src/HOL/CTL/CTL.thy
changeset 11352 140d55f5836d
child 11355 778c369559d9
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/CTL/CTL.thy	Thu May 31 17:24:56 2001 +0200
@@ -0,0 +1,308 @@
+
+theory CTL = Main:
+
+section {* CTL formulae *}
+
+text {*
+  \tweakskip By using the common technique of ``shallow embedding'', a
+  CTL formula is identified with the corresponding set of states where
+  it holds.  Consequently, CTL operations such as negation,
+  conjunction, disjunction simply become complement, intersection,
+  union of sets.  We only require a separate operation for
+  implication, as point-wise inclusion is usually not encountered in
+  plain set-theory.
+*}
+
+lemmas [intro!] = Int_greatest Un_upper2 Un_upper1 Int_lower1 Int_lower2
+
+types 'a ctl = "'a set"
+constdefs
+  imp :: "'a ctl \<Rightarrow> 'a ctl \<Rightarrow> 'a ctl"    (infixr "\<rightarrow>" 75)
+  "p \<rightarrow> q \<equiv> - p \<union> q"
+
+lemma [intro!]: "p \<inter> p \<rightarrow> q \<subseteq> q" by (unfold imp_def) auto
+lemma [intro!]: "p \<subseteq> (q \<rightarrow> p)" by (unfold imp_def) rule
+
+
+text {*
+  \smallskip The CTL path operators are more interesting; they are 
+  based on an arbitrary, but fixed model @{text \<M>}, which is simply 
+  a transition relation over states @{typ "'a"}. 
+*}
+
+consts model :: "('a \<times> 'a) set"    ("\<M>")
+
+text {*
+  The operators @{text \<EX>}, @{text \<EF>}, @{text \<EG>} are taken as
+  primitives, while @{text \<AX>}, @{text \<AF>}, @{text \<AG>} are
+  defined as derived ones.  The formula @{text "\<EX> p"} holds in a
+  state @{term s}, iff there is a successor state @{term s'} (with
+  respect to the model @{term \<M>}), such that @{term p} holds in
+  @{term s'}.  The formula @{text "\<EF> p"} holds in a state @{term
+  s}, iff there is a path in @{text \<M>}, starting from @{term s},
+  such that there exists a state @{term s'} on the path, such that
+  @{term p} holds in @{term s'}.  The formula @{text "\<EG> p"} holds
+  in a state @{term s}, iff there is a path, starting from @{term s},
+  such that for all states @{term s'} on the path, @{term p} holds in
+  @{term s'}.  It is easy to see that @{text "\<EF> p"} and @{text
+  "\<EG> p"} may be expressed using least and greatest fixed points
+  \cite{McMillan-PhDThesis}.
+*}
+
+constdefs
+  EX :: "'a ctl \<Rightarrow> 'a ctl"    ("\<EX> _" [80] 90)    "\<EX> p \<equiv> {s. \<exists>s'. (s, s') \<in> \<M> \<and> s' \<in> p}"
+  EF :: "'a ctl \<Rightarrow> 'a ctl"    ("\<EF> _" [80] 90)    "\<EF> p \<equiv> lfp (\<lambda>s. p \<union> \<EX> s)"
+  EG :: "'a ctl \<Rightarrow> 'a ctl"    ("\<EG> _" [80] 90)    "\<EG> p \<equiv> gfp (\<lambda>s. p \<inter> \<EX> s)"
+
+text {*
+  @{text "\<AX>"}, @{text "\<AF>"} and @{text "\<AG>"} are now defined 
+  dually in terms of @{text "\<EX>"}, @{text "\<EF>"} and @{text "\<EG>"}.
