src/HOL/Probability/Infinite_Product_Measure.thy
changeset 47694 05663f75964c
parent 46905 6b1c0a80a57a
child 47762 d31085f07f60
--- a/src/HOL/Probability/Infinite_Product_Measure.thy	Mon Apr 23 12:23:23 2012 +0100
+++ b/src/HOL/Probability/Infinite_Product_Measure.thy	Mon Apr 23 12:14:35 2012 +0200
@@ -5,9 +5,49 @@
 header {*Infinite Product Measure*}
 
 theory Infinite_Product_Measure
-  imports Probability_Measure
+  imports Probability_Measure Caratheodory
 begin
 
+lemma sigma_sets_mono: assumes "A \<subseteq> sigma_sets X B" shows "sigma_sets X A \<subseteq> sigma_sets X B"
+proof
+  fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B"
+    by induct (insert `A \<subseteq> sigma_sets X B`, auto intro: sigma_sets.intros)
+qed
+
+lemma sigma_sets_mono': assumes "A \<subseteq> B" shows "sigma_sets X A \<subseteq> sigma_sets X B"
+proof
+  fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B"
+    by induct (insert `A \<subseteq> B`, auto intro: sigma_sets.intros)
+qed
+
+lemma sigma_sets_superset_generator: "A \<subseteq> sigma_sets X A"
+  by (auto intro: sigma_sets.Basic)
+
+lemma (in product_sigma_finite)
+  assumes IJ: "I \<inter> J = {}" "finite I" "finite J" and A: "A \<in> sets (Pi\<^isub>M (I \<union> J) M)"
+  shows emeasure_fold_integral:
+    "emeasure (Pi\<^isub>M (I \<union> J) M) A = (\<integral>\<^isup>+x. emeasure (Pi\<^isub>M J M) (merge I x J -` A \<inter> space (Pi\<^isub>M J M)) \<partial>Pi\<^isub>M I M)" (is ?I)
+    and emeasure_fold_measurable:
+    "(\<lambda>x. emeasure (Pi\<^isub>M J M) (merge I x J -` A \<inter> space (Pi\<^isub>M J M))) \<in> borel_measurable (Pi\<^isub>M I M)" (is ?B)
+proof -
+  interpret I: finite_product_sigma_finite M I by default fact
+  interpret J: finite_product_sigma_finite M J by default fact
+  interpret IJ: pair_sigma_finite "Pi\<^isub>M I M" "Pi\<^isub>M J M" ..
+  have merge: "(\<lambda>(x, y). merge I x J y) -` A \<inter> space (Pi\<^isub>M I M \<Otimes>\<^isub>M Pi\<^isub>M J M) \<in> sets (Pi\<^isub>M I M \<Otimes>\<^isub>M Pi\<^isub>M J M)"
+    by (intro measurable_sets[OF _ A] measurable_merge assms)
+
+  show ?I
+    apply (subst distr_merge[symmetric, OF IJ])
+    apply (subst emeasure_distr[OF measurable_merge[OF IJ(1)] A])
+    apply (subst IJ.emeasure_pair_measure_alt[OF merge])
+    apply (auto intro!: positive_integral_cong arg_cong2[where f=emeasure] simp: space_pair_measure)
+    done
+
+  show ?B
+    using IJ.measurable_emeasure_Pair1[OF merge]
+    by (simp add: vimage_compose[symmetric] comp_def space_pair_measure cong: measurable_cong)
+qed
+
 lemma restrict_extensional_sub[intro]: "A \<subseteq> B \<Longrightarrow> restrict f A \<in> extensional B"
   unfolding restrict_def extensional_def by auto
 
@@ -41,189 +81,178 @@
   qed
 qed
 
-lemma (in product_prob_space) measure_preserving_restrict:
+lemma prod_algebraI_finite:
+  "finite I \<Longrightarrow> (\<forall>i\<in>I. E i \<in> sets (M i)) \<Longrightarrow> (Pi\<^isub>E I E) \<in> prod_algebra I M"
+  using prod_algebraI[of I I E M] prod_emb_PiE_same_index[of I E M, OF sets_into_space] by simp
+
+lemma Int_stable_PiE: "Int_stable {Pi\<^isub>E J E | E. \<forall>i\<in>I. E i \<in> sets (M i)}"
+proof (safe intro!: Int_stableI)
+  fix E F assume "\<forall>i\<in>I. E i \<in> sets (M i)" "\<forall>i\<in>I. F i \<in> sets (M i)"
+  then show "\<exists>G. Pi\<^isub>E J E \<inter> Pi\<^isub>E J F = Pi\<^isub>E J G \<and> (\<forall>i\<in>I. G i \<in> sets (M i))"
+    by (auto intro!: exI[of _ "\<lambda>i. E i \<inter> F i"])
+qed
+
+lemma prod_emb_trans[simp]:
+  "J \<subseteq> K \<Longrightarrow> K \<subseteq> L \<Longrightarrow> prod_emb L M K (prod_emb K M J X) = prod_emb L M J X"
+  by (auto simp add: Int_absorb1 prod_emb_def)
+
+lemma prod_emb_Pi:
+  assumes "X \<in> (\<Pi> j\<in>J. sets (M j))" "J \<subseteq> K"
+  shows "prod_emb K M J (Pi\<^isub>E J X) = (\<Pi>\<^isub>E i\<in>K. if i \<in> J then X i else space (M i))"
+  using assms space_closed
+  by (auto simp: prod_emb_def Pi_iff split: split_if_asm) blast+
+
+lemma prod_emb_id:
+  "B \<subseteq> (\<Pi>\<^isub>E i\<in>L. space (M i)) \<Longrightarrow> prod_emb L M L B = B"
+  by (auto simp: prod_emb_def Pi_iff subset_eq extensional_restrict)
+
+lemma measurable_prod_emb[intro, simp]:
+  "J \<subseteq> L \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> prod_emb L M J X \<in> sets (Pi\<^isub>M L M)"
+  unfolding prod_emb_def space_PiM[symmetric]
+  by (auto intro!: measurable_sets measurable_restrict measurable_component_singleton)
+
+lemma measurable_restrict_subset: "J \<subseteq> L \<Longrightarrow> (\<lambda>f. restrict f J) \<in> measurable (Pi\<^isub>M L M) (Pi\<^isub>M J M)"
+  by (intro measurable_restrict measurable_component_singleton) auto
+
+lemma (in product_prob_space) distr_restrict:
   assumes "J \<noteq> {}" "J \<subseteq> K" "finite K"
-  shows "(\<lambda>f. restrict f J) \<in> measure_preserving (\<Pi>\<^isub>M i\<in>K. M i) (\<Pi>\<^isub>M i\<in>J. M i)" (is "?R \<in> _")
-proof -
-  interpret K: finite_product_prob_space M K by default fact
-  have J: "J \<noteq> {}" "finite J" using assms by (auto simp add: finite_subset)
-  interpret J: finite_product_prob_space M J
-    by default (insert J, auto)
-  from J.sigma_finite_pairs guess F .. note F = this
-  then have [simp,intro]: "\<And>k i. k \<in> J \<Longrightarrow> F k i \<in> sets (M k)"
-    by auto
-  let ?F = "\<lambda>i. \<Pi>\<^isub>E k\<in>J. F k i"
-  let ?J = "product_algebra_generator J M \<lparr> measure := measure (Pi\<^isub>M J M) \<rparr>"
-  have "?R \<in> measure_preserving (\<Pi>\<^isub>M i\<in>K. M i) (sigma ?J)"
-  proof (rule K.measure_preserving_Int_stable)
-    show "Int_stable ?J"
-      by (auto simp: Int_stable_def product_algebra_generator_def PiE_Int)
-    show "range ?F \<subseteq> sets ?J" "incseq ?F" "(\<Union>i. ?F i) = space ?J"
-      using F by auto
-    show "\<And>i. measure ?J (?F i) \<noteq> \<infinity>"
-      using F by (simp add: J.measure_times setprod_PInf)
-    have "measure_space (Pi\<^isub>M J M)" by default
-    then show "measure_space (sigma ?J)"
-      by (simp add: product_algebra_def sigma_def)
-    show "?R \<in> measure_preserving (Pi\<^isub>M K M) ?J"
-    proof (simp add: measure_preserving_def measurable_def product_algebra_generator_def del: vimage_Int,
-           safe intro!: restrict_extensional)
-      fix x k assume "k \<in> J" "x \<in> (\<Pi> i\<in>K. space (M i))"
-      then show "x k \<in> space (M k)" using `J \<subseteq> K` by auto
-    next
-      fix E assume "E \<in> (\<Pi> i\<in>J. sets (M i))"
-      then have E: "\<And>j. j \<in> J \<Longrightarrow> E j \<in> sets (M j)" by auto
-      then have *: "?R -` Pi\<^isub>E J E \<inter> (\<Pi>\<^isub>E i\<in>K. space (M i)) = (\<Pi>\<^isub>E i\<in>K. if i \<in> J then E i else space (M i))"
-        (is "?X = Pi\<^isub>E K ?M")
-        using `J \<subseteq> K` sets_into_space by (auto simp: Pi_iff split: split_if_asm) blast+
-      with E show "?X \<in> sets (Pi\<^isub>M K M)"
-        by (auto intro!: product_algebra_generatorI)
-      have "measure (Pi\<^isub>M J M) (Pi\<^isub>E J E) = (\<Prod>i\<in>J. measure (M i) (?M i))"
-        using E by (simp add: J.measure_times)
-      also have "\<dots> = measure (Pi\<^isub>M K M) ?X"
-        unfolding * using E `finite K` `J \<subseteq> K`
-        by (auto simp: K.measure_times M.measure_space_1
-                 cong del: setprod_cong
-                 intro!: setprod_mono_one_left)
-      finally show "measure (Pi\<^isub>M J M) (Pi\<^isub>E J E) = measure (Pi\<^isub>M K M) ?X" .
-    qed
-  qed
-  then show ?thesis
-    by (simp add: product_algebra_def sigma_def)
+  shows "(\<Pi>\<^isub>M i\<in>J. M i) = distr (\<Pi>\<^isub>M i\<in>K. M i) (\<Pi>\<^isub>M i\<in>J. M i) (\<lambda>f. restrict f J)" (is "?P = ?D")
+proof (rule measure_eqI_generator_eq)
+  have "finite J" using `J \<subseteq> K` `finite K` by (auto simp add: finite_subset)
+  interpret J: finite_product_prob_space M J proof qed fact
+  interpret K: finite_product_prob_space M K proof qed fact
+
+  let ?J = "{Pi\<^isub>E J E | E. \<forall>i\<in>J. E i \<in> sets (M i)}"
+  let ?F = "\<lambda>i. \<Pi>\<^isub>E k\<in>J. space (M k)"
+  let ?\<Omega> = "(\<Pi>\<^isub>E k\<in>J. space (M k))"
+  show "Int_stable ?J"
+    by (rule Int_stable_PiE)
+  show "range ?F \<subseteq> ?J" "incseq ?F" "(\<Union>i. ?F i) = ?\<Omega>"
+    using `finite J` by (auto intro!: prod_algebraI_finite)
+  { fix i show "emeasure ?P (?F i) \<noteq> \<infinity>" by simp }
+  show "?J \<subseteq> Pow ?\<Omega>" by (auto simp: Pi_iff dest: sets_into_space)
+  show "sets (\<Pi>\<^isub>M i\<in>J. M i) = sigma_sets ?\<Omega> ?J" "sets ?D = sigma_sets ?\<Omega> ?J"
+    using `finite J` by (simp_all add: sets_PiM prod_algebra_eq_finite Pi_iff)
+  
+  fix X assume "X \<in> ?J"
+  then obtain E where [simp]: "X = Pi\<^isub>E J E" and E: "\<forall>i\<in>J. E i \<in> sets (M i)" by auto
+  with `finite J` have X: "X \<in> sets (Pi\<^isub>M J M)" by auto
+
+  have "emeasure ?P X = (\<Prod> i\<in>J. emeasure (M i) (E i))"
+    using E by (simp add: J.measure_times)
+  also have "\<dots> = (\<Prod> i\<in>J. emeasure (M i) (if i \<in> J then E i else space (M i)))"
+    by simp
+  also have "\<dots> = (\<Prod> i\<in>K. emeasure (M i) (if i \<in> J then E i else space (M i)))"
+    using `finite K` `J \<subseteq> K`
+    by (intro setprod_mono_one_left) (auto simp: M.emeasure_space_1)
+  also have "\<dots> = emeasure (Pi\<^isub>M K M) (\<Pi>\<^isub>E i\<in>K. if i \<in> J then E i else space (M i))"
+    using E by (simp add: K.measure_times)
+  also have "(\<Pi>\<^isub>E i\<in>K. if i \<in> J then E i else space (M i)) = (\<lambda>f. restrict f J) -` Pi\<^isub>E J E \<inter> (\<Pi>\<^isub>E i\<in>K. space (M i))"
+    using `J \<subseteq> K` sets_into_space E by (force simp:  Pi_iff split: split_if_asm)
+  finally show "emeasure (Pi\<^isub>M J M) X = emeasure ?D X"
+    using X `J \<subseteq> K` apply (subst emeasure_distr)
+    by (auto intro!: measurable_restrict_subset simp: space_PiM)
 qed
 
