doc-src/TutorialI/Recdef/document/termination.tex
changeset 11636 0bec857c9871
parent 11627 abf9cda4a4d2
child 11866 fbd097aec213
--- a/doc-src/TutorialI/Recdef/document/termination.tex	Fri Sep 28 20:08:05 2001 +0200
+++ b/doc-src/TutorialI/Recdef/document/termination.tex	Fri Sep 28 20:08:28 2001 +0200
@@ -17,7 +17,69 @@
 recursive call.  Let us try the following artificial function:%
 \end{isamarkuptext}%
 \isacommand{consts}\ f\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat{\isasymtimes}nat\ {\isasymRightarrow}\ nat{\isachardoublequote}\isanewline
-\isacommand{recdef}\ \end{isabellebody}%
+\isacommand{recdef}\ f\ {\isachardoublequote}measure{\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}{\isachardot}\ x{\isacharminus}y{\isacharparenright}{\isachardoublequote}\isanewline
+\ \ {\isachardoublequote}f{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ x\ {\isasymle}\ y\ then\ x\ else\ f{\isacharparenleft}x{\isacharcomma}y{\isacharplus}{\isadigit{1}}{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
+\begin{isamarkuptext}%
+\noindent
+Isabelle prints a
+\REMARK{error or warning?  change this part?  rename g to f?}
+message showing you what it was unable to prove. You will then
+have to prove it as a separate lemma before you attempt the definition
+of your function once more. In our case the required lemma is the obvious one:%
+\end{isamarkuptext}%
+\isacommand{lemma}\ termi{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isasymnot}\ x\ {\isasymle}\ y\ {\isasymLongrightarrow}\ x\ {\isacharminus}\ Suc\ y\ {\isacharless}\ x\ {\isacharminus}\ y{\isachardoublequote}%
+\begin{isamarkuptxt}%
+\noindent
+It was not proved automatically because of the awkward behaviour of subtraction
+on type \isa{nat}. This requires more arithmetic than is tried by default:%
+\end{isamarkuptxt}%
+\isacommand{apply}{\isacharparenleft}arith{\isacharparenright}\isanewline
+\isacommand{done}%
+\begin{isamarkuptext}%
+\noindent
+Because \isacommand{recdef}'s termination prover involves simplification,
+we include in our second attempt a hint: the \attrdx{recdef_simp} attribute 
+says to use \isa{termi{\isacharunderscore}lem} as
+a simplification rule.%
+\end{isamarkuptext}%
+\isacommand{consts}\ g\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat{\isasymtimes}nat\ {\isasymRightarrow}\ nat{\isachardoublequote}\isanewline
+\isacommand{recdef}\ g\ {\isachardoublequote}measure{\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}{\isachardot}\ x{\isacharminus}y{\isacharparenright}{\isachardoublequote}\isanewline
+\ \ {\isachardoublequote}g{\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ x\ {\isasymle}\ y\ then\ x\ else\ g{\isacharparenleft}x{\isacharcomma}y{\isacharplus}{\isadigit{1}}{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
+{\isacharparenleft}\isakeyword{hints}\ recdef{\isacharunderscore}simp{\isacharcolon}\ termi{\isacharunderscore}lem{\isacharparenright}%
+\begin{isamarkuptext}%
+\noindent
+This time everything works fine. Now \isa{g{\isachardot}simps} contains precisely
+the stated recursion equation for \isa{g}, which has been stored as a
+simplification rule.  Thus we can automatically prove results such as this one:%
+\end{isamarkuptext}%
+\isacommand{theorem}\ {\isachardoublequote}g{\isacharparenleft}{\isadigit{1}}{\isacharcomma}{\isadigit{0}}{\isacharparenright}\ {\isacharequal}\ g{\isacharparenleft}{\isadigit{1}}{\isacharcomma}{\isadigit{1}}{\isacharparenright}{\isachardoublequote}\isanewline
+\isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isanewline
+\isacommand{done}%
+\begin{isamarkuptext}%
+\noindent
+More exciting theorems require induction, which is discussed below.
+
+If the termination proof requires a new lemma that is of general use, you can
+turn it permanently into a simplification rule, in which case the above
+\isacommand{hint} is not necessary. But our \isa{termi{\isacharunderscore}lem} is not
+sufficiently general to warrant this distinction.
+
+The attentive reader may wonder why we chose to call our function \isa{g}
+rather than \isa{f} the second time around. The reason is that, despite
+the failed termination proof, the definition of \isa{f} did not
+fail, and thus we could not define it a second time. However, all theorems
+about \isa{f}, for example \isa{f{\isachardot}simps}, carry as a precondition
+the unproved termination condition. Moreover, the theorems
+\isa{f{\isachardot}simps} are not stored as simplification rules. 
+However, this mechanism
+allows a delayed proof of termination: instead of proving
+\isa{termi{\isacharunderscore}lem} up front, we could prove 
+it later on and then use it to remove the preconditions from the theorems
+about \isa{f}. In most cases this is more cumbersome than proving things
+up front.
+\REMARK{FIXME, with one exception: nested recursion.}%
+\end{isamarkuptext}%
+\end{isabellebody}%
 %%% Local Variables:
 %%% mode: latex
 %%% TeX-master: "root"