+*}
+
+constdefs
+  AX :: "'a ctl \<Rightarrow> 'a ctl"    ("\<AX> _" [80] 90)    "\<AX> p \<equiv> - \<EX> - p"
+  AF :: "'a ctl \<Rightarrow> 'a ctl"    ("\<AF> _" [80] 90)    "\<AF> p \<equiv> - \<EG> - p"
+  AG :: "'a ctl \<Rightarrow> 'a ctl"    ("\<AG> _" [80] 90)    "\<AG> p \<equiv> - \<EF> - p"
+
+lemmas [simp] = EX_def EG_def AX_def EF_def AF_def AG_def
+
+
+
+section {* Basic fixed point properties *}
+
+text {*
+  \tweakskip First of all, we use the de-Morgan property of fixed points
+*}
+
+lemma lfp_gfp: "lfp f = - gfp (\<lambda>s . - (f (- s)))"
+proof
+  show "lfp f \<subseteq> - gfp (\<lambda>s. - f (- s))"
+  proof
+    fix x assume l: "x \<in> lfp f"
+    show "x \<in> - gfp (\<lambda>s. - f (- s))"
+    proof
+      assume "x \<in> gfp (\<lambda>s. - f (- s))"
+      then obtain u where "x \<in> u" and "u \<subseteq> - f (- u)" by (unfold gfp_def) auto
+      then have "f (- u) \<subseteq> - u" by auto
+      then have "lfp f \<subseteq> - u" by (rule lfp_lowerbound)
+      from l and this have "x \<notin> u" by auto
+      then show False by contradiction
+    qed
+  qed
+  show "- gfp (\<lambda>s. - f (- s)) \<subseteq> lfp f"
+  proof (rule lfp_greatest)
+    fix u assume "f u \<subseteq> u"
+    then have "- u \<subseteq> - f u" by auto
+    then have "- u \<subseteq> - f (- (- u))" by simp
+    then have "- u \<subseteq> gfp (\<lambda>s. - f (- s))" by (rule gfp_upperbound)
+    then show "- gfp (\<lambda>s. - f (- s)) \<subseteq> u" by auto
+  qed
+qed
+
+lemma lfp_gfp': "- lfp f = gfp (\<lambda>s. - (f (- s)))"
+  by (simp add: lfp_gfp)
+
+lemma gfp_lfp': "- gfp f = lfp (\<lambda>s. - (f (- s)))"
+  by (simp add: lfp_gfp)
+
+text {*
+  in order to give dual fixed point representations of @{term "AF p"}
+  and @{term "AG p"}:
+*}
+
+lemma AF_lfp: "\<AF> p = lfp (\<lambda>s. p \<union> \<AX> s)" by (simp add: lfp_gfp)
+lemma AG_gfp: "\<AG> p = gfp (\<lambda>s. p \<inter> \<AX> s)" by (simp add: lfp_gfp)
+
+lemma EF_fp: "\<EF> p = p \<union> \<EX> \<EF> p"
+proof -
+  have "mono (\<lambda>s. p \<union> \<EX> s)" by rule (auto simp add: EX_def)
+  then show ?thesis by (simp only: EF_def) (rule lfp_unfold)
+qed
+
+lemma AF_fp: "\<AF> p = p \<union> \<AX> \<AF> p"
+proof -
+  have "mono (\<lambda>s. p \<union> \<AX> s)" by rule (auto simp add: AX_def EX_def)
+  then show ?thesis by (simp only: AF_lfp) (rule lfp_unfold)
+qed
+
+lemma EG_fp: "\<EG> p = p \<inter> \<EX> \<EG> p"
+proof -
+  have "mono (\<lambda>s. p \<inter> \<EX> s)" by rule (auto simp add: EX_def)
+  then show ?thesis by (simp only: EG_def) (rule gfp_unfold)
+qed
+
+
+text {*
+  From the greatest fixed point definition of @{term "\<AG> p"}, we
+  derive as a consequence of the Knaster-Tarski theorem on the one
+  hand that @{term "\<AG> p"} is a fixed point of the monotonic
+  function @{term "\<lambda>s. p \<inter> \<AX> s"}.
+*}
+
+lemma AG_fp: "\<AG> p = p \<inter> \<AX> \<AG> p"
+proof -
+  have "mono (\<lambda>s. p \<inter> \<AX> s)" sorry (* by rule (auto simp add: AX_def EX_def) *)
+  then show ?thesis sorry (* by (simp only: AG_gfp) (rule gfp_unfold) *)
+qed
+
+text {*
+  This fact may be split up into two inequalities (merely using
+  transitivity of @{text "\<subseteq>" }, which is an instance of the overloaded
+  @{text "\<le>"} in Isabelle/HOL).
