  have "?j \<le> ?k"
+  proof (rule Max_ge)
+    show "finite ((\<lambda>x. LEAST k. f k = x) ` range f)"
+      using finite_range by (rule finite_imageI)
+    show "?j \<in> (\<lambda>x. LEAST k. f k = x) ` range f"
+      by (intro imageI rangeI)
+  qed
+  hence "r (f ?j) (f ?k)"
+    by (rule mono)
+  also have "f ?j = f i"
+    by (rule LeastI, rule refl)
+  finally show "r (f i) (f ?k)" .
+qed
+
+lemma finite_range_imp_finch:
+  "\<lbrakk>chain Y; finite (range Y)\<rbrakk> \<Longrightarrow> finite_chain Y"
+ apply (subgoal_tac "\<exists>k. \<forall>i. Y i \<sqsubseteq> Y k")
+  apply (erule exE)
+  apply (rule finite_chainI, assumption)
+  apply (rule max_in_chainI)
+  apply (rule below_antisym)
+   apply (erule (1) chain_mono)
+  apply (erule spec)
+ apply (rule finite_range_has_max)
+  apply (erule (1) chain_mono)
+ apply assumption
+done
+
+lemma bin_chain: "x \<sqsubseteq> y \<Longrightarrow> chain (\<lambda>i. if i=0 then x else y)"
+  by (rule chainI, simp)
+
+lemma bin_chainmax:
+  "x \<sqsubseteq> y \<Longrightarrow> max_in_chain (Suc 0) (\<lambda>i. if i=0 then x else y)"
+  unfolding max_in_chain_def by simp
+
+lemma is_lub_bin_chain:
+  "x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. if i=0 then x else y) <<| y"
+apply (frule bin_chain)
+apply (drule bin_chainmax)
+apply (drule (1) lub_finch1)
+apply simp
+done
+
+text {* the maximal element in a chain is its lub *}
+
+lemma lub_chain_maxelem: "\<lbrakk>Y i = c; \<forall>i. Y i \<sqsubseteq> c\<rbrakk> \<Longrightarrow> lub (range Y) = c"
+  by (blast dest: ub_rangeD intro: lub_eqI is_lubI ub_rangeI)
+
+end
+
+end