-lemma (in product_prob_space) measurable_restrict:
-  assumes *: "J \<noteq> {}" "J \<subseteq> K" "finite K"
-  shows "(\<lambda>f. restrict f J) \<in> measurable (\<Pi>\<^isub>M i\<in>K. M i) (\<Pi>\<^isub>M i\<in>J. M i)"
-  using measure_preserving_restrict[OF *]
-  by (rule measure_preservingD2)
+abbreviation (in product_prob_space)
+  "emb L K X \<equiv> prod_emb L M K X"
+
+lemma (in product_prob_space) emeasure_prod_emb[simp]:
+  assumes L: "J \<noteq> {}" "J \<subseteq> L" "finite L" and X: "X \<in> sets (Pi\<^isub>M J M)"
+  shows "emeasure (Pi\<^isub>M L M) (emb L J X) = emeasure (Pi\<^isub>M J M) X"
+  by (subst distr_restrict[OF L])
+     (simp add: prod_emb_def space_PiM emeasure_distr measurable_restrict_subset L X)
 
-definition (in product_prob_space)
-  "emb J K X = (\<lambda>x. restrict x K) -` X \<inter> space (Pi\<^isub>M J M)"
+lemma (in product_prob_space) prod_emb_injective:
+  assumes "J \<noteq> {}" "J \<subseteq> L" "finite J" and sets: "X \<in> sets (Pi\<^isub>M J M)" "Y \<in> sets (Pi\<^isub>M J M)"
+  assumes "prod_emb L M J X = prod_emb L M J Y"
+  shows "X = Y"
+proof (rule injective_vimage_restrict)
+  show "X \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))" "Y \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))"
+    using sets[THEN sets_into_space] by (auto simp: space_PiM)
+  have "\<forall>i\<in>L. \<exists>x. x \<in> space (M i)"
+    using M.not_empty by auto
+  from bchoice[OF this]
+  show "(\<Pi>\<^isub>E i\<in>L. space (M i)) \<noteq> {}" by auto
+  show "(\<lambda>x. restrict x J) -` X \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i)) = (\<lambda>x. restrict x J) -` Y \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i))"
+    using `prod_emb L M J X = prod_emb L M J Y` by (simp add: prod_emb_def)
+qed fact
 
-lemma (in product_prob_space) emb_trans[simp]:
-  "J \<subseteq> K \<Longrightarrow> K \<subseteq> L \<Longrightarrow> emb L K (emb K J X) = emb L J X"
-  by (auto simp add: Int_absorb1 emb_def)
-
-lemma (in product_prob_space) emb_empty[simp]:
-  "emb K J {} = {}"
-  by (simp add: emb_def)
+definition (in product_prob_space) generator :: "('i \<Rightarrow> 'a) set set" where
+  "generator = (\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` sets (Pi\<^isub>M J M))"
 
-lemma (in product_prob_space) emb_Pi:
-  assumes "X \<in> (\<Pi> j\<in>J. sets (M j))" "J \<subseteq> K"
-  shows "emb K J (Pi\<^isub>E J X) = (\<Pi>\<^isub>E i\<in>K. if i \<in> J then X i else space (M i))"
-  using assms space_closed
-  by (auto simp: emb_def Pi_iff split: split_if_asm) blast+
+lemma (in product_prob_space) generatorI':
+  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> emb I J X \<in> generator"
+  unfolding generator_def by auto
 
-lemma (in product_prob_space) emb_injective:
-  assumes "J \<noteq> {}" "J \<subseteq> L" "finite J" and sets: "X \<in> sets (Pi\<^isub>M J M)" "Y \<in> sets (Pi\<^isub>M J M)"
-  assumes "emb L J X = emb L J Y"
-  shows "X = Y"
-proof -
-  interpret J: finite_product_sigma_finite M J by default fact
-  show "X = Y"
-  proof (rule injective_vimage_restrict)
-    show "X \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))" "Y \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))"
-      using J.sets_into_space sets by auto
-    have "\<forall>i\<in>L. \<exists>x. x \<in> space (M i)"
-      using M.not_empty by auto
-    from bchoice[OF this]
-    show "(\<Pi>\<^isub>E i\<in>L. space (M i)) \<noteq> {}" by auto
-    show "(\<lambda>x. restrict x J) -` X \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i)) = (\<lambda>x. restrict x J) -` Y \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i))"
-      using `emb L J X = emb L J Y` by (simp add: emb_def)
-  qed fact
+lemma (in product_prob_space) algebra_generator:
+  assumes "I \<noteq> {}" shows "algebra (\<Pi>\<^isub>E i\<in>I. space (M i)) generator" (is "algebra ?\<Omega> ?G")
+proof
+  let ?G = generator
+  show "?G \<subseteq> Pow ?\<Omega>"
+    by (auto simp: generator_def prod_emb_def)
+  from `I \<noteq> {}` obtain i where "i \<in> I" by auto
+  then show "{} \<in> ?G"
+    by (auto intro!: exI[of _ "{i}"] image_eqI[where x="\<lambda>i. {}"]
+             simp: sigma_sets.Empty generator_def prod_emb_def)
+  from `i \<in> I` show "?\<Omega> \<in> ?G"
+    by (auto intro!: exI[of _ "{i}"] image_eqI[where x="Pi\<^isub>E {i} (\<lambda>i. space (M i))"]
+             simp: generator_def prod_emb_def)
+  fix A assume "A \<in> ?G"
+  then obtain JA XA where XA: "JA \<noteq> {}" "finite JA" "JA \<subseteq> I" "XA \<in> sets (Pi\<^isub>M JA M)" and A: "A = emb I JA XA"
+    by (auto simp: generator_def)
+  fix B assume "B \<in> ?G"
+  then obtain JB XB where XB: "JB \<noteq> {}" "finite JB" "JB \<subseteq> I" "XB \<in> sets (Pi\<^isub>M JB M)" and B: "B = emb I JB XB"
+    by (auto simp: generator_def)
+  let ?RA = "emb (JA \<union> JB) JA XA"
+  let ?RB = "emb (JA \<union> JB) JB XB"
+  have *: "A - B = emb I (JA \<union> JB) (?RA - ?RB)" "A \<union> B = emb I (JA \<union> JB) (?RA \<union> ?RB)"
+    using XA A XB B by auto
+  show "A - B \<in> ?G" "A \<union> B \<in> ?G"
+    unfolding * using XA XB by (safe intro!: generatorI') auto
 qed
 
