src/HOL/Hoare/HoareAbort.thy
changeset 28457 25669513fd4c
parent 27330 1af2598b5f7d
child 30304 d8e4cd2ac2a1
--- a/src/HOL/Hoare/HoareAbort.thy	Thu Oct 02 13:07:33 2008 +0200
+++ b/src/HOL/Hoare/HoareAbort.thy	Thu Oct 02 14:22:36 2008 +0200
@@ -6,7 +6,9 @@
 Like Hoare.thy, but with an Abort statement for modelling run time errors.
 *)
 
-theory HoareAbort  imports Main
+theory HoareAbort
+imports Main
+uses ("hoare_tac.ML")
 begin
 
 types
@@ -238,173 +240,18 @@
 
 subsection {* Derivation of the proof rules and, most importantly, the VCG tactic *}
 
-ML {*
-(*** The tactics ***)
-
-(*****************************************************************************)
-(** The function Mset makes the theorem                                     **)
-(** "?Mset <= {(x1,...,xn). ?P (x1,...,xn)} ==> ?Mset <= {s. ?P s}",        **)
-(** where (x1,...,xn) are the variables of the particular program we are    **)
-(** working on at the moment of the call                                    **)
-(*****************************************************************************)
-
-local open HOLogic in
-
-(** maps (%x1 ... xn. t) to [x1,...,xn] **)
-fun abs2list (Const ("split",_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t
-  | abs2list (Abs(x,T,t)) = [Free (x, T)]
-  | abs2list _ = [];
-
-(** maps {(x1,...,xn). t} to [x1,...,xn] **)
-fun mk_vars (Const ("Collect",_) $ T) = abs2list T
-  | mk_vars _ = [];
-
-(** abstraction of body over a tuple formed from a list of free variables. 
-Types are also built **)
-fun mk_abstupleC []     body = absfree ("x", unitT, body)
-  | mk_abstupleC (v::w) body = let val (n,T) = dest_Free v
-                               in if w=[] then absfree (n, T, body)
-        else let val z  = mk_abstupleC w body;
-                 val T2 = case z of Abs(_,T,_) => T
-                        | Const (_, Type (_,[_, Type (_,[T,_])])) $ _ => T;
-       in Const ("split", (T --> T2 --> boolT) --> mk_prodT (T,T2) --> boolT) 
-          $ absfree (n, T, z) end end;
-
-(** maps [x1,...,xn] to (x1,...,xn) and types**)
-fun mk_bodyC []      = HOLogic.unit
-  | mk_bodyC (x::xs) = if xs=[] then x 
-               else let val (n, T) = dest_Free x ;
-                        val z = mk_bodyC xs;
-                        val T2 = case z of Free(_, T) => T
-                                         | Const ("Pair", Type ("fun", [_, Type
-                                            ("fun", [_, T])])) $ _ $ _ => T;
-                 in Const ("Pair", [T, T2] ---> mk_prodT (T, T2)) $ x $ z end;
-
-(** maps a goal of the form:
-        1. [| P |] ==> VARS x1 ... xn {._.} _ {._.} or to [x1,...,xn]**) 
-fun get_vars thm = let  val c = Logic.unprotect (concl_of (thm));
-                        val d = Logic.strip_assums_concl c;
-                        val Const _ $ pre $ _ $ _ = dest_Trueprop d;
-      in mk_vars pre end;
-
-
-(** Makes Collect with type **)
-fun mk_CollectC trm = let val T as Type ("fun",[t,_]) = fastype_of trm 
-                      in Collect_const t $ trm end;
-
-fun inclt ty = Const (@{const_name HOL.less_eq}, [ty,ty] ---> boolT);
-
-(** Makes "Mset <= t" **)
-fun Mset_incl t = let val MsetT = fastype_of t 
-                 in mk_Trueprop ((inclt MsetT) $ Free ("Mset", MsetT) $ t) end;
-
-
-fun Mset thm = let val vars = get_vars(thm);
-                   val varsT = fastype_of (mk_bodyC vars);
-                   val big_Collect = mk_CollectC (mk_abstupleC vars 
-                         (Free ("P",varsT --> boolT) $ mk_bodyC vars));
-                   val small_Collect = mk_CollectC (Abs("x",varsT,
-                           Free ("P",varsT --> boolT) $ Bound 0));
-                   val impl = Logic.mk_implies (Mset_incl big_Collect, Mset_incl small_Collect);
-   in Goal.prove (ProofContext.init (Thm.theory_of_thm thm)) ["Mset", "P"] [] impl (K (CLASET' blast_tac 1)) end;
-
-end;
-*}
-
-(*****************************************************************************)
-(** Simplifying:                                                            **)
-(** Some useful lemmata, lists and simplification tactics to control which  **)
-(** theorems are used to simplify at each moment, so that the original      **)
-(** input does not suffer any unexpected transformation                     **)
-(*****************************************************************************)
-
 lemma Compl_Collect: "-(Collect b) = {x. ~(b x)}"
   by blast
 
