src/HOLCF/Cfun.thy
changeset 40774 0437dbc127b3
parent 40773 6c12f5e24e34
child 40775 ed7a4eadb2f6
--- a/src/HOLCF/Cfun.thy	Sat Nov 27 14:34:54 2010 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,543 +0,0 @@
-(*  Title:      HOLCF/Cfun.thy
-    Author:     Franz Regensburger
-    Author:     Brian Huffman
-*)
-
-header {* The type of continuous functions *}
-
-theory Cfun
-imports Cpodef Fun_Cpo Product_Cpo
-begin
-
-default_sort cpo
-
-subsection {* Definition of continuous function type *}
-
-cpodef ('a, 'b) cfun (infixr "->" 0) = "{f::'a => 'b. cont f}"
-by (auto intro: cont_const adm_cont)
-
-type_notation (xsymbols)
-  cfun  ("(_ \<rightarrow>/ _)" [1, 0] 0)
-
-notation
-  Rep_cfun  ("(_$/_)" [999,1000] 999)
-
-notation (xsymbols)
-  Rep_cfun  ("(_\<cdot>/_)" [999,1000] 999)
-
-notation (HTML output)
-  Rep_cfun  ("(_\<cdot>/_)" [999,1000] 999)
-
-subsection {* Syntax for continuous lambda abstraction *}
-
-syntax "_cabs" :: "'a"
-
-parse_translation {*
-(* rewrite (_cabs x t) => (Abs_cfun (%x. t)) *)
-  [mk_binder_tr (@{syntax_const "_cabs"}, @{const_syntax Abs_cfun})];
-*}
-
-text {* To avoid eta-contraction of body: *}
-typed_print_translation {*
-  let
-    fun cabs_tr' _ _ [Abs abs] = let
-          val (x,t) = atomic_abs_tr' abs
-        in Syntax.const @{syntax_const "_cabs"} $ x $ t end
-
-      | cabs_tr' _ T [t] = let
-          val xT = domain_type (domain_type T);
-          val abs' = ("x",xT,(incr_boundvars 1 t)$Bound 0);
-          val (x,t') = atomic_abs_tr' abs';
-        in Syntax.const @{syntax_const "_cabs"} $ x $ t' end;
-
-  in [(@{const_syntax Abs_cfun}, cabs_tr')] end;
-*}
-
-text {* Syntax for nested abstractions *}
-
-syntax
-  "_Lambda" :: "[cargs, 'a] \<Rightarrow> logic"  ("(3LAM _./ _)" [1000, 10] 10)
-
-syntax (xsymbols)
-  "_Lambda" :: "[cargs, 'a] \<Rightarrow> logic" ("(3\<Lambda> _./ _)" [1000, 10] 10)
-
-parse_ast_translation {*
-(* rewrite (LAM x y z. t) => (_cabs x (_cabs y (_cabs z t))) *)
-(* cf. Syntax.lambda_ast_tr from src/Pure/Syntax/syn_trans.ML *)
-  let
-    fun Lambda_ast_tr [pats, body] =
-          Syntax.fold_ast_p @{syntax_const "_cabs"}
-            (Syntax.unfold_ast @{syntax_const "_cargs"} pats, body)
-      | Lambda_ast_tr asts = raise Syntax.AST ("Lambda_ast_tr", asts);
-  in [(@{syntax_const "_Lambda"}, Lambda_ast_tr)] end;
-*}
-
-print_ast_translation {*
-(* rewrite (_cabs x (_cabs y (_cabs z t))) => (LAM x y z. t) *)
-(* cf. Syntax.abs_ast_tr' from src/Pure/Syntax/syn_trans.ML *)
-  let
-    fun cabs_ast_tr' asts =
-      (case Syntax.unfold_ast_p @{syntax_const "_cabs"}
-          (Syntax.Appl (Syntax.Constant @{syntax_const "_cabs"} :: asts)) of
-        ([], _) => raise Syntax.AST ("cabs_ast_tr'", asts)
-      | (xs, body) => Syntax.Appl
-          [Syntax.Constant @{syntax_const "_Lambda"},
-           Syntax.fold_ast @{syntax_const "_cargs"} xs, body]);
-  in [(@{syntax_const "_cabs"}, cabs_ast_tr')] end
-*}
-
-text {* Dummy patterns for continuous abstraction *}
-translations
-  "\<Lambda> _. t" => "CONST Abs_cfun (\<lambda> _. t)"
-