-lemma (in product_prob_space) emb_id:
-  "B \<subseteq> (\<Pi>\<^isub>E i\<in>L. space (M i)) \<Longrightarrow> emb L L B = B"
-  by (auto simp: emb_def Pi_iff subset_eq extensional_restrict)
-
-lemma (in product_prob_space) emb_simps:
-  shows "emb L K (A \<union> B) = emb L K A \<union> emb L K B"
-    and "emb L K (A \<inter> B) = emb L K A \<inter> emb L K B"
-    and "emb L K (A - B) = emb L K A - emb L K B"
-  by (auto simp: emb_def)
-
-lemma (in product_prob_space) measurable_emb[intro,simp]:
-  assumes *: "J \<noteq> {}" "J \<subseteq> L" "finite L" "X \<in> sets (Pi\<^isub>M J M)"
-  shows "emb L J X \<in> sets (Pi\<^isub>M L M)"
-  using measurable_restrict[THEN measurable_sets, OF *] by (simp add: emb_def)
-
-lemma (in product_prob_space) measure_emb[intro,simp]:
-  assumes *: "J \<noteq> {}" "J \<subseteq> L" "finite L" "X \<in> sets (Pi\<^isub>M J M)"
-  shows "measure (Pi\<^isub>M L M) (emb L J X) = measure (Pi\<^isub>M J M) X"
-  using measure_preserving_restrict[THEN measure_preservingD, OF *]
-  by (simp add: emb_def)
-
-definition (in product_prob_space) generator :: "('i \<Rightarrow> 'a) measure_space" where
-  "generator = \<lparr>
-    space = (\<Pi>\<^isub>E i\<in>I. space (M i)),
-    sets = (\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` sets (Pi\<^isub>M J M)),
-    measure = undefined
-  \<rparr>"
+lemma (in product_prob_space) sets_PiM_generator:
+  assumes "I \<noteq> {}" shows "sets (PiM I M) = sigma_sets (\<Pi>\<^isub>E i\<in>I. space (M i)) generator"
+proof
+  show "sets (Pi\<^isub>M I M) \<subseteq> sigma_sets (\<Pi>\<^isub>E i\<in>I. space (M i)) generator"
+    unfolding sets_PiM
+  proof (safe intro!: sigma_sets_subseteq)
+    fix A assume "A \<in> prod_algebra I M" with `I \<noteq> {}` show "A \<in> generator"
+      by (auto intro!: generatorI' elim!: prod_algebraE)
+  qed
+qed (auto simp: generator_def space_PiM[symmetric] intro!: sigma_sets_subset)
 
 lemma (in product_prob_space) generatorI:
-  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> A = emb I J X \<Longrightarrow> A \<in> sets generator"
-  unfolding generator_def by auto
-
-lemma (in product_prob_space) generatorI':
-  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> emb I J X \<in> sets generator"
+  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> A = emb I J X \<Longrightarrow> A \<in> generator"
   unfolding generator_def by auto
 
-lemma (in product_sigma_finite)
-  assumes "I \<inter> J = {}" "finite I" "finite J" and A: "A \<in> sets (Pi\<^isub>M (I \<union> J) M)"
-  shows measure_fold_integral:
-    "measure (Pi\<^isub>M (I \<union> J) M) A = (\<integral>\<^isup>+x. measure (Pi\<^isub>M J M) (merge I x J -` A \<inter> space (Pi\<^isub>M J M)) \<partial>Pi\<^isub>M I M)" (is ?I)
-    and measure_fold_measurable:
-    "(\<lambda>x. measure (Pi\<^isub>M J M) (merge I x J -` A \<inter> space (Pi\<^isub>M J M))) \<in> borel_measurable (Pi\<^isub>M I M)" (is ?B)
-proof -
-  interpret I: finite_product_sigma_finite M I by default fact
-  interpret J: finite_product_sigma_finite M J by default fact
-  interpret IJ: pair_sigma_finite I.P J.P ..
-  show ?I
-    unfolding measure_fold[OF assms]
-    apply (subst IJ.pair_measure_alt)
-    apply (intro measurable_sets[OF _ A] measurable_merge assms)
-    apply (auto simp: vimage_compose[symmetric] comp_def space_pair_measure
-      intro!: I.positive_integral_cong)
-    done
-
-  have "(\<lambda>(x, y). merge I x J y) -` A \<inter> space (I.P \<Otimes>\<^isub>M J.P) \<in> sets (I.P \<Otimes>\<^isub>M J.P)"
-    by (intro measurable_sets[OF _ A] measurable_merge assms)
-  from IJ.measure_cut_measurable_fst[OF this]
-  show ?B
-    apply (auto simp: vimage_compose[symmetric] comp_def space_pair_measure)
-    apply (subst (asm) measurable_cong)
-    apply auto
-    done
-qed
-
 definition (in product_prob_space)
   "\<mu>G A =
-    (THE x. \<forall>J. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> J \<subseteq> I \<longrightarrow> (\<forall>X\<in>sets (Pi\<^isub>M J M). A = emb I J X \<longrightarrow> x = measure (Pi\<^isub>M J M) X))"
+    (THE x. \<forall>J. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> J \<subseteq> I \<longrightarrow> (\<forall>X\<in>sets (Pi\<^isub>M J M). A = emb I J X \<longrightarrow> x = emeasure (Pi\<^isub>M J M) X))"
 
 lemma (in product_prob_space) \<mu>G_spec:
   assumes J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
-  shows "\<mu>G A = measure (Pi\<^isub>M J M) X"
+  shows "\<mu>G A = emeasure (Pi\<^isub>M J M) X"
   unfolding \<mu>G_def
 proof (intro the_equality allI impI ballI)
   fix K Y assume K: "K \<noteq> {}" "finite K" "K \<subseteq> I" "A = emb I K Y" "Y \<in> sets (Pi\<^isub>M K M)"
-  have "measure (Pi\<^isub>M K M) Y = measure (Pi\<^isub>M (K \<union> J) M) (emb (K \<union> J) K Y)"
+  have "emeasure (Pi\<^isub>M K M) Y = emeasure (Pi\<^isub>M (K \<union> J) M) (emb (K \<union> J) K Y)"
     using K J by simp
   also have "emb (K \<union> J) K Y = emb (K \<union> J) J X"
-    using K J by (simp add: emb_injective[of "K \<union> J" I])
-  also have "measure (Pi\<^isub>M (K \<union> J) M) (emb (K \<union> J) J X) = measure (Pi\<^isub>M J M) X"
+    using K J by (simp add: prod_emb_injective[of "K \<union> J" I])
+  also have "emeasure (Pi\<^isub>M (K \<union> J) M) (emb (K \<union> J) J X) = emeasure (Pi\<^isub>M J M) X"
     using K J by simp
-  finally show "measure (Pi\<^isub>M J M) X = measure (Pi\<^isub>M K M) Y" ..
+  finally show "emeasure (Pi\<^isub>M J M) X = emeasure (Pi\<^isub>M K M) Y" ..
 qed (insert J, force)
 
 lemma (in product_prob_space) \<mu>G_eq:
-  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> \<mu>G (emb I J X) = measure (Pi\<^isub>M J M) X"
+  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> \<mu>G (emb I J X) = emeasure (Pi\<^isub>M J M) X"
   by (intro \<mu>G_spec) auto
 
 lemma (in product_prob_space) generator_Ex:
-  assumes *: "A \<in> sets generator"
-  shows "\<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^isub>M J M) \<and> A = emb I J X \<and> \<mu>G A = measure (Pi\<^isub>M J M) X"
+  assumes *: "A \<in> generator"
+  shows "\<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^isub>M J M) \<and> A = emb I J X \<and> \<mu>G A = emeasure (Pi\<^isub>M J M) X"
 proof -
   from * obtain J X where J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
     unfolding generator_def by auto
@@ -231,11 +260,11 @@
 qed
 
 lemma (in product_prob_space) generatorE:
-  assumes A: "A \<in> sets generator"
-  obtains J X where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A" "\<mu>G A = measure (Pi\<^isub>M J M) X"
+  assumes A: "A \<in> generator"
+  obtains J X where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A" "\<mu>G A = emeasure (Pi\<^isub>M J M) X"
 proof -
   from generator_Ex[OF A] obtain X J where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A"
-    "\<mu>G A = measure (Pi\<^isub>M J M) X" by auto
+    "\<mu>G A = emeasure (Pi\<^isub>M J M) X" by auto
   then show thesis by (intro that) auto
 qed
 
@@ -243,11 +272,7 @@
   assumes "finite J" "finite K" "J \<inter> K = {}" and A: "A \<in> sets (Pi\<^isub>M (J \<union> K) M)" and x: "x \<in> space (Pi\<^isub>M J M)"
   shows "merge J x K -` A \<inter> space (Pi\<^isub>M K M) \<in> sets (Pi\<^isub>M K M)"
 proof -
-  interpret J: finite_product_sigma_algebra M J by default fact
-  interpret K: finite_product_sigma_algebra M K by default fact
-  interpret JK: pair_sigma_algebra J.P K.P ..
-
-  from JK.measurable_cut_fst[OF
+  from sets_Pair1[OF
     measurable_merge[THEN measurable_sets, OF `J \<inter> K = {}`], OF A, of x] x
   show ?thesis
       by (simp add: space_pair_measure comp_def vimage_compose[symmetric])
@@ -266,75 +291,27 @@
   have [simp]: "(K - J) \<inter> (K \<union> J) = K - J" by auto
   have [simp]: "(K - J) \<inter> K = K - J" by auto
   from y `K \<subseteq> I` `J \<subseteq> I` show ?thesis
-    by (simp split: split_merge add: emb_def Pi_iff extensional_merge_sub set_eq_iff) auto
-qed
-
-definition (in product_prob_space) infprod_algebra :: "('i \<Rightarrow> 'a) measure_space" where
-  "infprod_algebra = sigma generator \<lparr> measure :=
-    (SOME \<mu>. (\<forall>s\<in>sets generator. \<mu> s = \<mu>G s) \<and>
-       prob_space \<lparr>space = space generator, sets = sets (sigma generator), measure = \<mu>\<rparr>)\<rparr>"
-
-syntax
-  "_PiP"  :: "[pttrn, 'i set, ('b, 'd) measure_space_scheme] => ('i => 'b, 'd) measure_space_scheme"  ("(3PIP _:_./ _)" 10)
-
-syntax (xsymbols)
-  "_PiP" :: "[pttrn, 'i set, ('b, 'd) measure_space_scheme] => ('i => 'b, 'd) measure_space_scheme"  ("(3\<Pi>\<^isub>P _\<in>_./ _)"   10)
-
-syntax (HTML output)
-  "_PiP" :: "[pttrn, 'i set, ('b, 'd) measure_space_scheme] => ('i => 'b, 'd) measure_space_scheme"  ("(3\<Pi>\<^isub>P _\<in>_./ _)"   10)
-
-abbreviation
-  "Pi\<^isub>P I M \<equiv> product_prob_space.infprod_algebra M I"
-
-translations
-  "PIP x:I. M" == "CONST Pi\<^isub>P I (%x. M)"
-
-lemma (in product_prob_space) algebra_generator:
-  assumes "I \<noteq> {}" shows "algebra generator"
-proof
-  let ?G = generator
-  show "sets ?G \<subseteq> Pow (space ?G)"
-    by (auto simp: generator_def emb_def)
-  from `I \<noteq> {}` obtain i where "i \<in> I" by auto
-  then show "{} \<in> sets ?G"
-    by (auto intro!: exI[of _ "{i}"] image_eqI[where x="\<lambda>i. {}"]
-      simp: product_algebra_def sigma_def sigma_sets.Empty generator_def emb_def)
-  from `i \<in> I` show "space ?G \<in> sets ?G"
-    by (auto intro!: exI[of _ "{i}"] image_eqI[where x="Pi\<^isub>E {i} (\<lambda>i. space (M i))"]
-      simp: generator_def emb_def)
-  fix A assume "A \<in> sets ?G"
-  then obtain JA XA where XA: "JA \<noteq> {}" "finite JA" "JA \<subseteq> I" "XA \<in> sets (Pi\<^isub>M JA M)" and A: "A = emb I JA XA"
-    by (auto simp: generator_def)
-  fix B assume "B \<in> sets ?G"
-  then obtain JB XB where XB: "JB \<noteq> {}" "finite JB" "JB \<subseteq> I" "XB \<in> sets (Pi\<^isub>M JB M)" and B: "B = emb I JB XB"
-    by (auto simp: generator_def)
-  let ?RA = "emb (JA \<union> JB) JA XA"
-  let ?RB = "emb (JA \<union> JB) JB XB"
-  interpret JAB: finite_product_sigma_algebra M "JA \<union> JB"
-    by default (insert XA XB, auto)
-  have *: "A - B = emb I (JA \<union> JB) (?RA - ?RB)" "A \<union> B = emb I (JA \<union> JB) (?RA \<union> ?RB)"
-    using XA A XB B by (auto simp: emb_simps)
-  then show "A - B \<in> sets ?G" "A \<union> B \<in> sets ?G"
-    using XA XB by (auto intro!: generatorI')
+    by (simp split: split_merge add: prod_emb_def Pi_iff extensional_merge_sub set_eq_iff space_PiM)
+       auto
 qed
 
