src/HOL/UNITY/ProgressSets.thy
changeset 13861 0c18f31d901a
parent 13853 89131afa9f01
child 13866 b42d7983a822
--- a/src/HOL/UNITY/ProgressSets.thy	Fri Mar 14 10:30:15 2003 +0100
+++ b/src/HOL/UNITY/ProgressSets.thy	Fri Mar 14 10:30:46 2003 +0100
@@ -8,6 +8,10 @@
     David Meier and Beverly Sanders,
     Composing Leads-to Properties
     Theoretical Computer Science 243:1-2 (2000), 339-361.
+
+    David Meier,
+    Progress Properties in Program Refinement and Parallel Composition
+    Swiss Federal Institute of Technology Zurich (1997)
 *)
 
 header{*Progress Sets*}
@@ -15,102 +19,220 @@
 theory ProgressSets = Transformers:
 
 constdefs
-  closure_set :: "'a set set => bool"
-   "closure_set C ==
-	 (\<forall>D. D \<subseteq> C --> \<Inter>D \<in> C) & (\<forall>D. D \<subseteq> C --> \<Union>D \<in> C)"
+  lattice :: "'a set set => bool"
+   --{*Meier calls them closure sets, but they are just complete lattices*}
+   "lattice L ==
+	 (\<forall>M. M \<subseteq> L --> \<Inter>M \<in> L) & (\<forall>M. M \<subseteq> L --> \<Union>M \<in> L)"
 
   cl :: "['a set set, 'a set] => 'a set"
    --{*short for ``closure''*}
-   "cl C r == \<Inter>{x. x\<in>C & r \<subseteq> x}"
+   "cl L r == \<Inter>{x. x\<in>L & r \<subseteq> x}"
 
-lemma UNIV_in_closure_set: "closure_set C ==> UNIV \<in> C"
-by (force simp add: closure_set_def)
+lemma UNIV_in_lattice: "lattice L ==> UNIV \<in> L"
+by (force simp add: lattice_def)
 
-lemma empty_in_closure_set: "closure_set C ==> {} \<in> C"
-by (force simp add: closure_set_def)
+lemma empty_in_lattice: "lattice L ==> {} \<in> L"
+by (force simp add: lattice_def)
 
-lemma Union_in_closure_set: "[|D \<subseteq> C; closure_set C|] ==> \<Union>D \<in> C"
-by (simp add: closure_set_def)
+lemma Union_in_lattice: "[|M \<subseteq> L; lattice L|] ==> \<Union>M \<in> L"
+by (simp add: lattice_def)
 
-lemma Inter_in_closure_set: "[|D \<subseteq> C; closure_set C|] ==> \<Inter>D \<in> C"
-by (simp add: closure_set_def)
+lemma Inter_in_lattice: "[|M \<subseteq> L; lattice L|] ==> \<Inter>M \<in> L"
+by (simp add: lattice_def)
 
-lemma UN_in_closure_set:
-     "[|closure_set C; !!i. i\<in>I ==> r i \<in> C|] ==> (\<Union>i\<in>I. r i) \<in> C"
+lemma UN_in_lattice:
+     "[|lattice L; !!i. i\<in>I ==> r i \<in> L|] ==> (\<Union>i\<in>I. r i) \<in> L"
 apply (simp add: Set.UN_eq) 
-apply (blast intro: Union_in_closure_set) 
+apply (blast intro: Union_in_lattice) 
 done
 
-lemma IN_in_closure_set:
-     "[|closure_set C; !!i. i\<in>I ==> r i \<in> C|] ==> (\<Inter>i\<in>I. r i)  \<in> C"
+lemma INT_in_lattice:
+     "[|lattice L; !!i. i\<in>I ==> r i \<in> L|] ==> (\<Inter>i\<in>I. r i)  \<in> L"
 apply (simp add: INT_eq) 
-apply (blast intro: Inter_in_closure_set) 
+apply (blast intro: Inter_in_lattice) 
 done
 