-subsection {* Continuous function space is pointed *}
-
-lemma UU_cfun: "\<bottom> \<in> cfun"
-by (simp add: cfun_def inst_fun_pcpo)
-
-instance cfun :: (cpo, discrete_cpo) discrete_cpo
-by intro_classes (simp add: below_cfun_def Rep_cfun_inject)
-
-instance cfun :: (cpo, pcpo) pcpo
-by (rule typedef_pcpo [OF type_definition_cfun below_cfun_def UU_cfun])
-
-lemmas Rep_cfun_strict =
-  typedef_Rep_strict [OF type_definition_cfun below_cfun_def UU_cfun]
-
-lemmas Abs_cfun_strict =
-  typedef_Abs_strict [OF type_definition_cfun below_cfun_def UU_cfun]
-
-text {* function application is strict in its first argument *}
-
-lemma Rep_cfun_strict1 [simp]: "\<bottom>\<cdot>x = \<bottom>"
-by (simp add: Rep_cfun_strict)
-
-lemma LAM_strict [simp]: "(\<Lambda> x. \<bottom>) = \<bottom>"
-by (simp add: inst_fun_pcpo [symmetric] Abs_cfun_strict)
-
-text {* for compatibility with old HOLCF-Version *}
-lemma inst_cfun_pcpo: "\<bottom> = (\<Lambda> x. \<bottom>)"
-by simp
-
-subsection {* Basic properties of continuous functions *}
-
-text {* Beta-equality for continuous functions *}
-
-lemma Abs_cfun_inverse2: "cont f \<Longrightarrow> Rep_cfun (Abs_cfun f) = f"
-by (simp add: Abs_cfun_inverse cfun_def)
-
-lemma beta_cfun: "cont f \<Longrightarrow> (\<Lambda> x. f x)\<cdot>u = f u"
-by (simp add: Abs_cfun_inverse2)
-
-text {* Beta-reduction simproc *}
-
-text {*
-  Given the term @{term "(\<Lambda> x. f x)\<cdot>y"}, the procedure tries to
-  construct the theorem @{term "(\<Lambda> x. f x)\<cdot>y == f y"}.  If this
-  theorem cannot be completely solved by the cont2cont rules, then
-  the procedure returns the ordinary conditional @{text beta_cfun}
-  rule.
-
-  The simproc does not solve any more goals that would be solved by
-  using @{text beta_cfun} as a simp rule.  The advantage of the
-  simproc is that it can avoid deeply-nested calls to the simplifier
-  that would otherwise be caused by large continuity side conditions.
-*}
-
-simproc_setup beta_cfun_proc ("Abs_cfun f\<cdot>x") = {*
-  fn phi => fn ss => fn ct =>
-    let
-      val dest = Thm.dest_comb;
-      val (f, x) = (apfst (snd o dest o snd o dest) o dest) ct;
-      val [T, U] = Thm.dest_ctyp (ctyp_of_term f);
-      val tr = instantiate' [SOME T, SOME U] [SOME f, SOME x]
-          (mk_meta_eq @{thm beta_cfun});
-      val rules = Cont2ContData.get (Simplifier.the_context ss);
-      val tac = SOLVED' (REPEAT_ALL_NEW (match_tac rules));
-    in SOME (perhaps (SINGLE (tac 1)) tr) end
-*}
-
-text {* Eta-equality for continuous functions *}
-
-lemma eta_cfun: "(\<Lambda> x. f\<cdot>x) = f"
-by (rule Rep_cfun_inverse)
-
-text {* Extensionality for continuous functions *}
-
-lemma cfun_eq_iff: "f = g \<longleftrightarrow> (\<forall>x. f\<cdot>x = g\<cdot>x)"
-by (simp add: Rep_cfun_inject [symmetric] fun_eq_iff)
-
-lemma cfun_eqI: "(\<And>x. f\<cdot>x = g\<cdot>x) \<Longrightarrow> f = g"
-by (simp add: cfun_eq_iff)
-
-text {* Extensionality wrt. ordering for continuous functions *}
-
-lemma cfun_below_iff: "f \<sqsubseteq> g \<longleftrightarrow> (\<forall>x. f\<cdot>x \<sqsubseteq> g\<cdot>x)" 