 lemma (in product_prob_space) positive_\<mu>G: 
   assumes "I \<noteq> {}"
   shows "positive generator \<mu>G"
 proof -
-  interpret G!: algebra generator by (rule algebra_generator) fact
+  interpret G!: algebra "\<Pi>\<^isub>E i\<in>I. space (M i)" generator by (rule algebra_generator) fact
   show ?thesis
   proof (intro positive_def[THEN iffD2] conjI ballI)
     from generatorE[OF G.empty_sets] guess J X . note this[simp]
     interpret J: finite_product_sigma_finite M J by default fact
     have "X = {}"
-      by (rule emb_injective[of J I]) simp_all
+      by (rule prod_emb_injective[of J I]) simp_all
     then show "\<mu>G {} = 0" by simp
   next
-    fix A assume "A \<in> sets generator"
+    fix A assume "A \<in> generator"
     from generatorE[OF this] guess J X . note this[simp]
     interpret J: finite_product_sigma_finite M J by default fact
-    show "0 \<le> \<mu>G A" by simp
+    show "0 \<le> \<mu>G A" by (simp add: emeasure_nonneg)
   qed
 qed
 
@@ -342,102 +319,47 @@
   assumes "I \<noteq> {}"
   shows "additive generator \<mu>G"
 proof -
-  interpret G!: algebra generator by (rule algebra_generator) fact
+  interpret G!: algebra "\<Pi>\<^isub>E i\<in>I. space (M i)" generator by (rule algebra_generator) fact
   show ?thesis
   proof (intro additive_def[THEN iffD2] ballI impI)
-    fix A assume "A \<in> sets generator" with generatorE guess J X . note J = this
-    fix B assume "B \<in> sets generator" with generatorE guess K Y . note K = this
+    fix A assume "A \<in> generator" with generatorE guess J X . note J = this
+    fix B assume "B \<in> generator" with generatorE guess K Y . note K = this
     assume "A \<inter> B = {}"
     have JK: "J \<union> K \<noteq> {}" "J \<union> K \<subseteq> I" "finite (J \<union> K)"
       using J K by auto
     interpret JK: finite_product_sigma_finite M "J \<union> K" by default fact
     have JK_disj: "emb (J \<union> K) J X \<inter> emb (J \<union> K) K Y = {}"
-      apply (rule emb_injective[of "J \<union> K" I])
+      apply (rule prod_emb_injective[of "J \<union> K" I])
       apply (insert `A \<inter> B = {}` JK J K)
-      apply (simp_all add: JK.Int emb_simps)
+      apply (simp_all add: Int prod_emb_Int)
       done
     have AB: "A = emb I (J \<union> K) (emb (J \<union> K) J X)" "B = emb I (J \<union> K) (emb (J \<union> K) K Y)"
       using J K by simp_all
     then have "\<mu>G (A \<union> B) = \<mu>G (emb I (J \<union> K) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y))"
-      by (simp add: emb_simps)
-    also have "\<dots> = measure (Pi\<^isub>M (J \<union> K) M) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y)"
-      using JK J(1, 4) K(1, 4) by (simp add: \<mu>G_eq JK.Un)
+      by simp
+    also have "\<dots> = emeasure (Pi\<^isub>M (J \<union> K) M) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y)"
+      using JK J(1, 4) K(1, 4) by (simp add: \<mu>G_eq Un del: prod_emb_Un)
     also have "\<dots> = \<mu>G A + \<mu>G B"
-      using J K JK_disj by (simp add: JK.measure_additive[symmetric])
+      using J K JK_disj by (simp add: plus_emeasure[symmetric])
     finally show "\<mu>G (A \<union> B) = \<mu>G A + \<mu>G B" .
   qed
 qed
 
-lemma (in product_prob_space) finite_index_eq_finite_product:
-  assumes "finite I"
-  shows "sets (sigma generator) = sets (Pi\<^isub>M I M)"
-proof safe
-  interpret I: finite_product_sigma_algebra M I by default fact
-  have space_generator[simp]: "space generator = space (Pi\<^isub>M I M)"
-    by (simp add: generator_def product_algebra_def)
-  { fix A assume "A \<in> sets (sigma generator)"
-    then show "A \<in> sets I.P" unfolding sets_sigma
-    proof induct
-      case (Basic A)
-      from generatorE[OF this] guess J X . note J = this
-      with `finite I` have "emb I J X \<in> sets I.P" by auto
-      with `emb I J X = A` show "A \<in> sets I.P" by simp
-    qed auto }
-  { fix A assume A: "A \<in> sets I.P"
-    show "A \<in> sets (sigma generator)"
-    proof cases
-      assume "I = {}"
-      with I.P_empty[OF this] A
-      have "A = space generator \<or> A = {}" 
-        unfolding space_generator by auto
-      then show ?thesis
-        by (auto simp: sets_sigma simp del: space_generator
-                 intro: sigma_sets.Empty sigma_sets_top)
-    next
-      assume "I \<noteq> {}"
-      note A this
-      moreover with I.sets_into_space have "emb I I A = A" by (intro emb_id) auto
-      ultimately show "A \<in> sets (sigma generator)"
-        using `finite I` unfolding sets_sigma
-        by (intro sigma_sets.Basic generatorI[of I A]) auto
-  qed }
-qed
-
-lemma (in product_prob_space) extend_\<mu>G:
-  "\<exists>\<mu>. (\<forall>s\<in>sets generator. \<mu> s = \<mu>G s) \<and>
-       prob_space \<lparr>space = space generator, sets = sets (sigma generator), measure = \<mu>\<rparr>"
+lemma (in product_prob_space) emeasure_PiM_emb_not_empty:
+  assumes X: "J \<noteq> {}" "J \<subseteq> I" "finite J" "\<forall>i\<in>J. X i \<in> sets (M i)"
+  shows "emeasure (Pi\<^isub>M I M) (emb I J (Pi\<^isub>E J X)) = emeasure (Pi\<^isub>M J M) (Pi\<^isub>E J X)"
 proof cases
-  assume "finite I"
-  interpret I: finite_product_prob_space M I by default fact
-  show ?thesis
-  proof (intro exI[of _ "measure (Pi\<^isub>M I M)"] ballI conjI)
-    fix A assume "A \<in> sets generator"
-    from generatorE[OF this] guess J X . note J = this
-    from J(1-4) `finite I` show "measure I.P A = \<mu>G A"
-      unfolding J(6)
-      by (subst J(5)[symmetric]) (simp add: measure_emb)
-  next
-    have [simp]: "space generator = space (Pi\<^isub>M I M)"
-      by (simp add: generator_def product_algebra_def)
-    have "\<lparr>space = space generator, sets = sets (sigma generator), measure = measure I.P\<rparr>
-      = I.P" (is "?P = _")
-      by (auto intro!: measure_space.equality simp: finite_index_eq_finite_product[OF `finite I`])
-    show "prob_space ?P"
-    proof
-      show "measure_space ?P" using `?P = I.P` by simp default
-      show "measure ?P (space ?P) = 1"
-        using I.measure_space_1 by simp
-    qed
-  qed
+  assume "finite I" with X show ?thesis by simp
 next
+  let ?\<Omega> = "\<Pi>\<^isub>E i\<in>I. space (M i)"
   let ?G = generator
   assume "\<not> finite I"
   then have I_not_empty: "I \<noteq> {}" by auto
-  interpret G!: algebra generator by (rule algebra_generator) fact
+  interpret G!: algebra ?\<Omega> generator by (rule algebra_generator) fact
   note \<mu>G_mono =
     G.additive_increasing[OF positive_\<mu>G[OF I_not_empty] additive_\<mu>G[OF I_not_empty], THEN increasingD]
 
-  { fix Z J assume J: "J \<noteq> {}" "finite J" "J \<subseteq> I" and Z: "Z \<in> sets ?G"
+  { fix Z J assume J: "J \<noteq> {}" "finite J" "J \<subseteq> I" and Z: "Z \<in> ?G"
 
     from `infinite I` `finite J` obtain k where k: "k \<in> I" "k \<notin> J"
       by (metis rev_finite_subset subsetI)
@@ -445,7 +367,7 @@
     moreover def K \<equiv> "insert k K'"
     moreover def X \<equiv> "emb K K' X'"
     ultimately have K: "K \<noteq> {}" "finite K" "K \<subseteq> I" "X \<in> sets (Pi\<^isub>M K M)" "Z = emb I K X"
-      "K - J \<noteq> {}" "K - J \<subseteq> I" "\<mu>G Z = measure (Pi\<^isub>M K M) X"
+      "K - J \<noteq> {}" "K - J \<subseteq> I" "\<mu>G Z = emeasure (Pi\<^isub>M K M) X"
       by (auto simp: subset_insertI)
 
     let ?M = "\<lambda>y. merge J y (K - J) -` emb (J \<union> K) K X \<inter> space (Pi\<^isub>M (K - J) M)"
@@ -455,9 +377,9 @@
       have **: "?M y \<in> sets (Pi\<^isub>M (K - J) M)"
         using J K y by (intro merge_sets) auto
       ultimately
-      have ***: "(merge J y (I - J) -` Z \<inter> space (Pi\<^isub>M I M)) \<in> sets ?G"
+      have ***: "(merge J y (I - J) -` Z \<inter> space (Pi\<^isub>M I M)) \<in> ?G"
         using J K by (intro generatorI) auto
-      have "\<mu>G (merge J y (I - J) -` emb I K X \<inter> space (Pi\<^isub>M I M)) = measure (Pi\<^isub>M (K - J) M) (?M y)"
+      have "\<mu>G (merge J y (I - J) -` emb I K X \<inter> space (Pi\<^isub>M I M)) = emeasure (Pi\<^isub>M (K - J) M) (?M y)"
         unfolding * using K J by (subst \<mu>G_eq[OF _ _ _ **]) auto
       note * ** *** this }
     note merge_in_G = this
@@ -467,16 +389,16 @@
     interpret J: finite_product_prob_space M J by default fact+
     interpret KmJ: finite_product_prob_space M "K - J" by default fact+
 
