src/HOL/Algebra/QuotRing.thy
changeset 20318 0e0ea63fe768
child 21502 7f3ea2b3bab6
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/QuotRing.thy	Thu Aug 03 14:57:26 2006 +0200
@@ -0,0 +1,340 @@
+(*
+  Title:     HOL/Algebra/QuotRing.thy
+  Id:        $Id$
+  Author:    Stephan Hohe
+*)
+
+theory QuotRing
+imports RingHom
+begin
+
+
+section {* Quotient Rings *}
+
+subsection {* Multiplication on Cosets *}
+
+constdefs (structure R)
+  rcoset_mult :: "[('a, _) ring_scheme, 'a set, 'a set, 'a set] \<Rightarrow> 'a set"   ("[mod _:] _ \<Otimes>\<index> _" [81,81,81] 80)
+  "rcoset_mult R I A B \<equiv> \<Union>a\<in>A. \<Union>b\<in>B. I +> (a \<otimes> b)"
+
+
+text {* @{const "rcoset_mult"} fulfils the properties required by
+  congruences *}
+lemma (in ideal) rcoset_mult_add:
+  "\<lbrakk>x \<in> carrier R; y \<in> carrier R\<rbrakk> \<Longrightarrow> [mod I:] (I +> x) \<Otimes> (I +> y) = I +> (x \<otimes> y)"
+apply rule
+apply (rule, simp add: rcoset_mult_def, clarsimp)
+defer 1
+apply (rule, simp add: rcoset_mult_def)
+defer 1
+proof -
+  fix z x' y'
+  assume carr: "x \<in> carrier R" "y \<in> carrier R"
+     and x'rcos: "x' \<in> I +> x"
+     and y'rcos: "y' \<in> I +> y"
+     and zrcos: "z \<in> I +> x' \<otimes> y'"
+
+  from x'rcos 
+      have "\<exists>h\<in>I. x' = h \<oplus> x" by (simp add: a_r_coset_def r_coset_def)
+  from this obtain hx
+      where hxI: "hx \<in> I"
+      and x': "x' = hx \<oplus> x"
+      by fast+
+  
+  from y'rcos
+      have "\<exists>h\<in>I. y' = h \<oplus> y" by (simp add: a_r_coset_def r_coset_def)
+  from this
+      obtain hy
+      where hyI: "hy \<in> I"
+      and y': "y' = hy \<oplus> y"
+      by fast+
+
+  from zrcos
+      have "\<exists>h\<in>I. z = h \<oplus> (x' \<otimes> y')" by (simp add: a_r_coset_def r_coset_def)
+  from this
+      obtain hz
+      where hzI: "hz \<in> I"
+      and z: "z = hz \<oplus> (x' \<otimes> y')"
+      by fast+
+
+  note carr = carr hxI[THEN a_Hcarr] hyI[THEN a_Hcarr] hzI[THEN a_Hcarr]
+
+  from z have "z = hz \<oplus> (x' \<otimes> y')" .
+  also from x' y'
+      have "\<dots> = hz \<oplus> ((hx \<oplus> x) \<otimes> (hy \<oplus> y))" by simp
+  also from carr
+      have "\<dots> = (hz \<oplus> (hx \<otimes> (hy \<oplus> y)) \<oplus> x \<otimes> hy) \<oplus> x \<otimes> y" by algebra
+  finally
+      have z2: "z = (hz \<oplus> (hx \<otimes> (hy \<oplus> y)) \<oplus> x \<otimes> hy) \<oplus> x \<otimes> y" .
+
+  from hxI hyI hzI carr
+      have "hz \<oplus> (hx \<otimes> (hy \<oplus> y)) \<oplus> x \<otimes> hy \<in> I"  by (simp add: I_l_closed I_r_closed)
+
+  from this and z2
+      have "\<exists>h\<in>I. z = h \<oplus> x \<otimes> y" by fast
+  thus "z \<in> I +> x \<otimes> y" by (simp add: a_r_coset_def r_coset_def)
+next
+  fix z
+  assume xcarr: "x \<in> carrier R"
+     and ycarr: "y \<in> carrier R"
+     and zrcos: "z \<in> I +> x \<otimes> y"
+  from xcarr
+      have xself: "x \<in> I +> x" by (intro a_rcos_self)
+  from ycarr
+      have yself: "y \<in> I +> y" by (intro a_rcos_self)
+
+  from xself and yself and zrcos
+      show "\<exists>a\<in>I +> x. \<exists>b\<in>I +> y. z \<in> I +> a \<otimes> b" by fast
+qed
+
+
+subsection {* Quotient Ring Definition *}
+
+constdefs (structure R)
+  FactRing :: "[('a,'b) ring_scheme, 'a set] \<Rightarrow> ('a set) ring"
+     (infixl "Quot" 65)
+  "FactRing R I \<equiv>
+    \<lparr>carrier = a_rcosets I, mult = rcoset_mult R I, one = (I +> \<one>), zero = I, add = set_add R\<rparr>"
+
+
+subsection {* Factorization over General Ideals *}
+
+text {* The quotient is a ring *}
+lemma (in ideal) quotient_is_ring:
+  shows "ring (R Quot I)"
+apply (rule ringI)
+   --{* abelian group *}
+   apply (rule comm_group_abelian_groupI)
+   apply (simp add: FactRing_def)
+   apply (rule a_factorgroup_is_comm_group[unfolded A_FactGroup_def'])
+  --{* mult monoid *}
+  apply (rule monoidI)