-lemma Un_in_closure_set: "[|x\<in>C; y\<in>C; closure_set C|] ==> x\<union>y \<in> C"
+lemma Un_in_lattice: "[|x\<in>L; y\<in>L; lattice L|] ==> x\<union>y \<in> L"
 apply (simp only: Un_eq_Union) 
-apply (blast intro: Union_in_closure_set) 
+apply (blast intro: Union_in_lattice) 
 done
 
-lemma Int_in_closure_set: "[|x\<in>C; y\<in>C; closure_set C|] ==> x\<inter>y \<in> C"
+lemma Int_in_lattice: "[|x\<in>L; y\<in>L; lattice L|] ==> x\<inter>y \<in> L"
 apply (simp only: Int_eq_Inter) 
-apply (blast intro: Inter_in_closure_set) 
+apply (blast intro: Inter_in_lattice) 
 done
 
-lemma closure_set_stable: "closure_set {X. F \<in> stable X}"
-by (simp add: closure_set_def stable_def constrains_def, blast)
+lemma lattice_stable: "lattice {X. F \<in> stable X}"
+by (simp add: lattice_def stable_def constrains_def, blast)
 
-text{*The next three results state that @{term "cl C r"} is the minimal
- element of @{term C} that includes @{term r}.*}
-lemma cl_in_closure_set: "closure_set C ==> cl C r \<in> C"
-apply (simp add: closure_set_def cl_def)
+text{*The next three results state that @{term "cl L r"} is the minimal
+ element of @{term L} that includes @{term r}.*}
+lemma cl_in_lattice: "lattice L ==> cl L r \<in> L"
+apply (simp add: lattice_def cl_def)
 apply (erule conjE)  
 apply (drule spec, erule mp, blast) 
 done
 
-lemma cl_least: "[|c\<in>C; r\<subseteq>c|] ==> cl C r \<subseteq> c" 
+lemma cl_least: "[|c\<in>L; r\<subseteq>c|] ==> cl L r \<subseteq> c" 
 by (force simp add: cl_def)
 
 text{*The next three lemmas constitute assertion (4.61)*}
-lemma cl_mono: "r \<subseteq> r' ==> cl C r \<subseteq> cl C r'"
+lemma cl_mono: "r \<subseteq> r' ==> cl L r \<subseteq> cl L r'"
+by (simp add: cl_def, blast)
+
+lemma subset_cl: "r \<subseteq> cl L r"
+by (simp add: cl_def, blast)
+
+lemma cl_UN_subset: "(\<Union>i\<in>I. cl L (r i)) \<subseteq> cl L (\<Union>i\<in>I. r i)"
 by (simp add: cl_def, blast)
 
-lemma subset_cl: "r \<subseteq> cl C r"
-by (simp add: cl_def, blast)
+lemma cl_Un: "lattice L ==> cl L (r\<union>s) = cl L r \<union> cl L s"
+apply (rule equalityI) 
+ prefer 2 
+  apply (simp add: cl_def, blast)
+apply (rule cl_least)
+ apply (blast intro: Un_in_lattice cl_in_lattice)
+apply (blast intro: subset_cl [THEN subsetD])  
+done
 
-lemma cl_UN_subset: "(\<Union>i\<in>I. cl C (r i)) \<subseteq> cl C (\<Union>i\<in>I. r i)"
-by (simp add: cl_def, blast)
-
-lemma cl_Un: "closure_set C ==> cl C (r\<union>s) = cl C r \<union> cl C s"
+lemma cl_UN: "lattice L ==> cl L (\<Union>i\<in>I. r i) = (\<Union>i\<in>I. cl L (r i))"
 apply (rule equalityI) 
  prefer 2 
   apply (simp add: cl_def, blast)
 apply (rule cl_least)
- apply (blast intro: Un_in_closure_set cl_in_closure_set)
-apply (blast intro: subset_cl [THEN subsetD])  
-done
-
-lemma cl_UN: "closure_set C ==> cl C (\<Union>i\<in>I. r i) = (\<Union>i\<in>I. cl C (r i))"
-apply (rule equalityI) 
- prefer 2 
-  apply (simp add: cl_def, blast)
-apply (rule cl_least)
- apply (blast intro: UN_in_closure_set cl_in_closure_set)
+ apply (blast intro: UN_in_lattice cl_in_lattice)
 apply (blast intro: subset_cl [THEN subsetD])  
 done
 