-    have "\<mu>G Z = measure (Pi\<^isub>M (J \<union> (K - J)) M) (emb (J \<union> (K - J)) K X)"
+    have "\<mu>G Z = emeasure (Pi\<^isub>M (J \<union> (K - J)) M) (emb (J \<union> (K - J)) K X)"
       using K J by simp
-    also have "\<dots> = (\<integral>\<^isup>+ x. measure (Pi\<^isub>M (K - J) M) (?M x) \<partial>Pi\<^isub>M J M)"
-      using K J by (subst measure_fold_integral) auto
+    also have "\<dots> = (\<integral>\<^isup>+ x. emeasure (Pi\<^isub>M (K - J) M) (?M x) \<partial>Pi\<^isub>M J M)"
+      using K J by (subst emeasure_fold_integral) auto
     also have "\<dots> = (\<integral>\<^isup>+ y. \<mu>G (merge J y (I - J) -` Z \<inter> space (Pi\<^isub>M I M)) \<partial>Pi\<^isub>M J M)"
       (is "_ = (\<integral>\<^isup>+x. \<mu>G (?MZ x) \<partial>Pi\<^isub>M J M)")
-    proof (intro J.positive_integral_cong)
+    proof (intro positive_integral_cong)
       fix x assume x: "x \<in> space (Pi\<^isub>M J M)"
       with K merge_in_G(2)[OF this]
-      show "measure (Pi\<^isub>M (K - J) M) (?M x) = \<mu>G (?MZ x)"
+      show "emeasure (Pi\<^isub>M (K - J) M) (?M x) = \<mu>G (?MZ x)"
         unfolding `Z = emb I K X` merge_in_G(1)[OF x] by (subst \<mu>G_eq) auto
     qed
     finally have fold: "\<mu>G Z = (\<integral>\<^isup>+x. \<mu>G (?MZ x) \<partial>Pi\<^isub>M J M)" .
@@ -490,21 +412,18 @@
     let ?q = "\<lambda>y. \<mu>G (merge J y (I - J) -` Z \<inter> space (Pi\<^isub>M I M))"
     have "?q \<in> borel_measurable (Pi\<^isub>M J M)"
       unfolding `Z = emb I K X` using J K merge_in_G(3)
-      by (simp add: merge_in_G  \<mu>G_eq measure_fold_measurable
-               del: space_product_algebra cong: measurable_cong)
+      by (simp add: merge_in_G  \<mu>G_eq emeasure_fold_measurable cong: measurable_cong)
     note this fold le_1 merge_in_G(3) }
   note fold = this
 
-  have "\<exists>\<mu>. (\<forall>s\<in>sets ?G. \<mu> s = \<mu>G s) \<and>
-    measure_space \<lparr>space = space ?G, sets = sets (sigma ?G), measure = \<mu>\<rparr>"
-    (is "\<exists>\<mu>. _ \<and> measure_space (?ms \<mu>)")
+  have "\<exists>\<mu>. (\<forall>s\<in>?G. \<mu> s = \<mu>G s) \<and> measure_space ?\<Omega> (sigma_sets ?\<Omega> ?G) \<mu>"
   proof (rule G.caratheodory_empty_continuous[OF positive_\<mu>G additive_\<mu>G])
-    fix A assume "A \<in> sets ?G"
+    fix A assume "A \<in> ?G"
     with generatorE guess J X . note JX = this
     interpret JK: finite_product_prob_space M J by default fact+
     from JX show "\<mu>G A \<noteq> \<infinity>" by simp
   next
-    fix A assume A: "range A \<subseteq> sets ?G" "decseq A" "(\<Inter>i. A i) = {}"
+    fix A assume A: "range A \<subseteq> ?G" "decseq A" "(\<Inter>i. A i) = {}"
     then have "decseq (\<lambda>i. \<mu>G (A i))"
       by (auto intro!: \<mu>G_mono simp: decseq_def)
     moreover
@@ -515,7 +434,7 @@
         using A positive_\<mu>G[OF I_not_empty] by (auto intro!: INF_greatest simp: positive_def)
       ultimately have "0 < ?a" by auto
 
-      have "\<forall>n. \<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^isub>M J M) \<and> A n = emb I J X \<and> \<mu>G (A n) = measure (Pi\<^isub>M J M) X"
+      have "\<forall>n. \<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^isub>M J M) \<and> A n = emb I J X \<and> \<mu>G (A n) = emeasure (Pi\<^isub>M J M) X"
         using A by (intro allI generator_Ex) auto
       then obtain J' X' where J': "\<And>n. J' n \<noteq> {}" "\<And>n. finite (J' n)" "\<And>n. J' n \<subseteq> I" "\<And>n. X' n \<in> sets (Pi\<^isub>M (J' n) M)"
         and A': "\<And>n. A n = emb I (J' n) (X' n)"
@@ -524,8 +443,8 @@
       moreover def X \<equiv> "\<lambda>n. emb (J n) (J' n) (X' n)"
       ultimately have J: "\<And>n. J n \<noteq> {}" "\<And>n. finite (J n)" "\<And>n. J n \<subseteq> I" "\<And>n. X n \<in> sets (Pi\<^isub>M (J n) M)"
         by auto
-      with A' have A_eq: "\<And>n. A n = emb I (J n) (X n)" "\<And>n. A n \<in> sets ?G"
-        unfolding J_def X_def by (subst emb_trans) (insert A, auto)
+      with A' have A_eq: "\<And>n. A n = emb I (J n) (X n)" "\<And>n. A n \<in> ?G"
+        unfolding J_def X_def by (subst prod_emb_trans) (insert A, auto)
 
       have J_mono: "\<And>n m. n \<le> m \<Longrightarrow> J n \<subseteq> J m"
         unfolding J_def by force
@@ -538,8 +457,8 @@
 
       let ?M = "\<lambda>K Z y. merge K y (I - K) -` Z \<inter> space (Pi\<^isub>M I M)"
 
-      { fix Z k assume Z: "range Z \<subseteq> sets ?G" "decseq Z" "\<forall>n. ?a / 2^k \<le> \<mu>G (Z n)"
-        then have Z_sets: "\<And>n. Z n \<in> sets ?G" by auto
+      { fix Z k assume Z: "range Z \<subseteq> ?G" "decseq Z" "\<forall>n. ?a / 2^k \<le> \<mu>G (Z n)"
+        then have Z_sets: "\<And>n. Z n \<in> ?G" by auto
         fix J' assume J': "J' \<noteq> {}" "finite J'" "J' \<subseteq> I"
         interpret J': finite_product_prob_space M J' by default fact+
 
@@ -552,13 +471,13 @@
             by (rule measurable_sets) auto }
         note Q_sets = this
 