-
-ML {*
-(**Simp_tacs**)
-
-val before_set2pred_simp_tac =
-  (simp_tac (HOL_basic_ss addsimps [@{thm Collect_conj_eq} RS sym, @{thm Compl_Collect}]));
-
-val split_simp_tac = (simp_tac (HOL_basic_ss addsimps [split_conv]));
-
-(*****************************************************************************)
-(** set2pred transforms sets inclusion into predicates implication,         **)
-(** maintaining the original variable names.                                **)
-(** Ex. "{x. x=0} <= {x. x <= 1}" -set2pred-> "x=0 --> x <= 1"              **)
-(** Subgoals containing intersections (A Int B) or complement sets (-A)     **)
-(** are first simplified by "before_set2pred_simp_tac", that returns only   **)
-(** subgoals of the form "{x. P x} <= {x. Q x}", which are easily           **)
-(** transformed.                                                            **)
-(** This transformation may solve very easy subgoals due to a ligth         **)
-(** simplification done by (split_all_tac)                                  **)
-(*****************************************************************************)
-
-fun set2pred i thm =
-  let val var_names = map (fst o dest_Free) (get_vars thm) in
-    ((before_set2pred_simp_tac i) THEN_MAYBE
-      (EVERY [rtac subsetI i, 
-              rtac CollectI i,
-              dtac CollectD i,
-              (TRY(split_all_tac i)) THEN_MAYBE
-              ((rename_tac var_names i) THEN
-               (full_simp_tac (HOL_basic_ss addsimps [split_conv]) i)) ])) thm
-  end;
-
-(*****************************************************************************)
-(** BasicSimpTac is called to simplify all verification conditions. It does **)
-(** a light simplification by applying "mem_Collect_eq", then it calls      **)
-(** MaxSimpTac, which solves subgoals of the form "A <= A",                 **)
-(** and transforms any other into predicates, applying then                 **)
-(** the tactic chosen by the user, which may solve the subgoal completely.  **)
-(*****************************************************************************)
-
-fun MaxSimpTac tac = FIRST'[rtac subset_refl, set2pred THEN_MAYBE' tac];
-
-fun BasicSimpTac tac =
-  simp_tac
-    (HOL_basic_ss addsimps [mem_Collect_eq,split_conv] addsimprocs [record_simproc])
-  THEN_MAYBE' MaxSimpTac tac;
-
-(** HoareRuleTac **)
-
-fun WlpTac Mlem tac i =
-  rtac @{thm SeqRule} i THEN  HoareRuleTac Mlem tac false (i+1)
-and HoareRuleTac Mlem tac pre_cond i st = st |>
-        (*abstraction over st prevents looping*)
-    ( (WlpTac Mlem tac i THEN HoareRuleTac Mlem tac pre_cond i)
-      ORELSE
-      (FIRST[rtac @{thm SkipRule} i,
-             rtac @{thm AbortRule} i,
-             EVERY[rtac @{thm BasicRule} i,
-                   rtac Mlem i,
-                   split_simp_tac i],
-             EVERY[rtac @{thm CondRule} i,
-                   HoareRuleTac Mlem tac false (i+2),
-                   HoareRuleTac Mlem tac false (i+1)],
-             EVERY[rtac @{thm WhileRule} i,
-                   BasicSimpTac tac (i+2),
-                   HoareRuleTac Mlem tac true (i+1)] ] 
-       THEN (if pre_cond then (BasicSimpTac tac i) else rtac subset_refl i) ));
-
-
-(** tac:(int -> tactic) is the tactic the user chooses to solve or simplify **)
-(** the final verification conditions                                       **)
- 
-fun hoare_tac tac i thm =
-  let val Mlem = Mset(thm)
-  in SELECT_GOAL(EVERY[HoareRuleTac Mlem tac true 1]) i thm end;
-*}
+use "hoare_tac.ML"
 
 method_setup vcg = {*
-  Method.no_args (Method.SIMPLE_METHOD' (hoare_tac (K all_tac))) *}
+  Method.ctxt_args (fn ctxt => Method.SIMPLE_METHOD' (hoare_tac ctxt (K all_tac))) *}
   "verification condition generator"
 
 method_setup vcg_simp = {*
   Method.ctxt_args (fn ctxt =>
-    Method.SIMPLE_METHOD' (hoare_tac (asm_full_simp_tac (local_simpset_of ctxt)))) *}
+    Method.SIMPLE_METHOD' (hoare_tac ctxt (asm_full_simp_tac (local_simpset_of ctxt)))) *}
   "verification condition generator plus simplification"
 
 (* Special syntax for guarded statements and guarded array updates: *)