+      apply (simp_all add: FactRing_def A_RCOSETS_def RCOSETS_def
+             a_r_coset_def[symmetric])
+      --{* mult closed *}
+      apply (clarify)
+      apply (simp add: rcoset_mult_add, fast)
+     --{* mult one\_closed *}
+     apply (force intro: one_closed)
+    --{* mult assoc *}
+    apply clarify
+    apply (simp add: rcoset_mult_add m_assoc)
+   --{* mult one *}
+   apply clarify
+   apply (simp add: rcoset_mult_add l_one)
+  apply clarify
+  apply (simp add: rcoset_mult_add r_one)
+ --{* distr *}
+ apply clarify
+ apply (simp add: rcoset_mult_add a_rcos_sum l_distr)
+apply clarify
+apply (simp add: rcoset_mult_add a_rcos_sum r_distr)
+done
+
+
+text {* This is a ring homomorphism *}
+
+lemma (in ideal) rcos_ring_hom:
+  "(op +> I) \<in> ring_hom R (R Quot I)"
+apply (rule ring_hom_memI)
+   apply (simp add: FactRing_def a_rcosetsI[OF a_subset])
+  apply (simp add: FactRing_def rcoset_mult_add)
+ apply (simp add: FactRing_def a_rcos_sum)
+apply (simp add: FactRing_def)
+done
+
+lemma (in ideal) rcos_ring_hom_ring:
+  "ring_hom_ring R (R Quot I) (op +> I)"
+apply (rule ring_hom_ringI)
+     apply (rule is_ring, rule quotient_is_ring)
+   apply (simp add: FactRing_def a_rcosetsI[OF a_subset])
+  apply (simp add: FactRing_def rcoset_mult_add)
+ apply (simp add: FactRing_def a_rcos_sum)
+apply (simp add: FactRing_def)
+done
+
+text {* The quotient of a cring is also commutative *}
+lemma (in ideal) quotient_is_cring:
+  includes cring
+  shows "cring (R Quot I)"
+apply (intro cring.intro comm_monoid.intro comm_monoid_axioms.intro)
+  apply (rule quotient_is_ring)
+ apply (rule ring.axioms[OF quotient_is_ring])
+apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric])
+apply clarify
+apply (simp add: rcoset_mult_add m_comm)
+done
+
+text {* Cosets as a ring homomorphism on crings *}
+lemma (in ideal) rcos_ring_hom_cring:
+  includes cring
+  shows "ring_hom_cring R (R Quot I) (op +> I)"
+apply (rule ring_hom_cringI)
+  apply (rule rcos_ring_hom_ring)
+ apply assumption
+apply (rule quotient_is_cring, assumption)
+done
+
+
+subsection {* Factorization over Prime Ideals *}
+
+text {* The quotient ring generated by a prime ideal is a domain *}
+lemma (in primeideal) quotient_is_domain:
+  shows "domain (R Quot I)"
+apply (rule domain.intro)
+ apply (rule quotient_is_cring, rule is_cring)
+apply (rule domain_axioms.intro)
+ apply (simp add: FactRing_def) defer 1
+ apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric], clarify)
+ apply (simp add: rcoset_mult_add) defer 1
+proof (rule ccontr, clarsimp)
+  assume "I +> \<one> = I"
+  hence "\<one> \<in> I" by (simp only: a_coset_join1 one_closed a_subgroup)
+  hence "carrier R \<subseteq> I" by (subst one_imp_carrier, simp, fast)
+  from this and a_subset
+      have "I = carrier R" by fast
+  from this and I_notcarr
+      show "False" by fast
+next
+  fix x y
+  assume carr: "x \<in> carrier R" "y \<in> carrier R"
+     and a: "I +> x \<otimes> y = I"
+     and b: "I +> y \<noteq> I"
+
+  have ynI: "y \<notin> I"
+  proof (rule ccontr, simp)
+    assume "y \<in> I"
+    hence "I +> y = I" by (rule a_rcos_const)
+    from this and b
+        show "False" by simp
+  qed
+
+  from carr
+      have "x \<otimes> y \<in> I +> x \<otimes> y" by (simp add: a_rcos_self)
+  from this
+      have xyI: "x \<otimes> y \<in> I" by (simp add: a)
+
+  from xyI and carr
+      have xI: "x \<in> I \<or> y \<in> I" by (simp add: I_prime)
+  from this and ynI
+      have "x \<in> I" by fast
+  thus "I +> x = I" by (rule a_rcos_const)
+qed
+
+text {* Generating right cosets of a prime ideal is a homomorphism
+        on commutative rings *}
+lemma (in primeideal) rcos_ring_hom_cring:
+  shows "ring_hom_cring R (R Quot I) (op +> I)"
+by (rule rcos_ring_hom_cring, rule is_cring)
+
+
+subsection {* Factorization over Maximal Ideals *}
+
+text {* In a commutative ring, the quotient ring over a maximal ideal
+        is a field.
