src/HOL/MicroJava/BV/SemilatAlg.thy
changeset 33954 1bc3b688548c
parent 33930 6a973bd43949
child 33955 fff6f11b1f09
--- a/src/HOL/MicroJava/BV/SemilatAlg.thy	Wed Dec 02 12:04:07 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,188 +0,0 @@
-(*  Title:      HOL/MicroJava/BV/SemilatAlg.thy
-    ID:         $Id$
-    Author:     Gerwin Klein
-    Copyright   2002 Technische Universitaet Muenchen
-*)
-
-header {* \isaheader{More on Semilattices} *}
-
-theory SemilatAlg
-imports Typing_Framework Product
-begin
-
-
-constdefs 
-  lesubstep_type :: "(nat \<times> 's) list \<Rightarrow> 's ord \<Rightarrow> (nat \<times> 's) list \<Rightarrow> bool"
-                    ("(_ /<=|_| _)" [50, 0, 51] 50)
-  "x <=|r| y \<equiv> \<forall>(p,s) \<in> set x. \<exists>s'. (p,s') \<in> set y \<and> s <=_r s'"
-
-consts
- "@plusplussub" :: "'a list \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" ("(_ /++'__ _)" [65, 1000, 66] 65)
-primrec
-  "[] ++_f y = y"
-  "(x#xs) ++_f y = xs ++_f (x +_f y)"
-
-constdefs
- bounded :: "'s step_type \<Rightarrow> nat \<Rightarrow> bool"
-"bounded step n == !p<n. !s. !(q,t):set(step p s). q<n"  
-
- pres_type :: "'s step_type \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool"
-"pres_type step n A == \<forall>s\<in>A. \<forall>p<n. \<forall>(q,s')\<in>set (step p s). s' \<in> A"
-
- mono :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool"
-"mono r step n A ==
- \<forall>s p t. s \<in> A \<and> p < n \<and> s <=_r t \<longrightarrow> step p s <=|r| step p t"
-
-
-lemma pres_typeD:
-  "\<lbrakk> pres_type step n A; s\<in>A; p<n; (q,s')\<in>set (step p s) \<rbrakk> \<Longrightarrow> s' \<in> A"
-  by (unfold pres_type_def, blast)
-
-lemma monoD:
-  "\<lbrakk> mono r step n A; p < n; s\<in>A; s <=_r t \<rbrakk> \<Longrightarrow> step p s <=|r| step p t"
-  by (unfold mono_def, blast)
-
-lemma boundedD: 
-  "\<lbrakk> bounded step n; p < n; (q,t) : set (step p xs) \<rbrakk> \<Longrightarrow> q < n" 
-  by (unfold bounded_def, blast)
-
-lemma lesubstep_type_refl [simp, intro]:
-  "(\<And>x. x <=_r x) \<Longrightarrow> x <=|r| x"
-  by (unfold lesubstep_type_def) auto
-
-lemma lesub_step_typeD:
-  "a <=|r| b \<Longrightarrow> (x,y) \<in> set a \<Longrightarrow> \<exists>y'. (x, y') \<in> set b \<and> y <=_r y'"
-  by (unfold lesubstep_type_def) blast
-
-
-lemma list_update_le_listI [rule_format]:
-  "set xs <= A \<longrightarrow> set ys <= A \<longrightarrow> xs <=[r] ys \<longrightarrow> p < size xs \<longrightarrow>  
-   x <=_r ys!p \<longrightarrow> semilat(A,r,f) \<longrightarrow> x\<in>A \<longrightarrow> 
-   xs[p := x +_f xs!p] <=[r] ys"
-  apply (unfold Listn.le_def lesub_def semilat_def)
-  apply (simp add: list_all2_conv_all_nth nth_list_update)
-  done
-
-
-lemma plusplus_closed: assumes "semilat (A, r, f)" shows
-  "\<And>y. \<lbrakk> set x \<subseteq> A; y \<in> A\<rbrakk> \<Longrightarrow> x ++_f y \<in> A" (is "PROP ?P")
-proof -
-  interpret Semilat A r f using assms by (rule Semilat.intro)
-  show "PROP ?P" proof (induct x)
-    show "\<And>y. y \<in> A \<Longrightarrow> [] ++_f y \<in> A" by simp
-    fix y x xs
-    assume y: "y \<in> A" and xs: "set (x#xs) \<subseteq> A"
-    assume IH: "\<And>y. \<lbrakk> set xs \<subseteq> A; y \<in> A\<rbrakk> \<Longrightarrow> xs ++_f y \<in> A"
-    from xs obtain x: "x \<in> A" and xs': "set xs \<subseteq> A" by simp
-    from x y have "(x +_f y) \<in> A" ..
-    with xs' have "xs ++_f (x +_f y) \<in> A" by (rule IH)
-    thus "(x#xs) ++_f y \<in> A" by simp
-  qed
-qed
-
-lemma (in Semilat) pp_ub2:
- "\<And>y. \<lbrakk> set x \<subseteq> A; y \<in> A\<rbrakk> \<Longrightarrow> y <=_r x ++_f y"
-proof (induct x)
-  from semilat show "\<And>y. y <=_r [] ++_f y" by simp
-  
-  fix y a l
-  assume y:  "y \<in> A"
-  assume "set (a#l) \<subseteq> A"
-  then obtain a: "a \<in> A" and x: "set l \<subseteq> A" by simp
-  assume "\<And>y. \<lbrakk>set l \<subseteq> A; y \<in> A\<rbrakk> \<Longrightarrow> y <=_r l ++_f y"
-  hence IH: "\<And>y. y \<in> A \<Longrightarrow> y <=_r l ++_f y" using x .