-lemma cl_idem [simp]: "cl C (cl C r) = cl C r"
+lemma cl_idem [simp]: "cl L (cl L r) = cl L r"
 by (simp add: cl_def, blast)
 
-lemma cl_ident: "r\<in>C ==> cl C r = r" 
+lemma cl_ident: "r\<in>L ==> cl L r = r" 
 by (force simp add: cl_def)
 
 text{*Assertion (4.62)*}
-lemma cl_ident_iff: "closure_set C ==> (cl C r = r) = (r\<in>C)" 
+lemma cl_ident_iff: "lattice L ==> (cl L r = r) = (r\<in>L)" 
 apply (rule iffI) 
  apply (erule subst)
- apply (erule cl_in_closure_set)  
+ apply (erule cl_in_lattice)  
 apply (erule cl_ident) 
 done
 
+lemma cl_subset_in_lattice: "[|cl L r \<subseteq> r; lattice L|] ==> r\<in>L" 
+by (simp add: cl_ident_iff [symmetric] equalityI subset_cl)
+
+
+constdefs 
+  closed :: "['a program, 'a set, 'a set,  'a set set] => bool"
+   "closed F T B L == \<forall>M. \<forall>act \<in> Acts F. B\<subseteq>M & T\<inter>M \<in> L -->
+                              T \<inter> (B \<union> wp act M) \<in> L"
+
+  progress_set :: "['a program, 'a set, 'a set] => 'a set set set"
+   "progress_set F T B ==
+      {L. F \<in> stable T & lattice L & B \<in> L & T \<in> L & closed F T B L}"
+
+lemma closedD:
+   "[|closed F T B L; act \<in> Acts F; B\<subseteq>M; T\<inter>M \<in> L|] 
+    ==> T \<inter> (B \<union> wp act M) \<in> L"
+by (simp add: closed_def) 
+
+lemma lattice_awp_lemma:
+  assumes tmc:  "T\<inter>m \<in> C" --{*induction hypothesis in theorem below*}
+      and qsm:  "q \<subseteq> m"   --{*holds in inductive step*}
+      and latt: "lattice C"
+      and tc:   "T \<in> C"
+      and qc:   "q \<in> C"
+      and clos: "closed F T q C"
+    shows "T \<inter> (q \<union> awp F (m \<union> cl C (T\<inter>r))) \<in> C"
+apply (simp del: INT_simps add: awp_def INT_extend_simps) 
+apply (rule INT_in_lattice [OF latt]) 
+apply (erule closedD [OF clos]) 
+apply (simp add: subset_trans [OF qsm Un_upper1]) 
+apply (subgoal_tac "T \<inter> (m \<union> cl C (T\<inter>r)) = (T\<inter>m) \<union> cl C (T\<inter>r)")
+ prefer 2 apply (blast intro: tc rev_subsetD [OF _ cl_least]) 
+apply (erule ssubst) 
+apply (blast intro: Un_in_lattice latt cl_in_lattice tmc) 
+done
+
+lemma lattice_lemma:
+  assumes tmc:  "T\<inter>m \<in> C" --{*induction hypothesis in theorem below*}
+      and qsm:  "q \<subseteq> m"   --{*holds in inductive step*}
+      and act:  "act \<in> Acts F"
+      and latt: "lattice C"
+      and tc:   "T \<in> C"
+      and qc:   "q \<in> C"
+      and clos: "closed F T q C"
+    shows "T \<inter> (wp act m \<inter> awp F (m \<union> cl C (T\<inter>r)) \<union> m) \<in> C"
+apply (subgoal_tac "T \<inter> (q \<union> wp act m) \<in> C")
+ prefer 2 apply (simp add: closedD [OF clos] act qsm tmc)
+apply (drule Int_in_lattice
+              [OF _ lattice_awp_lemma [OF tmc qsm latt tc qc clos, of r]
+                    latt])
+apply (subgoal_tac
+	 "T \<inter> (q \<union> wp act m) \<inter> (T \<inter> (q \<union> awp F (m \<union> cl C (T\<inter>r)))) = 
