src/HOL/HOLCF/Pcpo.thy
changeset 67312 0d25e02759b7
parent 62175 8ffc4d0e652d
child 68369 6989752bba4b
--- a/src/HOL/HOLCF/Pcpo.thy	Mon Jan 01 21:17:28 2018 +0100
+++ b/src/HOL/HOLCF/Pcpo.thy	Mon Jan 01 23:07:24 2018 +0100
@@ -5,7 +5,7 @@
 section \<open>Classes cpo and pcpo\<close>
 
 theory Pcpo
-imports Porder
+  imports Porder
 begin
 
 subsection \<open>Complete partial orders\<close>
@@ -29,8 +29,7 @@
 lemma is_ub_thelub: "chain S \<Longrightarrow> S x \<sqsubseteq> (\<Squnion>i. S i)"
   by (blast dest: cpo intro: is_lub_lub [THEN is_lub_rangeD1])
 
-lemma is_lub_thelub:
-  "\<lbrakk>chain S; range S <| x\<rbrakk> \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x"
+lemma is_lub_thelub: "\<lbrakk>chain S; range S <| x\<rbrakk> \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x"
   by (blast dest: cpo intro: is_lub_lub [THEN is_lubD2])
 
 lemma lub_below_iff: "chain S \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x \<longleftrightarrow> (\<forall>i. S i \<sqsubseteq> x)"
@@ -42,63 +41,56 @@
 lemma below_lub: "\<lbrakk>chain S; x \<sqsubseteq> S i\<rbrakk> \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. S i)"
   by (erule below_trans, erule is_ub_thelub)
 
-lemma lub_range_mono:
-  "\<lbrakk>range X \<subseteq> range Y; chain Y; chain X\<rbrakk>
-    \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
-apply (erule lub_below)
-apply (subgoal_tac "\<exists>j. X i = Y j")
-apply  clarsimp
-apply  (erule is_ub_thelub)
-apply auto
-done
+lemma lub_range_mono: "\<lbrakk>range X \<subseteq> range Y; chain Y; chain X\<rbrakk> \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
+  apply (erule lub_below)
+  apply (subgoal_tac "\<exists>j. X i = Y j")
+   apply clarsimp
+   apply (erule is_ub_thelub)
+  apply auto
+  done
 
-lemma lub_range_shift:
-  "chain Y \<Longrightarrow> (\<Squnion>i. Y (i + j)) = (\<Squnion>i. Y i)"
-apply (rule below_antisym)
-apply (rule lub_range_mono)
-apply    fast
-apply   assumption
-apply (erule chain_shift)
-apply (rule lub_below)
-apply assumption
-apply (rule_tac i="i" in below_lub)
-apply (erule chain_shift)
-apply (erule chain_mono)
-apply (rule le_add1)
-done
+lemma lub_range_shift: "chain Y \<Longrightarrow> (\<Squnion>i. Y (i + j)) = (\<Squnion>i. Y i)"
+  apply (rule below_antisym)
+   apply (rule lub_range_mono)
+     apply fast
+    apply assumption
+   apply (erule chain_shift)
+  apply (rule lub_below)
+   apply assumption
+  apply (rule_tac i="i" in below_lub)
+   apply (erule chain_shift)
+  apply (erule chain_mono)
+  apply (rule le_add1)
+  done
 
-lemma maxinch_is_thelub:
-  "chain Y \<Longrightarrow> max_in_chain i Y = ((\<Squnion>i. Y i) = Y i)"
-apply (rule iffI)
-apply (fast intro!: lub_eqI lub_finch1)
-apply (unfold max_in_chain_def)
-apply (safe intro!: below_antisym)
-apply (fast elim!: chain_mono)
-apply (drule sym)
-apply (force elim!: is_ub_thelub)
-done
+lemma maxinch_is_thelub: "chain Y \<Longrightarrow> max_in_chain i Y = ((\<Squnion>i. Y i) = Y i)"
+  apply (rule iffI)
+   apply (fast intro!: lub_eqI lub_finch1)
+  apply (unfold max_in_chain_def)
+  apply (safe intro!: below_antisym)
+   apply (fast elim!: chain_mono)
+  apply (drule sym)
+  apply (force elim!: is_ub_thelub)
+  done
 
 text \<open>the \<open>\<sqsubseteq>\<close> relation between two chains is preserved by their lubs\<close>
 