-by (simp add: below_cfun_def fun_below_iff)
-
-lemma cfun_belowI: "(\<And>x. f\<cdot>x \<sqsubseteq> g\<cdot>x) \<Longrightarrow> f \<sqsubseteq> g"
-by (simp add: cfun_below_iff)
-
-text {* Congruence for continuous function application *}
-
-lemma cfun_cong: "\<lbrakk>f = g; x = y\<rbrakk> \<Longrightarrow> f\<cdot>x = g\<cdot>y"
-by simp
-
-lemma cfun_fun_cong: "f = g \<Longrightarrow> f\<cdot>x = g\<cdot>x"
-by simp
-
-lemma cfun_arg_cong: "x = y \<Longrightarrow> f\<cdot>x = f\<cdot>y"
-by simp
-
-subsection {* Continuity of application *}
-
-lemma cont_Rep_cfun1: "cont (\<lambda>f. f\<cdot>x)"
-by (rule cont_Rep_cfun [THEN cont2cont_fun])
-
-lemma cont_Rep_cfun2: "cont (\<lambda>x. f\<cdot>x)"
-apply (cut_tac x=f in Rep_cfun)
-apply (simp add: cfun_def)
-done
-
-lemmas monofun_Rep_cfun = cont_Rep_cfun [THEN cont2mono]
-
-lemmas monofun_Rep_cfun1 = cont_Rep_cfun1 [THEN cont2mono, standard]
-lemmas monofun_Rep_cfun2 = cont_Rep_cfun2 [THEN cont2mono, standard]
-
-text {* contlub, cont properties of @{term Rep_cfun} in each argument *}
-
-lemma contlub_cfun_arg: "chain Y \<Longrightarrow> f\<cdot>(\<Squnion>i. Y i) = (\<Squnion>i. f\<cdot>(Y i))"
-by (rule cont_Rep_cfun2 [THEN cont2contlubE])
-
-lemma contlub_cfun_fun: "chain F \<Longrightarrow> (\<Squnion>i. F i)\<cdot>x = (\<Squnion>i. F i\<cdot>x)"
-by (rule cont_Rep_cfun1 [THEN cont2contlubE])
-
-text {* monotonicity of application *}
-
-lemma monofun_cfun_fun: "f \<sqsubseteq> g \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>x"
-by (simp add: cfun_below_iff)
-
-lemma monofun_cfun_arg: "x \<sqsubseteq> y \<Longrightarrow> f\<cdot>x \<sqsubseteq> f\<cdot>y"
-by (rule monofun_Rep_cfun2 [THEN monofunE])
-
-lemma monofun_cfun: "\<lbrakk>f \<sqsubseteq> g; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>y"
-by (rule below_trans [OF monofun_cfun_fun monofun_cfun_arg])
-
-text {* ch2ch - rules for the type @{typ "'a -> 'b"} *}
-
-lemma chain_monofun: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
-by (erule monofun_Rep_cfun2 [THEN ch2ch_monofun])
-
-lemma ch2ch_Rep_cfunR: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
-by (rule monofun_Rep_cfun2 [THEN ch2ch_monofun])
-
-lemma ch2ch_Rep_cfunL: "chain F \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>x)"
-by (rule monofun_Rep_cfun1 [THEN ch2ch_monofun])
-
-lemma ch2ch_Rep_cfun [simp]:
-  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>(Y i))"
-by (simp add: chain_def monofun_cfun)
-
-lemma ch2ch_LAM [simp]:
-  "\<lbrakk>\<And>x. chain (\<lambda>i. S i x); \<And>i. cont (\<lambda>x. S i x)\<rbrakk> \<Longrightarrow> chain (\<lambda>i. \<Lambda> x. S i x)"
-by (simp add: chain_def cfun_below_iff)
-
-text {* contlub, cont properties of @{term Rep_cfun} in both arguments *}
-
-lemma contlub_cfun: 
-  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> (\<Squnion>i. F i)\<cdot>(\<Squnion>i. Y i) = (\<Squnion>i. F i\<cdot>(Y i))"
-by (simp add: contlub_cfun_fun contlub_cfun_arg diag_lub)
-
-lemma cont_cfun: 
-  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> range (\<lambda>i. F i\<cdot>(Y i)) <<| (\<Squnion>i. F i)\<cdot>(\<Squnion>i. Y i)"