-        have "?a / 2^(k+1) \<le> (INF n. measure (Pi\<^isub>M J' M) (?Q n))"
+        have "?a / 2^(k+1) \<le> (INF n. emeasure (Pi\<^isub>M J' M) (?Q n))"
         proof (intro INF_greatest)
           fix n
           have "?a / 2^k \<le> \<mu>G (Z n)" using Z by auto
           also have "\<dots> \<le> (\<integral>\<^isup>+ x. indicator (?Q n) x + ?a / 2^(k+1) \<partial>Pi\<^isub>M J' M)"
-            unfolding fold(2)[OF J' `Z n \<in> sets ?G`]
-          proof (intro J'.positive_integral_mono)
+            unfolding fold(2)[OF J' `Z n \<in> ?G`]
+          proof (intro positive_integral_mono)
             fix x assume x: "x \<in> space (Pi\<^isub>M J' M)"
             then have "?q n x \<le> 1 + 0"
               using J' Z fold(3) Z_sets by auto
@@ -568,15 +487,15 @@
             with x show "?q n x \<le> indicator (?Q n) x + ?a / 2^(k+1)"
               by (auto split: split_indicator simp del: power_Suc)
           qed
-          also have "\<dots> = measure (Pi\<^isub>M J' M) (?Q n) + ?a / 2^(k+1)"
-            using `0 \<le> ?a` Q_sets J'.measure_space_1
-            by (subst J'.positive_integral_add) auto
-          finally show "?a / 2^(k+1) \<le> measure (Pi\<^isub>M J' M) (?Q n)" using `?a \<le> 1`
-            by (cases rule: ereal2_cases[of ?a "measure (Pi\<^isub>M J' M) (?Q n)"])
+          also have "\<dots> = emeasure (Pi\<^isub>M J' M) (?Q n) + ?a / 2^(k+1)"
+            using `0 \<le> ?a` Q_sets J'.emeasure_space_1
+            by (subst positive_integral_add) auto
+          finally show "?a / 2^(k+1) \<le> emeasure (Pi\<^isub>M J' M) (?Q n)" using `?a \<le> 1`
+            by (cases rule: ereal2_cases[of ?a "emeasure (Pi\<^isub>M J' M) (?Q n)"])
                (auto simp: field_simps)
         qed
-        also have "\<dots> = measure (Pi\<^isub>M J' M) (\<Inter>n. ?Q n)"
-        proof (intro J'.continuity_from_above)
+        also have "\<dots> = emeasure (Pi\<^isub>M J' M) (\<Inter>n. ?Q n)"
+        proof (intro INF_emeasure_decseq)
           show "range ?Q \<subseteq> sets (Pi\<^isub>M J' M)" using Q_sets by auto
           show "decseq ?Q"
             unfolding decseq_def
@@ -587,13 +506,13 @@
             also have "?q n x \<le> ?q m x"
             proof (rule \<mu>G_mono)
               from fold(4)[OF J', OF Z_sets x]
-              show "?M J' (Z n) x \<in> sets ?G" "?M J' (Z m) x \<in> sets ?G" by auto
+              show "?M J' (Z n) x \<in> ?G" "?M J' (Z m) x \<in> ?G" by auto
               show "?M J' (Z n) x \<subseteq> ?M J' (Z m) x"
                 using `decseq Z`[THEN decseqD, OF `m \<le> n`] by auto
             qed
             finally show "?a / 2^(k+1) \<le> ?q m x" .
           qed
-        qed (intro J'.finite_measure Q_sets)
+        qed simp
         finally have "(\<Inter>n. ?Q n) \<noteq> {}"
           using `0 < ?a` `?a \<le> 1` by (cases ?a) (auto simp: divide_le_0_iff power_le_zero_eq)
         then have "\<exists>w\<in>space (Pi\<^isub>M J' M). \<forall>n. ?a / 2 ^ (k + 1) \<le> ?q n w" by auto }
@@ -631,12 +550,12 @@
               show "w k \<in> space (Pi\<^isub>M (J (Suc k)) M)"
                 using Suc by simp
               then show "restrict (w k) (J k) = w k"
-                by (simp add: extensional_restrict)
+                by (simp add: extensional_restrict space_PiM)
             qed
           next
             assume "J k \<noteq> J (Suc k)"
             with J_mono[of k "Suc k"] have "J (Suc k) - J k \<noteq> {}" (is "?D \<noteq> {}") by auto
-            have "range (\<lambda>n. ?M (J k) (A n) (w k)) \<subseteq> sets ?G"
+            have "range (\<lambda>n. ?M (J k) (A n) (w k)) \<subseteq> ?G"
               "decseq (\<lambda>n. ?M (J k) (A n) (w k))"
               "\<forall>n. ?a / 2 ^ (k + 1) \<le> \<mu>G (?M (J k) (A n) (w k))"
               using `decseq A` fold(4)[OF J(1-3) A_eq(2), of "w k" k] Suc
@@ -651,11 +570,11 @@
               by (auto intro!: ext split: split_merge)
             have *: "\<And>n. ?M ?D (?M (J k) (A n) (w k)) w' = ?M (J (Suc k)) (A n) ?w"
               using w'(1) J(3)[of "Suc k"]
-              by (auto split: split_merge intro!: extensional_merge_sub) force+
+              by (auto simp: space_PiM split: split_merge intro!: extensional_merge_sub) force+
             show ?thesis
               apply (rule exI[of _ ?w])
               using w' J_mono[of k "Suc k"] wk unfolding *
-              apply (auto split: split_merge intro!: extensional_merge_sub ext)
+              apply (auto split: split_merge intro!: extensional_merge_sub ext simp: space_PiM)
               apply (force simp: extensional_def)
               done
           qed
@@ -675,7 +594,7 @@
         then have "merge (J k) (w k) (I - J k) x \<in> A k" by auto
         then have "\<exists>x\<in>A k. restrict x (J k) = w k"
           using `w k \<in> space (Pi\<^isub>M (J k) M)`
-          by (intro rev_bexI) (auto intro!: ext simp: extensional_def)
+          by (intro rev_bexI) (auto intro!: ext simp: extensional_def space_PiM)
         ultimately have "w k \<in> space (Pi\<^isub>M (J k) M)"
           "\<exists>x\<in>A k. restrict x (J k) = w k"
           "k \<noteq> 0 \<Longrightarrow> restrict (w k) (J (k - 1)) = w (k - 1)"
@@ -707,17 +626,17 @@
       have w'_simps2: "\<And>i. i \<notin> (\<Union>k. J k) \<Longrightarrow> i \<in> I \<Longrightarrow> w' i \<in> space (M i)"
         using J by (auto simp: w'_def intro!: someI_ex[OF M.not_empty[unfolded ex_in_conv[symmetric]]])
       { fix i assume "i \<in> I" then have "w' i \<in> space (M i)"
-          using w(1) by (cases "i \<in> (\<Union>k. J k)") (force simp: w'_simps2 w'_eq)+ }
+          using w(1) by (cases "i \<in> (\<Union>k. J k)") (force simp: w'_simps2 w'_eq space_PiM)+ }
       note w'_simps[simp] = w'_eq w'_simps1 w'_simps2 this
 
       have w': "w' \<in> space (Pi\<^isub>M I M)"
-        using w(1) by (auto simp add: Pi_iff extensional_def)
+        using w(1) by (auto simp add: Pi_iff extensional_def space_PiM)
 
       { fix n
         have "restrict w' (J n) = w n" using w(1)
-          by (auto simp add: fun_eq_iff restrict_def Pi_iff extensional_def)
+          by (auto simp add: fun_eq_iff restrict_def Pi_iff extensional_def space_PiM)
         with w[of n] obtain x where "x \<in> A n" "restrict x (J n) = restrict w' (J n)" by auto
-        then have "w' \<in> A n" unfolding A_eq using w' by (auto simp: emb_def) }
+        then have "w' \<in> A n" unfolding A_eq using w' by (auto simp: prod_emb_def space_PiM) }
       then have "w' \<in> (\<Inter>i. A i)" by auto
       with `(\<Inter>i. A i) = {}` show False by auto
     qed
@@ -726,276 +645,76 @@
   qed fact+
   then guess \<mu> .. note \<mu> = this
   show ?thesis
-  proof (intro exI[of _ \<mu>] conjI)
-    show "\<forall>S\<in>sets ?G. \<mu> S = \<mu>G S" using \<mu> by simp
-    show "prob_space (?ms \<mu>)"
-    proof
-      show "measure_space (?ms \<mu>)" using \<mu> by simp
-      obtain i where "i \<in> I" using I_not_empty by auto
-      interpret i: finite_product_sigma_finite M "{i}" by default auto
-      let ?X = "\<Pi>\<^isub>E i\<in>{i}. space (M i)"
-      have X: "?X \<in> sets (Pi\<^isub>M {i} M)"
-        by auto
-      with `i \<in> I` have "emb I {i} ?X \<in> sets generator"
-        by (intro generatorI') auto
-      with \<mu> have "\<mu> (emb I {i} ?X) = \<mu>G (emb I {i} ?X)" by auto
-      with \<mu>G_eq[OF _ _ _ X] `i \<in> I` 
-      have "\<mu> (emb I {i} ?X) = measure (M i) (space (M i))"
-        by (simp add: i.measure_times)
-      also have "emb I {i} ?X = space (Pi\<^isub>P I M)"
-        using `i \<in> I` by (auto simp: emb_def infprod_algebra_def generator_def)
-      finally show "measure (?ms \<mu>) (space (?ms \<mu>)) = 1"
-        using M.measure_space_1 by (simp add: infprod_algebra_def)
-    qed
+  proof (subst emeasure_extend_measure_Pair[OF PiM_def, of I M \<mu> J X])
+    from assms show "(J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))"
+      by (simp add: Pi_iff)
+  next
+    fix J X assume J: "(J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))"
+    then show "emb I J (Pi\<^isub>E J X) \<in> Pow (\<Pi>\<^isub>E i\<in>I. space (M i))"
+      by (auto simp: Pi_iff prod_emb_def dest: sets_into_space)
+    have "emb I J (Pi\<^isub>E J X) \<in> generator"
+      using J `I \<noteq> {}` by (intro generatorI') auto
+    then have "\<mu> (emb I J (Pi\<^isub>E J X)) = \<mu>G (emb I J (Pi\<^isub>E J X))"
+      using \<mu> by simp
+    also have "\<dots> = (\<Prod> j\<in>J. if j \<in> J then emeasure (M j) (X j) else emeasure (M j) (space (M j)))"
+      using J  `I \<noteq> {}` by (subst \<mu>G_spec[OF _ _ _ refl]) (auto simp: emeasure_PiM Pi_iff)
+    also have "\<dots> = (\<Prod>j\<in>J \<union> {i \<in> I. emeasure (M i) (space (M i)) \<noteq> 1}.
+      if j \<in> J then emeasure (M j) (X j) else emeasure (M j) (space (M j)))"
+      using J `I \<noteq> {}` by (intro setprod_mono_one_right) (auto simp: M.emeasure_space_1)
+    finally show "\<mu> (emb I J (Pi\<^isub>E J X)) = \<dots>" .
+  next
+    let ?F = "\<lambda>j. if j \<in> J then emeasure (M j) (X j) else emeasure (M j) (space (M j))"
+    have "(\<Prod>j\<in>J \<union> {i \<in> I. emeasure (M i) (space (M i)) \<noteq> 1}. ?F j) = (\<Prod>j\<in>J. ?F j)"
+      using X `I \<noteq> {}` by (intro setprod_mono_one_right) (auto simp: M.emeasure_space_1)
+    then show "(\<Prod>j\<in>J \<union> {i \<in> I. emeasure (M i) (space (M i)) \<noteq> 1}. ?F j) =
+      emeasure (Pi\<^isub>M J M) (Pi\<^isub>E J X)"
+      using X by (auto simp add: emeasure_PiM) 
+  next
+    show "positive (sets (Pi\<^isub>M I M)) \<mu>" "countably_additive (sets (Pi\<^isub>M I M)) \<mu>"
+      using \<mu> unfolding sets_PiM_generator[OF `I \<noteq> {}`] by (auto simp: measure_space_def)
   qed
 qed
 