-lemma lub_mono:
-  "\<lbrakk>chain X; chain Y; \<And>i. X i \<sqsubseteq> Y i\<rbrakk> 
-    \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
-by (fast elim: lub_below below_lub)
+lemma lub_mono: "\<lbrakk>chain X; chain Y; \<And>i. X i \<sqsubseteq> Y i\<rbrakk> \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
+  by (fast elim: lub_below below_lub)
 
 text \<open>the = relation between two chains is preserved by their lubs\<close>
 
-lemma lub_eq:
-  "(\<And>i. X i = Y i) \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)"
+lemma lub_eq: "(\<And>i. X i = Y i) \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)"
   by simp
 
 lemma ch2ch_lub:
   assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
   assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
   shows "chain (\<lambda>i. \<Squnion>j. Y i j)"
-apply (rule chainI)
-apply (rule lub_mono [OF 2 2])
-apply (rule chainE [OF 1])
-done
+  apply (rule chainI)
+  apply (rule lub_mono [OF 2 2])
+  apply (rule chainE [OF 1])
+  done
 
 lemma diag_lub:
   assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
@@ -108,7 +100,7 @@
   have 3: "chain (\<lambda>i. Y i i)"
     apply (rule chainI)
     apply (rule below_trans)
-    apply (rule chainE [OF 1])
+     apply (rule chainE [OF 1])
     apply (rule chainE [OF 2])
     done
   have 4: "chain (\<lambda>i. \<Squnion>j. Y i j)"
@@ -118,7 +110,7 @@
     apply (rule lub_below [OF 2])
     apply (rule below_lub [OF 3])
     apply (rule below_trans)
-    apply (rule chain_mono [OF 1 max.cobounded1])
+     apply (rule chain_mono [OF 1 max.cobounded1])
     apply (rule chain_mono [OF 2 max.cobounded2])
     done
   show "(\<Squnion>i. Y i i) \<sqsubseteq> (\<Squnion>i. \<Squnion>j. Y i j)"
@@ -135,6 +127,7 @@
 
 end
 
+
 subsection \<open>Pointed cpos\<close>
 
 text \<open>The class pcpo of pointed cpos\<close>
@@ -147,44 +140,39 @@
   where "bottom = (THE x. \<forall>y. x \<sqsubseteq> y)"
 
 lemma minimal [iff]: "\<bottom> \<sqsubseteq> x"
-unfolding bottom_def
-apply (rule the1I2)
-apply (rule ex_ex1I)
-apply (rule least)
-apply (blast intro: below_antisym)
-apply simp
-done
+  unfolding bottom_def
+  apply (rule the1I2)
+   apply (rule ex_ex1I)
+    apply (rule least)
+   apply (blast intro: below_antisym)
+  apply simp
+  done
 
 end
 
 text \<open>Old "UU" syntax:\<close>
 
 syntax UU :: logic
-
-translations "UU" => "CONST bottom"
+translations "UU" \<rightharpoonup> "CONST bottom"
 
 text \<open>Simproc to rewrite @{term "\<bottom> = x"} to @{term "x = \<bottom>"}.\<close>
-
-setup \<open>
-  Reorient_Proc.add
-    (fn Const(@{const_name bottom}, _) => true | _ => false)
-\<close>
-
+setup \<open>Reorient_Proc.add (fn Const(\<^const_name>\<open>bottom\<close>, _) => true | _ => false)\<close>
 simproc_setup reorient_bottom ("\<bottom> = x") = Reorient_Proc.proc
 
 text \<open>useful lemmas about @{term \<bottom>}\<close>
 
-lemma below_bottom_iff [simp]: "(x \<sqsubseteq> \<bottom>) = (x = \<bottom>)"
-by (simp add: po_eq_conv)
+lemma below_bottom_iff [simp]: "x \<sqsubseteq> \<bottom> \<longleftrightarrow> x = \<bottom>"
+  by (simp add: po_eq_conv)
 