-apply (rule thelubE)
-apply (simp only: ch2ch_Rep_cfun)
-apply (simp only: contlub_cfun)
-done
-
-lemma contlub_LAM:
-  "\<lbrakk>\<And>x. chain (\<lambda>i. F i x); \<And>i. cont (\<lambda>x. F i x)\<rbrakk>
-    \<Longrightarrow> (\<Lambda> x. \<Squnion>i. F i x) = (\<Squnion>i. \<Lambda> x. F i x)"
-apply (simp add: lub_cfun)
-apply (simp add: Abs_cfun_inverse2)
-apply (simp add: thelub_fun ch2ch_lambda)
-done
-
-lemmas lub_distribs = 
-  contlub_cfun [symmetric]
-  contlub_LAM [symmetric]
-
-text {* strictness *}
-
-lemma strictI: "f\<cdot>x = \<bottom> \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
-apply (rule UU_I)
-apply (erule subst)
-apply (rule minimal [THEN monofun_cfun_arg])
-done
-
-text {* type @{typ "'a -> 'b"} is chain complete *}
-
-lemma lub_cfun: "chain F \<Longrightarrow> range F <<| (\<Lambda> x. \<Squnion>i. F i\<cdot>x)"
-by (simp only: contlub_cfun_fun [symmetric] eta_cfun thelubE)
-
-lemma thelub_cfun: "chain F \<Longrightarrow> (\<Squnion>i. F i) = (\<Lambda> x. \<Squnion>i. F i\<cdot>x)"
-by (rule lub_cfun [THEN lub_eqI])
-
-subsection {* Continuity simplification procedure *}
-
-text {* cont2cont lemma for @{term Rep_cfun} *}
-
-lemma cont2cont_APP [simp, cont2cont]:
-  assumes f: "cont (\<lambda>x. f x)"
-  assumes t: "cont (\<lambda>x. t x)"
-  shows "cont (\<lambda>x. (f x)\<cdot>(t x))"
-proof -
-  have 1: "\<And>y. cont (\<lambda>x. (f x)\<cdot>y)"
-    using cont_Rep_cfun1 f by (rule cont_compose)
-  show "cont (\<lambda>x. (f x)\<cdot>(t x))"
-    using t cont_Rep_cfun2 1 by (rule cont_apply)
-qed
-
-text {*
-  Two specific lemmas for the combination of LCF and HOL terms.
-  These lemmas are needed in theories that use types like @{typ "'a \<rightarrow> 'b \<Rightarrow> 'c"}.
-*}
-
-lemma cont_APP_app [simp]: "\<lbrakk>cont f; cont g\<rbrakk> \<Longrightarrow> cont (\<lambda>x. ((f x)\<cdot>(g x)) s)"
-by (rule cont2cont_APP [THEN cont2cont_fun])
-
-lemma cont_APP_app_app [simp]: "\<lbrakk>cont f; cont g\<rbrakk> \<Longrightarrow> cont (\<lambda>x. ((f x)\<cdot>(g x)) s t)"
-by (rule cont_APP_app [THEN cont2cont_fun])
-
-
-text {* cont2mono Lemma for @{term "%x. LAM y. c1(x)(y)"} *}
-
-lemma cont2mono_LAM:
-  "\<lbrakk>\<And>x. cont (\<lambda>y. f x y); \<And>y. monofun (\<lambda>x. f x y)\<rbrakk>
-    \<Longrightarrow> monofun (\<lambda>x. \<Lambda> y. f x y)"
-  unfolding monofun_def cfun_below_iff by simp
-
-text {* cont2cont Lemma for @{term "%x. LAM y. f x y"} *}
-
-text {*
-  Not suitable as a cont2cont rule, because on nested lambdas
-  it causes exponential blow-up in the number of subgoals.
-*}
-
-lemma cont2cont_LAM:
-  assumes f1: "\<And>x. cont (\<lambda>y. f x y)"
-  assumes f2: "\<And>y. cont (\<lambda>x. f x y)"
-  shows "cont (\<lambda>x. \<Lambda> y. f x y)"
-proof (rule cont_Abs_cfun)
-  fix x
-  from f1 show "f x \<in> cfun" by (simp add: cfun_def)
-  from f2 show "cont f" by (rule cont2cont_lambda)
-qed
-
-text {*
-  This version does work as a cont2cont rule, since it
-  has only a single subgoal.