-lemma (in product_prob_space) infprod_spec:
-  "(\<forall>s\<in>sets generator. measure (Pi\<^isub>P I M) s = \<mu>G s) \<and> prob_space (Pi\<^isub>P I M)"
-  (is "?Q infprod_algebra")
-  unfolding infprod_algebra_def
-  by (rule someI2_ex[OF extend_\<mu>G])
-     (auto simp: sigma_def generator_def)
-
-sublocale product_prob_space \<subseteq> P: prob_space "Pi\<^isub>P I M"
-  using infprod_spec by simp
-
-lemma (in product_prob_space) measure_infprod_emb:
-  assumes "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)"
-  shows "\<mu> (emb I J X) = measure (Pi\<^isub>M J M) X"
-proof -
-  have "emb I J X \<in> sets generator"
-    using assms by (rule generatorI')
-  with \<mu>G_eq[OF assms] infprod_spec show ?thesis by auto
-qed
-
-lemma (in product_prob_space) measurable_component:
-  assumes "i \<in> I"
-  shows "(\<lambda>x. x i) \<in> measurable (Pi\<^isub>P I M) (M i)"
-proof (unfold measurable_def, safe)
-  fix x assume "x \<in> space (Pi\<^isub>P I M)"
-  then show "x i \<in> space (M i)"
-    using `i \<in> I` by (auto simp: infprod_algebra_def generator_def)
-next
-  fix A assume "A \<in> sets (M i)"
-  with `i \<in> I` have
-    "(\<Pi>\<^isub>E x \<in> {i}. A) \<in> sets (Pi\<^isub>M {i} M)"
-    "(\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M) = emb I {i} (\<Pi>\<^isub>E x \<in> {i}. A)"
-    by (auto simp: infprod_algebra_def generator_def emb_def)
-  from generatorI[OF _ _ _ this] `i \<in> I`
-  show "(\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M) \<in> sets (Pi\<^isub>P I M)"
-    unfolding infprod_algebra_def by auto
-qed
-
-lemma (in product_prob_space) emb_in_infprod_algebra[intro]:
-  fixes J assumes J: "finite J" "J \<subseteq> I" and X: "X \<in> sets (Pi\<^isub>M J M)"
-  shows "emb I J X \<in> sets (\<Pi>\<^isub>P i\<in>I. M i)"
-proof cases
-  assume "J = {}"
-  with X have "emb I J X = space (\<Pi>\<^isub>P i\<in>I. M i) \<or> emb I J X = {}"
-    by (auto simp: emb_def infprod_algebra_def generator_def
-                   product_algebra_def product_algebra_generator_def image_constant sigma_def)
-  then show ?thesis by auto
-next
-  assume "J \<noteq> {}"
-  show ?thesis unfolding infprod_algebra_def
-    by simp (intro in_sigma generatorI'  `J \<noteq> {}` J X)
-qed
-
-lemma (in product_prob_space) finite_measure_infprod_emb:
-  assumes "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)"
-  shows "\<mu>' (emb I J X) = finite_measure.\<mu>' (Pi\<^isub>M J M) X"
-proof -
-  interpret J: finite_product_prob_space M J by default fact+
-  from assms have "emb I J X \<in> sets (Pi\<^isub>P I M)" by auto
-  with assms show "\<mu>' (emb I J X) = J.\<mu>' X"
-    unfolding \<mu>'_def J.\<mu>'_def
-    unfolding measure_infprod_emb[OF assms]
-    by auto
-qed
-
-lemma (in finite_product_prob_space) finite_measure_times:
-  assumes "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)"
-  shows "\<mu>' (Pi\<^isub>E I A) = (\<Prod>i\<in>I. M.\<mu>' i (A i))"
-  using assms
-  unfolding \<mu>'_def M.\<mu>'_def
-  by (subst measure_times[OF assms])
-     (auto simp: finite_measure_eq M.finite_measure_eq setprod_ereal)
-
-lemma (in product_prob_space) finite_measure_infprod_emb_Pi:
-  assumes J: "finite J" "J \<subseteq> I" "\<And>j. j \<in> J \<Longrightarrow> X j \<in> sets (M j)"
-  shows "\<mu>' (emb I J (Pi\<^isub>E J X)) = (\<Prod>j\<in>J. M.\<mu>' j (X j))"
-proof cases
-  assume "J = {}"
-  then have "emb I J (Pi\<^isub>E J X) = space infprod_algebra"
-    by (auto simp: infprod_algebra_def generator_def sigma_def emb_def)
-  then show ?thesis using `J = {}` P.prob_space
-    by simp
-next
-  assume "J \<noteq> {}"
-  interpret J: finite_product_prob_space M J by default fact+
-  have "(\<Prod>i\<in>J. M.\<mu>' i (X i)) = J.\<mu>' (Pi\<^isub>E J X)"
-    using J `J \<noteq> {}` by (subst J.finite_measure_times) auto
-  also have "\<dots> = \<mu>' (emb I J (Pi\<^isub>E J X))"
-    using J `J \<noteq> {}` by (intro finite_measure_infprod_emb[symmetric]) auto
-  finally show ?thesis by simp
-qed
-
-lemma sigma_sets_mono: assumes "A \<subseteq> sigma_sets X B" shows "sigma_sets X A \<subseteq> sigma_sets X B"
+sublocale product_prob_space \<subseteq> P: prob_space "Pi\<^isub>M I M"
 proof
-  fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B"
-    by induct (insert `A \<subseteq> sigma_sets X B`, auto intro: sigma_sets.intros)
-qed
-
-lemma sigma_sets_mono': assumes "A \<subseteq> B" shows "sigma_sets X A \<subseteq> sigma_sets X B"
-proof
-  fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B"
-    by induct (insert `A \<subseteq> B`, auto intro: sigma_sets.intros)
+  show "emeasure (Pi\<^isub>M I M) (space (Pi\<^isub>M I M)) = 1"
+  proof cases
+    assume "I = {}" then show ?thesis by (simp add: space_PiM_empty)
+  next
+    assume "I \<noteq> {}"
+    then obtain i where "i \<in> I" by auto
+    moreover then have "emb I {i} (\<Pi>\<^isub>E i\<in>{i}. space (M i)) = (space (Pi\<^isub>M I M))"
+      by (auto simp: prod_emb_def space_PiM)
+    ultimately show ?thesis
+      using emeasure_PiM_emb_not_empty[of "{i}" "\<lambda>i. space (M i)"]
+      by (simp add: emeasure_PiM emeasure_space_1)
+  qed
 qed
 
-lemma sigma_sets_superset_generator: "A \<subseteq> sigma_sets X A"
-  by (auto intro: sigma_sets.Basic)
-
-lemma (in product_prob_space) infprod_algebra_alt:
-  "Pi\<^isub>P I M = sigma \<lparr> space = space (Pi\<^isub>P I M),
-    sets = (\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` Pi\<^isub>E J ` (\<Pi> i \<in> J. sets (M i))),
-    measure = measure (Pi\<^isub>P I M) \<rparr>"
-  (is "_ = sigma \<lparr> space = ?O, sets = ?M, measure = ?m \<rparr>")
-proof (rule measure_space.equality)
-  let ?G = "\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` sets (Pi\<^isub>M J M)"
-  have "sigma_sets ?O ?M = sigma_sets ?O ?G"
-  proof (intro equalityI sigma_sets_mono UN_least)
-    fix J assume J: "J \<in> {J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}"
-    have "emb I J ` Pi\<^isub>E J ` (\<Pi> i\<in>J. sets (M i)) \<subseteq> emb I J ` sets (Pi\<^isub>M J M)" by auto
-    also have "\<dots> \<subseteq> ?G" using J by (rule UN_upper)
-    also have "\<dots> \<subseteq> sigma_sets ?O ?G" by (rule sigma_sets_superset_generator)
-    finally show "emb I J ` Pi\<^isub>E J ` (\<Pi> i\<in>J. sets (M i)) \<subseteq> sigma_sets ?O ?G" .
-    have "emb I J ` sets (Pi\<^isub>M J M) = emb I J ` sigma_sets (space (Pi\<^isub>M J M)) (Pi\<^isub>E J ` (\<Pi> i \<in> J. sets (M i)))"
-      by (simp add: sets_sigma product_algebra_generator_def product_algebra_def)
-    also have "\<dots> = sigma_sets (space (Pi\<^isub>M I M)) (emb I J ` Pi\<^isub>E J ` (\<Pi> i \<in> J. sets (M i)))"
-      using J M.sets_into_space
-      by (auto simp: emb_def [abs_def] intro!: sigma_sets_vimage[symmetric]) blast
-    also have "\<dots> \<subseteq> sigma_sets (space (Pi\<^isub>M I M)) ?M"
-      using J by (intro sigma_sets_mono') auto
-    finally show "emb I J ` sets (Pi\<^isub>M J M) \<subseteq> sigma_sets ?O ?M"
-      by (simp add: infprod_algebra_def generator_def)
-  qed
-  then show "sets (Pi\<^isub>P I M) = sets (sigma \<lparr> space = ?O, sets = ?M, measure = ?m \<rparr>)"
-    by (simp_all add: infprod_algebra_def generator_def sets_sigma)
-qed simp_all
-
-lemma (in product_prob_space) infprod_algebra_alt2:
-  "Pi\<^isub>P I M = sigma \<lparr> space = space (Pi\<^isub>P I M),
-    sets = (\<Union>i\<in>I. (\<lambda>A. (\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M)) ` sets (M i)),
-    measure = measure (Pi\<^isub>P I M) \<rparr>"
-  (is "_ = ?S")
-proof (rule measure_space.equality)
-  let "sigma \<lparr> space = ?O, sets = ?A, \<dots> = _ \<rparr>" = ?S
-  let ?G = "(\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` Pi\<^isub>E J ` (\<Pi> i \<in> J. sets (M i)))"
-  have "sets (Pi\<^isub>P I M) = sigma_sets ?O ?G"
-    by (subst infprod_algebra_alt) (simp add: sets_sigma)
-  also have "\<dots> = sigma_sets ?O ?A"
-  proof (intro equalityI sigma_sets_mono subsetI)
-    interpret A: sigma_algebra ?S
-      by (rule sigma_algebra_sigma) auto
-    fix A assume "A \<in> ?G"
-    then obtain J B where "finite J" "J \<noteq> {}" "J \<subseteq> I" "A = emb I J (Pi\<^isub>E J B)"
-        and B: "\<And>i. i \<in> J \<Longrightarrow> B i \<in> sets (M i)"
-      by auto
-    then have A: "A = (\<Inter>j\<in>J. (\<lambda>x. x j) -` (B j) \<inter> space (Pi\<^isub>P I M))"
-      by (auto simp: emb_def infprod_algebra_def generator_def Pi_iff)
-    { fix j assume "j\<in>J"
-      with `J \<subseteq> I` have "j \<in> I" by auto
-      with `j \<in> J` B have "(\<lambda>x. x j) -` (B j) \<inter> space (Pi\<^isub>P I M) \<in> sets ?S"
-        by (auto simp: sets_sigma intro: sigma_sets.Basic) }
-    with `finite J` `J \<noteq> {}` have "A \<in> sets ?S"
-      unfolding A by (intro A.finite_INT) auto
-    then show "A \<in> sigma_sets ?O ?A" by (simp add: sets_sigma)
-  next
-    fix A assume "A \<in> ?A"
-    then obtain i B where i: "i \<in> I" "B \<in> sets (M i)"
-        and "A = (\<lambda>x. x i) -` B \<inter> space (Pi\<^isub>P I M)"
-      by auto
-    then have "A = emb I {i} (Pi\<^isub>E {i} (\<lambda>_. B))"
-      by (auto simp: emb_def infprod_algebra_def generator_def Pi_iff)
-    with i show "A \<in> sigma_sets ?O ?G"
-      by (intro sigma_sets.Basic UN_I[where a="{i}"]) auto
-  qed
-  also have "\<dots> = sets ?S"
-    by (simp add: sets_sigma)
-  finally show "sets (Pi\<^isub>P I M) = sets ?S" .
-qed simp_all
-
-lemma (in product_prob_space) measurable_into_infprod_algebra:
-  assumes "sigma_algebra N"
-  assumes f: "\<And>i. i \<in> I \<Longrightarrow> (\<lambda>x. f x i) \<in> measurable N (M i)"
-  assumes ext: "\<And>x. x \<in> space N \<Longrightarrow> f x \<in> extensional I"
-  shows "f \<in> measurable N (Pi\<^isub>P I M)"
-proof -
-  interpret N: sigma_algebra N by fact
-  have f_in: "\<And>i. i \<in> I \<Longrightarrow> (\<lambda>x. f x i) \<in> space N \<rightarrow> space (M i)"
-    using f by (auto simp: measurable_def)
-  { fix i A assume i: "i \<in> I" "A \<in> sets (M i)"
-    then have "f -` (\<lambda>x. x i) -` A \<inter> f -` space infprod_algebra \<inter> space N = (\<lambda>x. f x i) -` A \<inter> space N"
-      using f_in ext by (auto simp: infprod_algebra_def generator_def)
-    also have "\<dots> \<in> sets N"
-      by (rule measurable_sets f i)+
-    finally have "f -` (\<lambda>x. x i) -` A \<inter> f -` space infprod_algebra \<inter> space N \<in> sets N" . }
-  with f_in ext show ?thesis
-    by (subst infprod_algebra_alt2)
-       (auto intro!: N.measurable_sigma simp: Pi_iff infprod_algebra_def generator_def)
+lemma (in product_prob_space) emeasure_PiM_emb:
+  assumes X: "J \<subseteq> I" "finite J" "\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)"
+  shows "emeasure (Pi\<^isub>M I M) (emb I J (Pi\<^isub>E J X)) = (\<Prod> i\<in>J. emeasure (M i) (X i))"
+proof cases
+  assume "J = {}"
+  moreover have "emb I {} {\<lambda>x. undefined} = space (Pi\<^isub>M I M)"
+    by (auto simp: space_PiM prod_emb_def)
+  ultimately show ?thesis
+    by (simp add: space_PiM_empty P.emeasure_space_1)
+next
+  assume "J \<noteq> {}" with X show ?thesis
+    by (subst emeasure_PiM_emb_not_empty) (auto simp: emeasure_PiM)
 qed
 
