src/HOL/HOLCF/Up.thy
changeset 40774 0437dbc127b3
parent 40771 1c6f7d4b110e
child 41182 717404c7d59a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/HOLCF/Up.thy	Sat Nov 27 16:08:10 2010 -0800
@@ -0,0 +1,263 @@
+(*  Title:      HOLCF/Up.thy
+    Author:     Franz Regensburger
+    Author:     Brian Huffman
+*)
+
+header {* The type of lifted values *}
+
+theory Up
+imports Cfun
+begin
+
+default_sort cpo
+
+subsection {* Definition of new type for lifting *}
+
+datatype 'a u = Ibottom | Iup 'a
+
+type_notation (xsymbols)
+  u  ("(_\<^sub>\<bottom>)" [1000] 999)
+
+primrec Ifup :: "('a \<rightarrow> 'b::pcpo) \<Rightarrow> 'a u \<Rightarrow> 'b" where
+    "Ifup f Ibottom = \<bottom>"
+ |  "Ifup f (Iup x) = f\<cdot>x"
+
+subsection {* Ordering on lifted cpo *}
+
+instantiation u :: (cpo) below
+begin
+
+definition
+  below_up_def:
+    "(op \<sqsubseteq>) \<equiv> (\<lambda>x y. case x of Ibottom \<Rightarrow> True | Iup a \<Rightarrow>
+      (case y of Ibottom \<Rightarrow> False | Iup b \<Rightarrow> a \<sqsubseteq> b))"
+
+instance ..
+end
+
+lemma minimal_up [iff]: "Ibottom \<sqsubseteq> z"
+by (simp add: below_up_def)
+
+lemma not_Iup_below [iff]: "\<not> Iup x \<sqsubseteq> Ibottom"
+by (simp add: below_up_def)
+
+lemma Iup_below [iff]: "(Iup x \<sqsubseteq> Iup y) = (x \<sqsubseteq> y)"
+by (simp add: below_up_def)
+
+subsection {* Lifted cpo is a partial order *}
+
+instance u :: (cpo) po
+proof
+  fix x :: "'a u"
+  show "x \<sqsubseteq> x"
+    unfolding below_up_def by (simp split: u.split)
+next
+  fix x y :: "'a u"
+  assume "x \<sqsubseteq> y" "y \<sqsubseteq> x" thus "x = y"
+    unfolding below_up_def
+    by (auto split: u.split_asm intro: below_antisym)
+next
+  fix x y z :: "'a u"
+  assume "x \<sqsubseteq> y" "y \<sqsubseteq> z" thus "x \<sqsubseteq> z"
+    unfolding below_up_def
+    by (auto split: u.split_asm intro: below_trans)
+qed
+
+subsection {* Lifted cpo is a cpo *}
+
+lemma is_lub_Iup:
+  "range S <<| x \<Longrightarrow> range (\<lambda>i. Iup (S i)) <<| Iup x"
+unfolding is_lub_def is_ub_def ball_simps
+by (auto simp add: below_up_def split: u.split)
+
+lemma up_chain_lemma:
+  assumes Y: "chain Y" obtains "\<forall>i. Y i = Ibottom"
+  | A k where "\<forall>i. Iup (A i) = Y (i + k)" and "chain A" and "range Y <<| Iup (\<Squnion>i. A i)"
+proof (cases "\<exists>k. Y k \<noteq> Ibottom")
+  case True
+  then obtain k where k: "Y k \<noteq> Ibottom" ..