-*}
-
-lemma cont2cont_LAM' [simp, cont2cont]:
-  fixes f :: "'a::cpo \<Rightarrow> 'b::cpo \<Rightarrow> 'c::cpo"
-  assumes f: "cont (\<lambda>p. f (fst p) (snd p))"
-  shows "cont (\<lambda>x. \<Lambda> y. f x y)"
-using assms by (simp add: cont2cont_LAM prod_cont_iff)
-
-lemma cont2cont_LAM_discrete [simp, cont2cont]:
-  "(\<And>y::'a::discrete_cpo. cont (\<lambda>x. f x y)) \<Longrightarrow> cont (\<lambda>x. \<Lambda> y. f x y)"
-by (simp add: cont2cont_LAM)
-
-subsection {* Miscellaneous *}
-
-text {* Monotonicity of @{term Abs_cfun} *}
-
-lemma monofun_LAM:
-  "\<lbrakk>cont f; cont g; \<And>x. f x \<sqsubseteq> g x\<rbrakk> \<Longrightarrow> (\<Lambda> x. f x) \<sqsubseteq> (\<Lambda> x. g x)"
-by (simp add: cfun_below_iff)
-
-text {* some lemmata for functions with flat/chfin domain/range types *}
-
-lemma chfin_Rep_cfunR: "chain (Y::nat => 'a::cpo->'b::chfin)  
-      ==> !s. ? n. (LUB i. Y i)$s = Y n$s"
-apply (rule allI)
-apply (subst contlub_cfun_fun)
-apply assumption
-apply (fast intro!: lub_eqI chfin lub_finch2 chfin2finch ch2ch_Rep_cfunL)
-done
-
-lemma adm_chfindom: "adm (\<lambda>(u::'a::cpo \<rightarrow> 'b::chfin). P(u\<cdot>s))"
-by (rule adm_subst, simp, rule adm_chfin)
-
-subsection {* Continuous injection-retraction pairs *}
-
-text {* Continuous retractions are strict. *}
-
-lemma retraction_strict:
-  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
-apply (rule UU_I)
-apply (drule_tac x="\<bottom>" in spec)
-apply (erule subst)
-apply (rule monofun_cfun_arg)
-apply (rule minimal)
-done
-
-lemma injection_eq:
-  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x = g\<cdot>y) = (x = y)"
-apply (rule iffI)
-apply (drule_tac f=f in cfun_arg_cong)
-apply simp
-apply simp
-done
-
-lemma injection_below:
-  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x \<sqsubseteq> g\<cdot>y) = (x \<sqsubseteq> y)"
-apply (rule iffI)
-apply (drule_tac f=f in monofun_cfun_arg)
-apply simp
-apply (erule monofun_cfun_arg)
-done
-
-lemma injection_defined_rev:
-  "\<lbrakk>\<forall>x. f\<cdot>(g\<cdot>x) = x; g\<cdot>z = \<bottom>\<rbrakk> \<Longrightarrow> z = \<bottom>"
-apply (drule_tac f=f in cfun_arg_cong)
-apply (simp add: retraction_strict)
-done
-
-lemma injection_defined:
-  "\<lbrakk>\<forall>x. f\<cdot>(g\<cdot>x) = x; z \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> g\<cdot>z \<noteq> \<bottom>"
-by (erule contrapos_nn, rule injection_defined_rev)
-
-text {* a result about functions with flat codomain *}
-
-lemma flat_eqI: "\<lbrakk>(x::'a::flat) \<sqsubseteq> y; x \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> x = y"
-by (drule ax_flat, simp)
-
-lemma flat_codom:
-  "f\<cdot>x = (c::'b::flat) \<Longrightarrow> f\<cdot>\<bottom> = \<bottom> \<or> (\<forall>z. f\<cdot>z = c)"
-apply (case_tac "f\<cdot>x = \<bottom>")
-apply (rule disjI1)
-apply (rule UU_I)
-apply (erule_tac t="\<bottom>" in subst)
-apply (rule minimal [THEN monofun_cfun_arg])
-apply clarify
-apply (rule_tac a = "f\<cdot>\<bottom>" in refl [THEN box_equals])
-apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
-apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
-done
-
-subsection {* Identity and composition *}
-
-definition
-  ID :: "'a \<rightarrow> 'a" where
-  "ID = (\<Lambda> x. x)"
-
-definition
-  cfcomp  :: "('b \<rightarrow> 'c) \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'c" where
-  oo_def: "cfcomp = (\<Lambda> f g x. f\<cdot>(g\<cdot>x))"
-
-abbreviation
-  cfcomp_syn :: "['b \<rightarrow> 'c, 'a \<rightarrow> 'b] \<Rightarrow> 'a \<rightarrow> 'c"  (infixr "oo" 100)  where
-  "f oo g == cfcomp\<cdot>f\<cdot>g"
-
-lemma ID1 [simp]: "ID\<cdot>x = x"
-by (simp add: ID_def)
-
-lemma cfcomp1: "(f oo g) = (\<Lambda> x. f\<cdot>(g\<cdot>x))"
-by (simp add: oo_def)
-
-lemma cfcomp2 [simp]: "(f oo g)\<cdot>x = f\<cdot>(g\<cdot>x)"
-by (simp add: cfcomp1)
-
-lemma cfcomp_LAM: "cont g \<Longrightarrow> f oo (\<Lambda> x. g x) = (\<Lambda> x. f\<cdot>(g x))"
-by (simp add: cfcomp1)
-
-lemma cfcomp_strict [simp]: "\<bottom> oo f = \<bottom>"
-by (simp add: cfun_eq_iff)
-
-text {*
-  Show that interpretation of (pcpo,@{text "_->_"}) is a category.