-lemma (in product_prob_space) measurable_singleton_infprod:
-  assumes "i \<in> I"
-  shows "(\<lambda>x. x i) \<in> measurable (Pi\<^isub>P I M) (M i)"
-proof (unfold measurable_def, intro CollectI conjI ballI)
-  show "(\<lambda>x. x i) \<in> space (Pi\<^isub>P I M) \<rightarrow> space (M i)"
-    using M.sets_into_space `i \<in> I`
-    by (auto simp: infprod_algebra_def generator_def)
-  fix A assume "A \<in> sets (M i)"
-  have "(\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M) = emb I {i} (\<Pi>\<^isub>E _\<in>{i}. A)"
-    by (auto simp: infprod_algebra_def generator_def emb_def)
-  also have "\<dots> \<in> sets (Pi\<^isub>P I M)"
-    using `i \<in> I` `A \<in> sets (M i)`
-    by (intro emb_in_infprod_algebra product_algebraI) auto
-  finally show "(\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M) \<in> sets (Pi\<^isub>P I M)" .
-qed
+lemma (in product_prob_space) measure_PiM_emb:
+  assumes "J \<subseteq> I" "finite J" "\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)"
+  shows "measure (PiM I M) (emb I J (Pi\<^isub>E J X)) = (\<Prod> i\<in>J. measure (M i) (X i))"
+  using emeasure_PiM_emb[OF assms]
+  unfolding emeasure_eq_measure M.emeasure_eq_measure by (simp add: setprod_ereal)
 
-lemma (in product_prob_space) sigma_product_algebra_sigma_eq:
-  assumes M: "\<And>i. i \<in> I \<Longrightarrow> M i = sigma (E i)"
-  shows "sets (Pi\<^isub>P I M) = sigma_sets (space (Pi\<^isub>P I M)) (\<Union>i\<in>I. (\<lambda>A. (\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M)) ` sets (E i))"
-proof -
-  let ?E = "(\<Union>i\<in>I. (\<lambda>A. (\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M)) ` sets (E i))"
-  let ?M = "(\<Union>i\<in>I. (\<lambda>A. (\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M)) ` sets (M i))"
-  { fix i A assume "i\<in>I" "A \<in> sets (E i)"
-    then have "A \<in> sets (M i)" using M by auto
-    then have "A \<in> Pow (space (M i))" using M.sets_into_space by auto
-    then have "A \<in> Pow (space (E i))" using M[OF `i \<in> I`] by auto }
-  moreover
-  have "\<And>i. i \<in> I \<Longrightarrow> (\<lambda>x. x i) \<in> space infprod_algebra \<rightarrow> space (E i)"
-    by (auto simp: M infprod_algebra_def generator_def Pi_iff)
-  ultimately have "sigma_sets (space (Pi\<^isub>P I M)) ?M \<subseteq> sigma_sets (space (Pi\<^isub>P I M)) ?E"
-    apply (intro sigma_sets_mono UN_least)
-    apply (simp add: sets_sigma M)
-    apply (subst sigma_sets_vimage[symmetric])
-    apply (auto intro!: sigma_sets_mono')
-    done
-  moreover have "sigma_sets (space (Pi\<^isub>P I M)) ?E \<subseteq> sigma_sets (space (Pi\<^isub>P I M)) ?M"
-    by (intro sigma_sets_mono') (auto simp: M)
-  ultimately show ?thesis
-    by (subst infprod_algebra_alt2) (auto simp: sets_sigma)
-qed
-
-lemma (in product_prob_space) Int_proj_eq_emb:
-  assumes "J \<noteq> {}" "J \<subseteq> I"
-  shows "(\<Inter>i\<in>J. (\<lambda>x. x i) -` A i \<inter> space (Pi\<^isub>P I M)) = emb I J (Pi\<^isub>E J A)"
-  using assms by (auto simp: infprod_algebra_def generator_def emb_def Pi_iff)
-
-lemma (in product_prob_space) emb_insert:
-  "i \<notin> J \<Longrightarrow> emb I J (Pi\<^isub>E J f) \<inter> ((\<lambda>x. x i) -` A \<inter> space (Pi\<^isub>P I M)) =
-    emb I (insert i J) (Pi\<^isub>E (insert i J) (f(i := A)))"
-  by (auto simp: emb_def Pi_iff infprod_algebra_def generator_def split: split_if_asm)
+lemma (in finite_product_prob_space) finite_measure_PiM_emb:
+  "(\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> measure (PiM I M) (Pi\<^isub>E I A) = (\<Prod>i\<in>I. measure (M i) (A i))"
+  using measure_PiM_emb[of I A] finite_index prod_emb_PiE_same_index[OF sets_into_space, of I A M]
+  by auto
 
 subsection {* Sequence space *}
 
@@ -1003,36 +722,30 @@
 
 lemma (in sequence_space) infprod_in_sets[intro]:
   fixes E :: "nat \<Rightarrow> 'a set" assumes E: "\<And>i. E i \<in> sets (M i)"
-  shows "Pi UNIV E \<in> sets (Pi\<^isub>P UNIV M)"
+  shows "Pi UNIV E \<in> sets (Pi\<^isub>M UNIV M)"
 proof -
   have "Pi UNIV E = (\<Inter>i. emb UNIV {..i} (\<Pi>\<^isub>E j\<in>{..i}. E j))"
-    using E E[THEN M.sets_into_space]
-    by (auto simp: emb_def Pi_iff extensional_def) blast
-  with E show ?thesis
-    by (auto intro: emb_in_infprod_algebra)
+    using E E[THEN sets_into_space]
+    by (auto simp: prod_emb_def Pi_iff extensional_def) blast
+  with E show ?thesis by auto
 qed
 
-lemma (in sequence_space) measure_infprod:
+lemma (in sequence_space) measure_PiM_countable:
   fixes E :: "nat \<Rightarrow> 'a set" assumes E: "\<And>i. E i \<in> sets (M i)"
-  shows "(\<lambda>n. \<Prod>i\<le>n. M.\<mu>' i (E i)) ----> \<mu>' (Pi UNIV E)"
+  shows "(\<lambda>n. \<Prod>i\<le>n. measure (M i) (E i)) ----> measure (Pi\<^isub>M UNIV M) (Pi UNIV E)"
 proof -
   let ?E = "\<lambda>n. emb UNIV {..n} (Pi\<^isub>E {.. n} E)"
-  { fix n :: nat
-    interpret n: finite_product_prob_space M "{..n}" by default auto
-    have "(\<Prod>i\<le>n. M.\<mu>' i (E i)) = n.\<mu>' (Pi\<^isub>E {.. n} E)"
-      using E by (subst n.finite_measure_times) auto
-    also have "\<dots> = \<mu>' (?E n)"
-      using E by (intro finite_measure_infprod_emb[symmetric]) auto
-    finally have "(\<Prod>i\<le>n. M.\<mu>' i (E i)) = \<mu>' (?E n)" . }
+  have "\<And>n. (\<Prod>i\<le>n. measure (M i) (E i)) = measure (Pi\<^isub>M UNIV M) (?E n)"
+    using E by (simp add: measure_PiM_emb)
   moreover have "Pi UNIV E = (\<Inter>n. ?E n)"
-    using E E[THEN M.sets_into_space]
-    by (auto simp: emb_def extensional_def Pi_iff) blast
-  moreover have "range ?E \<subseteq> sets (Pi\<^isub>P UNIV M)"
+    using E E[THEN sets_into_space]
+    by (auto simp: prod_emb_def extensional_def Pi_iff) blast
+  moreover have "range ?E \<subseteq> sets (Pi\<^isub>M UNIV M)"
     using E by auto
   moreover have "decseq ?E"
-    by (auto simp: emb_def Pi_iff decseq_def)
+    by (auto simp: prod_emb_def Pi_iff decseq_def)
   ultimately show ?thesis
-    by (simp add: finite_continuity_from_above)
+    by (simp add: finite_Lim_measure_decseq)
 qed
 
 end
\ No newline at end of file