+	  T \<inter> (q \<union> wp act m \<inter> awp F (m \<union> cl C (T\<inter>r)))") 
+ prefer 2 apply blast 
+apply simp  
+apply (drule Un_in_lattice [OF _ tmc latt]) 
+apply (subgoal_tac
+	 "T \<inter> (q \<union> wp act m \<inter> awp F (m \<union> cl C (T\<inter>r))) \<union> T\<inter>m = 
+	  T \<inter> (wp act m \<inter> awp F (m \<union> cl C (T\<inter>r)) \<union> m)")
+ prefer 2 apply (blast intro: qsm [THEN subsetD], simp) 
+done
+
+
+lemma progress_induction_step:
+  assumes tmc:  "T\<inter>m \<in> C" --{*induction hypothesis in theorem below*}
+      and act:  "act \<in> Acts F"
+      and mwens: "m \<in> wens_set F q"
+      and latt: "lattice C"
+      and  tc:  "T \<in> C"
+      and  qc:  "q \<in> C"
+      and clos: "closed F T q C"
+      and Fstable: "F \<in> stable T"
+  shows "T \<inter> wens F act m \<in> C"
+proof -
+from mwens have qsm: "q \<subseteq> m"
+ by (rule wens_set_imp_subset) 
+let ?r = "wens F act m"
+have "?r \<subseteq> (wp act m \<inter> awp F (m\<union>?r)) \<union> m"
+ by (simp add: wens_unfold [symmetric])
+then have "T\<inter>?r \<subseteq> T \<inter> ((wp act m \<inter> awp F (m\<union>?r)) \<union> m)"
+ by blast
+then have "T\<inter>?r \<subseteq> T \<inter> ((wp act m \<inter> awp F (T \<inter> (m\<union>?r))) \<union> m)"
+ by (simp add: awp_Int_eq Fstable stable_imp_awp_ident, blast) 
+then have "T\<inter>?r \<subseteq> T \<inter> ((wp act m \<inter> awp F (m \<union> cl C (T\<inter>?r))) \<union> m)"
+ by (blast intro: awp_mono [THEN [2] rev_subsetD] subset_cl [THEN subsetD])
+then have "cl C (T\<inter>?r) \<subseteq> 
+           cl C (T \<inter> ((wp act m \<inter> awp F (m \<union> cl C (T\<inter>?r))) \<union> m))"
+ by (rule cl_mono) 
+then have "cl C (T\<inter>?r) \<subseteq> 
+           T \<inter> ((wp act m \<inter> awp F (m \<union> cl C (T\<inter>?r))) \<union> m)"
+ by (simp add: cl_ident lattice_lemma [OF tmc qsm act latt tc qc clos])
+then have "cl C (T\<inter>?r) \<subseteq> (wp act m \<inter> awp F (m \<union> cl C (T\<inter>?r))) \<union> m"
+ by blast
+then have "cl C (T\<inter>?r) \<subseteq> ?r"
+ by (blast intro!: subset_wens) 
+then have cl_subset: "cl C (T\<inter>?r) \<subseteq> T\<inter>?r"
+ by (simp add: Int_subset_iff cl_ident tc
+               subset_trans [OF cl_mono [OF Int_lower1]]) 
+show ?thesis
+ by (rule cl_subset_in_lattice [OF cl_subset latt]) 
+qed
+
+
+lemma progress_set_lemma:
+      "[|C \<in> progress_set F T B; r \<in> wens_set F B|] ==> T\<inter>r \<in> C"
+apply (simp add: progress_set_def, clarify) 
+apply (erule wens_set.induct) 
+  txt{*Base*}
+  apply (simp add: Int_in_lattice) 
+ txt{*The difficult @{term wens} case*}
+ apply (simp add: progress_induction_step) 
+txt{*Disjunctive case*}
+apply (subgoal_tac "(\<Union>U\<in>W. T \<inter> U) \<in> C") 
+ apply (simp add: Int_Union) 
+apply (blast intro: UN_in_lattice) 
+done
+
 end