-  The class of objects is interpretation of syntactical class pcpo.
-  The class of arrows  between objects @{typ 'a} and @{typ 'b} is interpret. of @{typ "'a -> 'b"}.
-  The identity arrow is interpretation of @{term ID}.
-  The composition of f and g is interpretation of @{text "oo"}.
-*}
-
-lemma ID2 [simp]: "f oo ID = f"
-by (rule cfun_eqI, simp)
-
-lemma ID3 [simp]: "ID oo f = f"
-by (rule cfun_eqI, simp)
-
-lemma assoc_oo: "f oo (g oo h) = (f oo g) oo h"
-by (rule cfun_eqI, simp)
-
-subsection {* Strictified functions *}
-
-default_sort pcpo
-
-definition
-  seq :: "'a \<rightarrow> 'b \<rightarrow> 'b" where
-  "seq = (\<Lambda> x. if x = \<bottom> then \<bottom> else ID)"
-
-lemma cont_seq: "cont (\<lambda>x. if x = \<bottom> then \<bottom> else y)"
-unfolding cont_def is_lub_def is_ub_def ball_simps
-by (simp add: lub_eq_bottom_iff)
-
-lemma seq_conv_if: "seq\<cdot>x = (if x = \<bottom> then \<bottom> else ID)"
-unfolding seq_def by (simp add: cont_seq)
-
-lemma seq1 [simp]: "seq\<cdot>\<bottom> = \<bottom>"
-by (simp add: seq_conv_if)
-
-lemma seq2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> seq\<cdot>x = ID"
-by (simp add: seq_conv_if)
-
-lemma seq3 [simp]: "seq\<cdot>x\<cdot>\<bottom> = \<bottom>"
-by (simp add: seq_conv_if)
-
-definition
-  strictify  :: "('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'b" where
-  "strictify = (\<Lambda> f x. seq\<cdot>x\<cdot>(f\<cdot>x))"
-
-lemma strictify_conv_if: "strictify\<cdot>f\<cdot>x = (if x = \<bottom> then \<bottom> else f\<cdot>x)"
-unfolding strictify_def by simp
-
-lemma strictify1 [simp]: "strictify\<cdot>f\<cdot>\<bottom> = \<bottom>"
-by (simp add: strictify_conv_if)
-
-lemma strictify2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> strictify\<cdot>f\<cdot>x = f\<cdot>x"
-by (simp add: strictify_conv_if)
-
-subsection {* Continuity of let-bindings *}
-
-lemma cont2cont_Let:
-  assumes f: "cont (\<lambda>x. f x)"
-  assumes g1: "\<And>y. cont (\<lambda>x. g x y)"
-  assumes g2: "\<And>x. cont (\<lambda>y. g x y)"
-  shows "cont (\<lambda>x. let y = f x in g x y)"
-unfolding Let_def using f g2 g1 by (rule cont_apply)
-
-lemma cont2cont_Let' [simp, cont2cont]:
-  assumes f: "cont (\<lambda>x. f x)"
-  assumes g: "cont (\<lambda>p. g (fst p) (snd p))"
-  shows "cont (\<lambda>x. let y = f x in g x y)"
-using f
-proof (rule cont2cont_Let)
-  fix x show "cont (\<lambda>y. g x y)"
-    using g by (simp add: prod_cont_iff)
-next
-  fix y show "cont (\<lambda>x. g x y)"
-    using g by (simp add: prod_cont_iff)
-qed
-
-text {* The simple version (suggested by Joachim Breitner) is needed if
-  the type of the defined term is not a cpo. *}
-
-lemma cont2cont_Let_simple [simp, cont2cont]:
-  assumes "\<And>y. cont (\<lambda>x. g x y)"
-  shows "cont (\<lambda>x. let y = t in g x y)"
-unfolding Let_def using assms .
-
-end