+        The proof follows ``W. Adkins, S. Weintraub: Algebra --
+        An Approach via Module Theory'' *}
+lemma (in maximalideal) quotient_is_field:
+  includes cring
+  shows "field (R Quot I)"
+apply (intro cring.cring_fieldI2)
+  apply (rule quotient_is_cring, rule is_cring)
+ defer 1
+ apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric], clarsimp)
+ apply (simp add: rcoset_mult_add) defer 1
+proof (rule ccontr, simp)
+  --{* Quotient is not empty *}
+  assume "\<zero>\<^bsub>R Quot I\<^esub> = \<one>\<^bsub>R Quot I\<^esub>"
+  hence II1: "I = I +> \<one>" by (simp add: FactRing_def)
+  from a_rcos_self[OF one_closed]
+      have "\<one> \<in> I" by (simp add: II1[symmetric])
+  hence "I = carrier R" by (rule one_imp_carrier)
+  from this and I_notcarr
+      show "False" by simp
+next
+  --{* Existence of Inverse *}
+  fix a
+  assume IanI: "I +> a \<noteq> I"
+     and acarr: "a \<in> carrier R"
+
+  --{* Helper ideal @{text "J"} *}
+  def J \<equiv> "(carrier R #> a) <+> I :: 'a set"
+  have idealJ: "ideal J R"
+      apply (unfold J_def, rule add_ideals)
+      apply (simp only: cgenideal_eq_rcos[symmetric], rule cgenideal_ideal, rule acarr)
+      apply (rule is_ideal)
+      done
+
+  --{* Showing @{term "J"} not smaller than @{term "I"} *}
+  have IinJ: "I \<subseteq> J"
+  proof (rule, simp add: J_def r_coset_def set_add_defs)
+    fix x
+    assume xI: "x \<in> I"
+    have Zcarr: "\<zero> \<in> carrier R" by fast
+    from xI[THEN a_Hcarr] acarr
+    have "x = \<zero> \<otimes> a \<oplus> x" by algebra
+
+    from Zcarr and xI and this
+        show "\<exists>xa\<in>carrier R. \<exists>k\<in>I. x = xa \<otimes> a \<oplus> k" by fast
+  qed
+
+  --{* Showing @{term "J \<noteq> I"} *}
+  have anI: "a \<notin> I"
+  proof (rule ccontr, simp)
+    assume "a \<in> I"
+    hence "I +> a = I" by (rule a_rcos_const)
+    from this and IanI
+        show "False" by simp
+  qed
+
+  have aJ: "a \<in> J"
+  proof (simp add: J_def r_coset_def set_add_defs)
+    from acarr
+        have "a = \<one> \<otimes> a \<oplus> \<zero>" by algebra
+    from one_closed and additive_subgroup.zero_closed[OF is_additive_subgroup] and this
+        show "\<exists>x\<in>carrier R. \<exists>k\<in>I. a = x \<otimes> a \<oplus> k" by fast
+  qed
+
+  from aJ and anI
+      have JnI: "J \<noteq> I" by fast
+
+  --{* Deducing @{term "J = carrier R"} because @{term "I"} is maximal *}
+  from idealJ and IinJ
+      have "J = I \<or> J = carrier R"
+  proof (rule I_maximal, unfold J_def)
+    have "carrier R #> a \<subseteq> carrier R"
+	  by (rule r_coset_subset_G) fast
+    from this and a_subset
+        show "carrier R #> a <+> I \<subseteq> carrier R" by (rule set_add_closed)
+  qed
+
+  from this and JnI
+      have Jcarr: "J = carrier R" by simp
+
+  --{* Calculating an inverse for @{term "a"} *}
+  from one_closed[folded Jcarr]
+      have "\<exists>r\<in>carrier R. \<exists>i\<in>I. \<one> = r \<otimes> a \<oplus> i"
+      by (simp add: J_def r_coset_def set_add_defs)
+  from this
+     obtain r i
+       where rcarr: "r \<in> carrier R"
+       and iI: "i \<in> I"
+       and one: "\<one> = r \<otimes> a \<oplus> i"
+     by fast
+  from one and rcarr and acarr and iI[THEN a_Hcarr]
+      have rai1: "a \<otimes> r = \<ominus>i \<oplus> \<one>" by algebra
+
+  --{* Lifting to cosets *}
+  from iI
+      have "\<ominus>i \<oplus> \<one> \<in> I +> \<one>"
+      by (intro a_rcosI, simp, intro a_subset, simp)
+  from this and rai1
+      have "a \<otimes> r \<in> I +> \<one>" by simp
+  from this have "I +> \<one> = I +> a \<otimes> r"
+      by (rule a_repr_independence, simp) (rule a_subgroup)
+
+  from rcarr and this[symmetric]
+      show "\<exists>r\<in>carrier R. I +> a \<otimes> r = I +> \<one>" by fast
+qed
+
+end