+*}
+
+lemma AG_fp_1: "\<AG> p \<subseteq> p"
+proof -
+  note AG_fp also have "p \<inter> \<AX> \<AG> p \<subseteq> p" by auto
+  finally show ?thesis .
+qed
+
+text {**}
+
+lemma AG_fp_2: "\<AG> p \<subseteq> \<AX> \<AG> p"
+proof -
+  note AG_fp also have "p \<inter> \<AX> \<AG> p \<subseteq> \<AX> \<AG> p" by auto
+  finally show ?thesis .
+qed
+
+text {*
+  On the other hand, we have from the Knaster-Tarski fixed point
+  theorem that any other post-fixed point of @{term "\<lambda>s. p \<inter> AX s"} is
+  smaller than @{term "AG p"}.  A post-fixed point is a set of states
+  @{term q} such that @{term "q \<subseteq> p \<inter> AX q"}.  This leads to the
+  following co-induction principle for @{term "AG p"}.
+*}
+
+lemma AG_I: "q \<subseteq> p \<inter> \<AX> q \<Longrightarrow> q \<subseteq> \<AG> p"
+  by (simp only: AG_gfp) (rule gfp_upperbound)
+
+
+section {* The tree induction principle \label{sec:calc-ctl-tree-induct} *}
+
+text {*
+  \tweakskip With the most basic facts available, we are now able to
+  establish a few more interesting results, leading to the \emph{tree
+  induction} principle for @{text AG} (see below).  We will use some
+  elementary monotonicity and distributivity rules.
+*}
+
+lemma AX_int: "\<AX> (p \<inter> q) = \<AX> p \<inter> \<AX> q" by auto 
+lemma AX_mono: "p \<subseteq> q \<Longrightarrow> \<AX> p \<subseteq> \<AX> q" by auto
+lemma AG_mono: "p \<subseteq> q \<Longrightarrow> \<AG> p \<subseteq> \<AG> q" by (simp only: AG_gfp, rule gfp_mono) auto 
+
+text {*
+  The formula @{term "AG p"} implies @{term "AX p"} (we use
+  substitution of @{text "\<subseteq>"} with monotonicity).
+*}
+
+lemma AG_AX: "\<AG> p \<subseteq> \<AX> p"
+proof -
+  have "\<AG> p \<subseteq> \<AX> \<AG> p" by (rule AG_fp_2)
+  also have "\<AG> p \<subseteq> p" by (rule AG_fp_1) moreover note AX_mono
+  finally show ?thesis .
+qed
+
+text {*
+  Furthermore we show idempotency of the @{text "\<AG>"} operator.
+  The proof is a good example of how accumulated facts may get
+  used to feed a single rule step.
+*}
+
+lemma AG_AG: "\<AG> \<AG> p = \<AG> p"
+proof
+  show "\<AG> \<AG> p \<subseteq> \<AG> p" by (rule AG_fp_1)
+next
+  show "\<AG> p \<subseteq> \<AG> \<AG> p"
+  proof (rule AG_I)
+    have "\<AG> p \<subseteq> \<AG> p" ..
+    moreover have "\<AG> p \<subseteq> \<AX> \<AG> p" by (rule AG_fp_2)
+    ultimately show "\<AG> p \<subseteq> \<AG> p \<inter> \<AX> \<AG> p" ..
+  qed
+qed
+
+text {*
+  \smallskip We now give an alternative characterization of the
+  @{text "\<AG>"} operator, which describes the @{text "\<AG>"}
+  operator in an ``operational'' way by tree induction:
+  In a state holds @{term "AG p"} iff
+  in that state holds @{term p}, and in all reachable states @{term s}
+  follows from the fact that @{term p} holds in @{term s}, that @{term
+  p} also holds in all successor states of @{term s}.  We use the
+  co-induction principle @{thm [source] AG_I} to establish this in a
+  purely algebraic manner.