-lemma eq_bottom_iff: "(x = \<bottom>) = (x \<sqsubseteq> \<bottom>)"
-by simp
+lemma eq_bottom_iff: "x = \<bottom> \<longleftrightarrow> x \<sqsubseteq> \<bottom>"
+  by simp
 
 lemma bottomI: "x \<sqsubseteq> \<bottom> \<Longrightarrow> x = \<bottom>"
-by (subst eq_bottom_iff)
+  by (subst eq_bottom_iff)
 
 lemma lub_eq_bottom_iff: "chain Y \<Longrightarrow> (\<Squnion>i. Y i) = \<bottom> \<longleftrightarrow> (\<forall>i. Y i = \<bottom>)"
-by (simp only: eq_bottom_iff lub_below_iff)
+  by (simp only: eq_bottom_iff lub_below_iff)
+
 
 subsection \<open>Chain-finite and flat cpos\<close>
 
@@ -195,10 +183,10 @@
 begin
 
 subclass cpo
-apply standard
-apply (frule chfin)
-apply (blast intro: lub_finch1)
-done
+  apply standard
+  apply (frule chfin)
+  apply (blast intro: lub_finch1)
+  done
 
 lemma chfin2finch: "chain Y \<Longrightarrow> finite_chain Y"
   by (simp add: chfin finite_chain_def)
@@ -210,19 +198,18 @@
 begin
 
 subclass chfin
-apply standard
-apply (unfold max_in_chain_def)
-apply (case_tac "\<forall>i. Y i = \<bottom>")
-apply simp
-apply simp
-apply (erule exE)
-apply (rule_tac x="i" in exI)
-apply clarify
-apply (blast dest: chain_mono ax_flat)
-done
+  apply standard
+  apply (unfold max_in_chain_def)
+  apply (case_tac "\<forall>i. Y i = \<bottom>")
+   apply simp
+  apply simp
+  apply (erule exE)
+  apply (rule_tac x="i" in exI)
+  apply clarify
+  apply (blast dest: chain_mono ax_flat)
+  done
 
-lemma flat_below_iff:
-  shows "(x \<sqsubseteq> y) = (x = \<bottom> \<or> x = y)"
+lemma flat_below_iff: "x \<sqsubseteq> y \<longleftrightarrow> x = \<bottom> \<or> x = y"
   by (safe dest!: ax_flat)
 
 lemma flat_eq: "a \<noteq> \<bottom> \<Longrightarrow> a \<sqsubseteq> b = (a = b)"
@@ -237,7 +224,7 @@
 begin
 
 subclass po
-proof qed simp_all
+  by standard simp_all
 
 text \<open>In a discrete cpo, every chain is constant\<close>
 
@@ -246,19 +233,20 @@
   shows "\<exists>x. S = (\<lambda>i. x)"
 proof (intro exI ext)
   fix i :: nat
-  have "S 0 \<sqsubseteq> S i" using S le0 by (rule chain_mono)
-  hence "S 0 = S i" by simp
-  thus "S i = S 0" by (rule sym)
+  from S le0 have "S 0 \<sqsubseteq> S i" by (rule chain_mono)
+  then have "S 0 = S i" by simp
+  then show "S i = S 0" by (rule sym)
 qed
 
 subclass chfin
 proof
   fix S :: "nat \<Rightarrow> 'a"
   assume S: "chain S"
-  hence "\<exists>x. S = (\<lambda>i. x)" by (rule discrete_chain_const)
-  hence "max_in_chain 0 S"
-    unfolding max_in_chain_def by auto
-  thus "\<exists>i. max_in_chain i S" ..
+  then have "\<exists>x. S = (\<lambda>i. x)"
+    by (rule discrete_chain_const)
+  then have "max_in_chain 0 S"
+    by (auto simp: max_in_chain_def)
+  then show "\<exists>i. max_in_chain i S" ..
 qed
 
 end