-
-  from a y have "y <=_r a +_f y" ..
-  also from a y have "a +_f y \<in> A" ..
-  hence "(a +_f y) <=_r l ++_f (a +_f y)" by (rule IH)
-  finally have "y <=_r l ++_f (a +_f y)" .
-  thus "y <=_r (a#l) ++_f y" by simp
-qed
-
-
-lemma (in Semilat) pp_ub1:
-shows "\<And>y. \<lbrakk>set ls \<subseteq> A; y \<in> A; x \<in> set ls\<rbrakk> \<Longrightarrow> x <=_r ls ++_f y"
-proof (induct ls)
-  show "\<And>y. x \<in> set [] \<Longrightarrow> x <=_r [] ++_f y" by simp
-
-  fix y s ls
-  assume "set (s#ls) \<subseteq> A"
-  then obtain s: "s \<in> A" and ls: "set ls \<subseteq> A" by simp
-  assume y: "y \<in> A" 
-
-  assume 
-    "\<And>y. \<lbrakk>set ls \<subseteq> A; y \<in> A; x \<in> set ls\<rbrakk> \<Longrightarrow> x <=_r ls ++_f y"
-  hence IH: "\<And>y. x \<in> set ls \<Longrightarrow> y \<in> A \<Longrightarrow> x <=_r ls ++_f y" using ls .
-
-  assume "x \<in> set (s#ls)"
-  then obtain xls: "x = s \<or> x \<in> set ls" by simp
-  moreover {
-    assume xs: "x = s"
-    from s y have "s <=_r s +_f y" ..
-    also from s y have "s +_f y \<in> A" ..
-    with ls have "(s +_f y) <=_r ls ++_f (s +_f y)" by (rule pp_ub2)
-    finally have "s <=_r ls ++_f (s +_f y)" .
-    with xs have "x <=_r ls ++_f (s +_f y)" by simp
-  } 
-  moreover {
-    assume "x \<in> set ls"
-    hence "\<And>y. y \<in> A \<Longrightarrow> x <=_r ls ++_f y" by (rule IH)
-    moreover from s y have "s +_f y \<in> A" ..
-    ultimately have "x <=_r ls ++_f (s +_f y)" .
-  }
-  ultimately 
-  have "x <=_r ls ++_f (s +_f y)" by blast
-  thus "x <=_r (s#ls) ++_f y" by simp
-qed
-
-
-lemma (in Semilat) pp_lub:
-  assumes z: "z \<in> A"
-  shows 
-  "\<And>y. y \<in> A \<Longrightarrow> set xs \<subseteq> A \<Longrightarrow> \<forall>x \<in> set xs. x <=_r z \<Longrightarrow> y <=_r z \<Longrightarrow> xs ++_f y <=_r z"
-proof (induct xs)
-  fix y assume "y <=_r z" thus "[] ++_f y <=_r z" by simp
-next
-  fix y l ls assume y: "y \<in> A" and "set (l#ls) \<subseteq> A"
-  then obtain l: "l \<in> A" and ls: "set ls \<subseteq> A" by auto
-  assume "\<forall>x \<in> set (l#ls). x <=_r z"
-  then obtain lz: "l <=_r z" and lsz: "\<forall>x \<in> set ls. x <=_r z" by auto
-  assume "y <=_r z" with lz have "l +_f y <=_r z" using l y z ..
-  moreover
-  from l y have "l +_f y \<in> A" ..
-  moreover
-  assume "\<And>y. y \<in> A \<Longrightarrow> set ls \<subseteq> A \<Longrightarrow> \<forall>x \<in> set ls. x <=_r z \<Longrightarrow> y <=_r z
-          \<Longrightarrow> ls ++_f y <=_r z"
-  ultimately
-  have "ls ++_f (l +_f y) <=_r z" using ls lsz by -
-  thus "(l#ls) ++_f y <=_r z" by simp
-qed
-
-
-lemma ub1':
-  assumes "semilat (A, r, f)"
-  shows "\<lbrakk>\<forall>(p,s) \<in> set S. s \<in> A; y \<in> A; (a,b) \<in> set S\<rbrakk> 
-  \<Longrightarrow> b <=_r map snd [(p', t')\<leftarrow>S. p' = a] ++_f y" 
-proof -
-  interpret Semilat A r f using assms by (rule Semilat.intro)
-
-  let "b <=_r ?map ++_f y" = ?thesis
-
-  assume "y \<in> A"
-  moreover
-  assume "\<forall>(p,s) \<in> set S. s \<in> A"
-  hence "set ?map \<subseteq> A" by auto
-  moreover
-  assume "(a,b) \<in> set S"
-  hence "b \<in> set ?map" by (induct S, auto)
-  ultimately
-  show ?thesis by - (rule pp_ub1)
-qed
-    
-
-lemma plusplus_empty:  
-  "\<forall>s'. (q, s') \<in> set S \<longrightarrow> s' +_f ss ! q = ss ! q \<Longrightarrow>
-   (map snd [(p', t') \<leftarrow> S. p' = q] ++_f ss ! q) = ss ! q"
-  by (induct S) auto 
-
-end