+  def A \<equiv> "\<lambda>i. THE a. Iup a = Y (i + k)"
+  have Iup_A: "\<forall>i. Iup (A i) = Y (i + k)"
+  proof
+    fix i :: nat
+    from Y le_add2 have "Y k \<sqsubseteq> Y (i + k)" by (rule chain_mono)
+    with k have "Y (i + k) \<noteq> Ibottom" by (cases "Y k", auto)
+    thus "Iup (A i) = Y (i + k)"
+      by (cases "Y (i + k)", simp_all add: A_def)
+  qed
+  from Y have chain_A: "chain A"
+    unfolding chain_def Iup_below [symmetric]
+    by (simp add: Iup_A)
+  hence "range A <<| (\<Squnion>i. A i)"
+    by (rule cpo_lubI)
+  hence "range (\<lambda>i. Iup (A i)) <<| Iup (\<Squnion>i. A i)"
+    by (rule is_lub_Iup)
+  hence "range (\<lambda>i. Y (i + k)) <<| Iup (\<Squnion>i. A i)"
+    by (simp only: Iup_A)
+  hence "range (\<lambda>i. Y i) <<| Iup (\<Squnion>i. A i)"
+    by (simp only: is_lub_range_shift [OF Y])
+  with Iup_A chain_A show ?thesis ..
+next
+  case False
+  then have "\<forall>i. Y i = Ibottom" by simp
+  then show ?thesis ..
+qed
+
+instance u :: (cpo) cpo
+proof
+  fix S :: "nat \<Rightarrow> 'a u"
+  assume S: "chain S"
+  thus "\<exists>x. range (\<lambda>i. S i) <<| x"
+  proof (rule up_chain_lemma)
+    assume "\<forall>i. S i = Ibottom"
+    hence "range (\<lambda>i. S i) <<| Ibottom"
+      by (simp add: is_lub_const)
+    thus ?thesis ..
+  next
+    fix A :: "nat \<Rightarrow> 'a"
+    assume "range S <<| Iup (\<Squnion>i. A i)"
+    thus ?thesis ..
+  qed
+qed
+
+subsection {* Lifted cpo is pointed *}
+
+instance u :: (cpo) pcpo
+by intro_classes fast
+
+text {* for compatibility with old HOLCF-Version *}
+lemma inst_up_pcpo: "\<bottom> = Ibottom"
+by (rule minimal_up [THEN UU_I, symmetric])
+
+subsection {* Continuity of \emph{Iup} and \emph{Ifup} *}
+
+text {* continuity for @{term Iup} *}
+
+lemma cont_Iup: "cont Iup"
+apply (rule contI)
+apply (rule is_lub_Iup)
+apply (erule cpo_lubI)
+done
+
+text {* continuity for @{term Ifup} *}
+
+lemma cont_Ifup1: "cont (\<lambda>f. Ifup f x)"
+by (induct x, simp_all)
+
+lemma monofun_Ifup2: "monofun (\<lambda>x. Ifup f x)"
+apply (rule monofunI)
+apply (case_tac x, simp)
+apply (case_tac y, simp)
+apply (simp add: monofun_cfun_arg)
+done
+
+lemma cont_Ifup2: "cont (\<lambda>x. Ifup f x)"
+proof (rule contI2)
+  fix Y assume Y: "chain Y" and Y': "chain (\<lambda>i. Ifup f (Y i))"
+  from Y show "Ifup f (\<Squnion>i. Y i) \<sqsubseteq> (\<Squnion>i. Ifup f (Y i))"
+  proof (rule up_chain_lemma)
+    fix A and k
+    assume A: "\<forall>i. Iup (A i) = Y (i + k)"
+    assume "chain A" and "range Y <<| Iup (\<Squnion>i. A i)"
+    hence "Ifup f (\<Squnion>i. Y i) = (\<Squnion>i. Ifup f (Iup (A i)))"
+      by (simp add: lub_eqI contlub_cfun_arg)
+    also have "\<dots> = (\<Squnion>i. Ifup f (Y (i + k)))"
+      by (simp add: A)
+    also have "\<dots> = (\<Squnion>i. Ifup f (Y i))"
+      using Y' by (rule lub_range_shift)
+    finally show ?thesis by simp
+  qed simp
+qed (rule monofun_Ifup2)
+
+subsection {* Continuous versions of constants *}
+
+definition