+*}
+
+theorem AG_induct: "p \<inter> \<AG> (p \<rightarrow> \<AX> p) = \<AG> p"
+proof
+  show "p \<inter> \<AG> (p \<rightarrow> \<AX> p) \<subseteq> \<AG> p"  (is "?lhs \<subseteq> _")
+  proof (rule AG_I)
+    show "?lhs \<subseteq> p \<inter> \<AX> ?lhs"
+    proof
+      show "?lhs \<subseteq> p" ..
+      show "?lhs \<subseteq> \<AX> ?lhs"
+      proof -
+	{
+	  have "\<AG> (p \<rightarrow> \<AX> p) \<subseteq> p \<rightarrow> \<AX> p" by (rule AG_fp_1)
+          also have "p \<inter> p \<rightarrow> \<AX> p \<subseteq> \<AX> p" ..
+          finally have "?lhs \<subseteq> \<AX> p" by auto
+	}  
+	moreover
+	{
+	  have "p \<inter> \<AG> (p \<rightarrow> \<AX> p) \<subseteq> \<AG> (p \<rightarrow> \<AX> p)" ..
+          also have "\<dots> \<subseteq> \<AX> \<dots>" by (rule AG_fp_2)
+          finally have "?lhs \<subseteq> \<AX> \<AG> (p \<rightarrow> \<AX> p)" .
+	}  
+	ultimately have "?lhs \<subseteq> \<AX> p \<inter> \<AX> \<AG> (p \<rightarrow> \<AX> p)" ..
+	also have "\<dots> = \<AX> ?lhs" by (simp only: AX_int)
+	finally show ?thesis .
+      qed
+    qed
+  qed
+next
+  show "\<AG> p \<subseteq> p \<inter> \<AG> (p \<rightarrow> \<AX> p)"
+  proof
+    show "\<AG> p \<subseteq> p" by (rule AG_fp_1)
+    show "\<AG> p \<subseteq> \<AG> (p \<rightarrow> \<AX> p)"
+    proof -
+      have "\<AG> p = \<AG> \<AG> p" by (simp only: AG_AG)
+      also have "\<AG> p \<subseteq> \<AX> p" by (rule AG_AX) moreover note AG_mono
+      also have "\<AX> p \<subseteq> (p \<rightarrow> \<AX> p)" .. moreover note AG_mono
+      finally show ?thesis .
+    qed
+  qed
+qed
+
+
+section {* An application of tree induction \label{sec:calc-ctl-commute} *}
+
+text {*
+  \tweakskip Further interesting properties of CTL expressions may be
+  demonstrated with the help of tree induction; here we show that
+  @{text \<AX>} and @{text \<AG>} commute.
+*}
+
+theorem AG_AX_commute: "\<AG> \<AX> p = \<AX> \<AG> p"
+proof -
+  have "\<AG> \<AX> p = \<AX> p \<inter> \<AX> \<AG> \<AX> p" by (rule AG_fp)
+  also have "\<dots> = \<AX> (p \<inter> \<AG> \<AX> p)" by (simp only: AX_int)
+  also have "p \<inter> \<AG> \<AX> p = \<AG> p"  (is "?lhs = _")
+  proof  
+    have "\<AX> p \<subseteq> p \<rightarrow> \<AX> p" ..
+    also have "p \<inter> \<AG> (p \<rightarrow> \<AX> p) = \<AG> p" by (rule AG_induct)
+    also note Int_mono AG_mono  
+    ultimately show "?lhs \<subseteq> \<AG> p" by auto
+  next  
+    have "\<AG> p \<subseteq> p" by (rule AG_fp_1)
+    moreover 
+    {
+      have "\<AG> p = \<AG> \<AG> p" by (simp only: AG_AG)
+      also have "\<AG> p \<subseteq> \<AX> p" by (rule AG_AX)
+      also note AG_mono
+      ultimately have "\<AG> p \<subseteq> \<AG> \<AX> p" .
+    } 
+    ultimately show "\<AG> p \<subseteq> ?lhs" ..
+  qed  
+  finally show ?thesis .
+qed
+
+end