+  up  :: "'a \<rightarrow> 'a u" where
+  "up = (\<Lambda> x. Iup x)"
+
+definition
+  fup :: "('a \<rightarrow> 'b::pcpo) \<rightarrow> 'a u \<rightarrow> 'b" where
+  "fup = (\<Lambda> f p. Ifup f p)"
+
+translations
+  "case l of XCONST up\<cdot>x \<Rightarrow> t" == "CONST fup\<cdot>(\<Lambda> x. t)\<cdot>l"
+  "\<Lambda>(XCONST up\<cdot>x). t" == "CONST fup\<cdot>(\<Lambda> x. t)"
+
+text {* continuous versions of lemmas for @{typ "('a)u"} *}
+
+lemma Exh_Up: "z = \<bottom> \<or> (\<exists>x. z = up\<cdot>x)"
+apply (induct z)
+apply (simp add: inst_up_pcpo)
+apply (simp add: up_def cont_Iup)
+done
+
+lemma up_eq [simp]: "(up\<cdot>x = up\<cdot>y) = (x = y)"
+by (simp add: up_def cont_Iup)
+
+lemma up_inject: "up\<cdot>x = up\<cdot>y \<Longrightarrow> x = y"
+by simp
+
+lemma up_defined [simp]: "up\<cdot>x \<noteq> \<bottom>"
+by (simp add: up_def cont_Iup inst_up_pcpo)
+
+lemma not_up_less_UU: "\<not> up\<cdot>x \<sqsubseteq> \<bottom>"
+by simp (* FIXME: remove? *)
+
+lemma up_below [simp]: "up\<cdot>x \<sqsubseteq> up\<cdot>y \<longleftrightarrow> x \<sqsubseteq> y"
+by (simp add: up_def cont_Iup)
+
+lemma upE [case_names bottom up, cases type: u]:
+  "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; \<And>x. p = up\<cdot>x \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
+apply (cases p)
+apply (simp add: inst_up_pcpo)
+apply (simp add: up_def cont_Iup)
+done
+
+lemma up_induct [case_names bottom up, induct type: u]:
+  "\<lbrakk>P \<bottom>; \<And>x. P (up\<cdot>x)\<rbrakk> \<Longrightarrow> P x"
+by (cases x, simp_all)
+
+text {* lifting preserves chain-finiteness *}
+
+lemma up_chain_cases:
+  assumes Y: "chain Y" obtains "\<forall>i. Y i = \<bottom>"
+  | A k where "\<forall>i. up\<cdot>(A i) = Y (i + k)" and "chain A" and "(\<Squnion>i. Y i) = up\<cdot>(\<Squnion>i. A i)"
+apply (rule up_chain_lemma [OF Y])
+apply (simp_all add: inst_up_pcpo up_def cont_Iup lub_eqI)
+done
+
+lemma compact_up: "compact x \<Longrightarrow> compact (up\<cdot>x)"
+apply (rule compactI2)
+apply (erule up_chain_cases)
+apply simp
+apply (drule (1) compactD2, simp)
+apply (erule exE)
+apply (drule_tac f="up" and x="x" in monofun_cfun_arg)
+apply (simp, erule exI)
+done
+
+lemma compact_upD: "compact (up\<cdot>x) \<Longrightarrow> compact x"
+unfolding compact_def
+by (drule adm_subst [OF cont_Rep_cfun2 [where f=up]], simp)
+
+lemma compact_up_iff [simp]: "compact (up\<cdot>x) = compact x"
+by (safe elim!: compact_up compact_upD)
+
+instance u :: (chfin) chfin
+apply intro_classes
+apply (erule compact_imp_max_in_chain)
+apply (rule_tac p="\<Squnion>i. Y i" in upE, simp_all)
+done
+
+text {* properties of fup *}
+
+lemma fup1 [simp]: "fup\<cdot>f\<cdot>\<bottom> = \<bottom>"
+by (simp add: fup_def cont_Ifup1 cont_Ifup2 inst_up_pcpo cont2cont_LAM)
+
+lemma fup2 [simp]: "fup\<cdot>f\<cdot>(up\<cdot>x) = f\<cdot>x"
+by (simp add: up_def fup_def cont_Iup cont_Ifup1 cont_Ifup2 cont2cont_LAM)
+
+lemma fup3 [simp]: "fup\<cdot>up\<cdot>x = x"
+by (cases x, simp_all)
+
+end